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Abstract: In recent years, many retailers sell their products through not only offline but also online 

platforms. The sales of perishable goods on e-commerce platforms recorded phenomenal growth in 

2020. However, some retailers are overconfident and order more products than the optimal ordering 

quantity, resulting in great losses due to product decay. In this paper, we apply the newsvendor 

model to analyze the impacts of overconfident behavior on the retailer’s optimal pricing and order 

quantity decisions and profit. Our model provides the overconfident retailer with a feasible and 

effective method to adjust optimal ordering and pricing decisions. Through numerical studies, we 

examine the retailer’s optimal decisions under the scenarios of complete rationality, over-

estimation, and over-precision. We find that the over-estimation retailer always orders more 

products than the optimal order quantity, and the over-precision retailer always orders fewer 

products than the optimal order quantity. Under some conditions, overconfidence hurts the 

retailer’s revenue to a large extent. Therefore, it is beneficial for the overconfident retailer to adjust 

its order quantity according to our research findings. 
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1. Introduction 

In recent years, many retailers sell their products through not only offline but also 

online platforms. The sales of perishable goods on e-commerce platforms have 

experienced a huge growth in China. Compared with the sales in the Spring Festival of 

2019, the average daily increases in sales of JingDong Daojia and Dingdong Maicai 

services in the Spring Festival of 2020 hit 247.84% and 213.50%, respectively. The growths 

in new users at Duodian and Dingdong Maicai were 298.29% and 291.42%, respectively. 

In addition, during the Spring Festival of 2020, spanning 24–30 January, the average 

number of daily active users of perishable goods home delivery retail platforms reached 

8.791 million (http://yuqing.people.com.cn/n1/2020/0318/c209043-31636868.html, 

accessed on 28 April 2020).  

Perishable goods refer to products that are affected by temperature and humidity 

and are prone to such quality problems as deterioration, decay, or mildew during the 

storage period. They have the characteristics of being perishable and having short shelf 

lives. Their residual value is often zero at the end of the sales cycle. Meanwhile, the 

demands for perishable goods are often uncertain (see [1]). In [2], they analyzed the 

weaknesses of the existing inventory models of perishable products, built the exponential 
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freshness function, and studied the problem of order quantity and shelf distribution 

combination considering freshness and shelf quantity. In [3], they studied the impact of 

the temporary price strategy of perishable products on their sales volumes. In [4], he 

empirically investigated the mechanism of selling perishable products. In [5], they 

considered a lot size problem for perishable products. In [6], they studied the inventory 

policy for a system with substitutable and perishable products. In [7,8], they proposed an 

opaque selling plan for the perishable product system. In [9], they considered the 

inventory control and pricing policy for perishable products with social learning. 

Different from these papers, we explore the impact of overconfidence on the operations 

of the retailer that sells perishable agricultural products.  

Incidentally, there have been many news reports that some perishable products 

decayed and wasted due to excessive orders. Data from NRDC 2012 and ReFED 2018 

show that about 40% of food in the U.S. is dumped straightly into landfills every year, 

which is equivalent to USD 218 billion in economic losses. U.S. supermarkets and catering 

industry contribute to 40% of the total food waste, where the supermarket waste is much 

higher than that of the catering industry. In particular, demand for fresh produce on e-

commerce platforms has fallen after COVID-19 eased in China (see [10]), and there are 

many media reports of perishable products decaying due to overstocking. Apparently, 

retailers’ overconfidence leads to excessive ordering and waste (see [11,12]). Research has 

shown that overconfidence is common psychology in human decision making. Therefore, 

it is critical to investigate how overconfidence affects retailers’ pricing and inventory 

strategies. In this paper, we set out to study the perishable goods inventory optimization 

problem for overconfident retailers.  

In [13–15], they found that when faced with uncertainty, professionals with abundant 

expertise are often overconfident. In [16], he found that people tend to over-estimate their 

levels of knowledge and ability and their contributions to success. In [17], he proposed 

that ordinary people and even experts might be overconfident in the usual state. When 

people face uncertainty, the predicted results are more accurate than the results 

themselves actually are. In the case of overconfidence deviation, the decision is not 

optimal, and the impact of overconfidence on business outcomes cannot be ignored. 

Therefore, we need to observe the impact of overconfidence and find the best 

improvement plan to help managers make the best decisions. In [18], they summed up 

three typical types of overconfidence, namely over-estimation, over-positioning, and 

over-precision. The first two types emphasize that overconfident people overestimate 

their abilities. The last type concerns overconfident people that believe they are better at 

judging things than they are, and they overestimate their prediction accuracy. In [19], they 

pioneered studying overconfidence in the context of the newsvendor problem. Through 

different control experiments, they found that overconfidence could reasonably explain 

the pull-to-center effect in the newsvendor problem. Adding the overconfidence factor to 

the newsvendor model and using over-precision to describe the overconfident behavior. 

In [20], they found that the decision maker underestimates the variance of the demand 

distribution because of cognitive overconfidence, which makes the order quantity skewed 

to the mean. In [11], they studied the effects of individual and simultaneous 

overconfidence of the supplier and retailer on the supply chain’s performance. They 

found that when the product is highly profitable, overconfidence tends to lead to better 

profit results. In [21], they studied the impact of the retailer’s overconfidence on the 

supplier’s strategy under uncertain market demand. In the newsvendor model, the 

overconfident decision maker inclines to over-order in low-profit situations and under-

order otherwise (see [22]). In [23,24], they examined the impact of overconfidence on a 

green product manufacturer’s production decision. In [25], they used prospect theory to 

study a newsvendor with overconfidence and optimism. They found that optimism 

increases the inventory level. In [26], they considered the inventory decision of a supply 

chain comprising a risk-averse supplier and an overconfident manufacturer. They found 

that under the push strategy, the whole supply chain can achieve the win-win outcome.  
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In this study, we consider a retailer that sells a perishable agricultural product. 

Previous studies on this problem have ignored the impacts of the retailer’s overconfidence 

on product sales and pricing. We apply the newsvendor model to analyze the impacts of 

the retailer’s overconfident behavior on its optimal pricing, order quantity, and profit.  

We organize the rest of the paper as follows: In Section 2, we compare the optimal 

decisions of the rational, over-estimation, and over-precision retailers. In Section 3, we 

discuss the results of numerical studies conducted to examine the retailer’s optimal 

decisions under different overconfident scenarios and generate management insights 

from the analytical findings. In the final section, we conclude the paper and suggest topics 

for future research. 

2. Model 

We study the impacts of overconfidence on a perishable product retailer’s optimal 

pricing and inventory decisions. Specifically, we explore two types of overconfidence, 

namely over-estimation and over-precision. Comparing the retailer’s optimal decisions 

under the rational and overconfident conditions, we ascertain the impact of 

overconfidence on retailer’s decision making. 

We consider a two-level supply chain comprising a supplier and a retailer that deal 

with an agricultural product, which is perishable. We assume that both the supplier and 

retailer are risk-neutral decision makers. The supplier sells the perishable product at the 

wholesale price c to the retailer, which then forecasts the demand for the product as q 

according to market information and sells it to consumers at the retail price p. If the retailer 

orders too much, it will result in overstocking. The cost of surplus stock per unit is h. If 

the retailer orders too little, it will result in understocking, and the shortage penalty per 

unit is s. 

We assume that the freshness of the perishable agricultural product has a direct 

impact on the market size m. When the product (e.g., fruits and vegetables) is fresh, it is 

favored by consumers. As the listing time t increases, the product’s degree of freshness 

decreases, and demand decreases. In general, the freshness of different perishable 

agricultural products varies over time with different sensitive factors a. For instance, 

apples can be preserved longer than bananas. Hence, the apple’s sensitive factor a is 

smaller than that of the banana. We study two types of overconfidence models when the 

retailer has over-estimation of the market size and over-precision of the market demand, 

which is a random variable. We denote the overconfidence levels of over-estimation and 

over-precision by 𝑏1 and 𝑏2, respectively. The notation and variables used in this paper are 

summarized in Table 1. 

Table 1. Notation and Variables. 

𝑚 Maximum market size 

𝑘 Customer price sensitivity factor 

𝜀 

A random variable representing the uncertain demand function 

(We assume that ε follows the uniform distribution U [−𝑑, 𝑑] , with 

distribution function F(·) and probability density function f(·).) 

t Listing time of the perishable product  

a Sensitive factor of freshness to time, 𝑎 ≥ 0 

𝑏1 Over-estimation level, 0 ≤ 𝑏1 ≤ 1 

𝑏2 Over-precision level, 0 ≤ 𝑏2 ≤ 1 

c Unit production cost 

h Unit surplus cost 

s Unit shortage cost 

q Order quantity  

p Retail price  
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In [27], he suggested that the demand for agricultural products/commodities without 

considering their perishability is 

𝐷(𝑝) = 𝑚 − 𝑘𝑝 + 𝜀, (1) 

where m (m > 0) is the maximum market size of the commodity, k (k > 0) is the sensitivity 

coefficient of consumers to the commodity price, p is the retail price of the commodity, 

and 𝜀 is a random variable that follows the uniform distribution U[−𝑑, 𝑑]. 

In most of the studies concerning the freshness rate, they refer to [28]. In fact, during 

an one-day sales period, a perishable good is freshest when it is first put on the shelf, and 

it decays in freshness as time goes on. The decreasing freshness of a perishable food is 

slow and not easily observed in the initial stage. After a period of time, the decay of 

freshness is faster and more easily observed. After reaching a certain threshold, the decay 

rate of freshness slows down and the product changes is barely noticeable. Therefore, we 

assume that the freshness function satisfies the following conditions: The longer a 

perishable agricultural product is placed for sale on the market, the less fresh it will be. In 

a period soon after it is available to the market, its freshness decreases slowly as time 

passes. At a certain critical point, the rate of freshness decreases faster. When the 

perishable agricultural product is near decaying, consumers will hardly buy it. Thus, the 

freshness function of a perishable agricultural product 𝜃(𝑡) is a decreasing function in 

the range of (0, 1). Following the above description [29], we model the function of 

freshness as 

𝜃(𝑡) =
1

1+𝑎𝑡2, (2) 

where a (a > 0) is the influence factor of time on product freshness. A perishable product 

with a larger factor a will decay at a faster rate. As the store time of a perishable product t 

increases, the denominator on the right side of Equation (2) increases, so the product 

freshness decreases, which is consistent with real practice. 

It follows that the demand function of a perishable agricultural product under 

retailer rationality is 

𝐷0(𝑝) =
𝑚

1 + 𝑎𝑡2
− 𝑘𝑝 + 𝜀. (3) 

In Equation (3), m represents the market size for the product without decay. As time 

lapses, the freshness of the product decreases and fewer customers will want the product. 

Then, the market size for the product considering decay is 
𝑚

1+𝑎𝑡2. We denote consumers’ 

sensitivity to the retail price by k and the retail price by p. Therefore, given the sensitivity 

and price (𝑘, 𝑝) , 
𝑚

1+𝑎𝑡2 − 𝑘𝑝  is the customers’ calculated demand. 𝜀  represents the 

uncertainty of demand. The actual demand may be larger or smaller than the calculated 

demand. Therefore, the actual demand is expressed by Equation (3). 

We consider two models of overconfidence decision making of the retailer in terms 

of its over-estimation of the market size and over-precision of the market demand random 

variable. We analyze the demand function of the overconfident perishable agricultural 

product retailer under these two scenarios. 

Given that 𝑏1  and 𝑏2  are the over-estimation and over-precision levels, 

respectively, a greater 𝑏1 (𝑏2) means a higher level of overconfidence. Note that when 

𝑏1 = 𝑏2 = 0, the retailer is in the rational state. 

(1) When the retailer of a perishable agricultural product lacks the ability and experience 

to predict the market size of the product, it may overestimate it. When the product 

market size prediction goes too high, without deviation in the market fluctuation 

prediction, we derive the demand function as follows: 

𝐷1(𝑝) = (1 + 𝑏1)
𝑚

1 + 𝑎𝑡2
+ 𝜀.  (4) 



Mathematics 2022, 10, 1716 5 of 13 
 

 

(2) When the retailer of a perishable agricultural products lacks the ability and 

experience to observe fluctuation deviations of the random variable that reflects the 

market demand, it may overestimate its forecasting ability, falsely believing that the 

market demand fluctuates less than it actually does. Specifically, the retailer may 

think that the variance ratio of the random variable 𝜀  is smaller than that in the 

rational case. Using the guaranteed mean value transformation method of random 

variables (see [30]), we derive the market demand function perceived by the 

overconfident retailer as follows:  

𝐷2(𝑝) =
𝑚

1 + 𝑎𝑡2
− 𝑘 + (1 − 𝑏2)𝜀.  (5) 

2.1. Optimal Decision Making and Profit of the Retailer under the Rational Scenario 

When the retailer is completely rational, it will make pricing and inventory decisions 

based on the real demand function. We define the profit function of the retailer under the 

rational scenario as 𝜋0(𝑝, 𝑞), in which p and q are the retail price of the product and the 

order quantity of the retailer, respectively. According to the size relationship between the 

market demand 𝐷0(𝑝) and the order quantity q, we express the profit function 𝜋0(𝑝, 𝑞) 

as follows:  

𝜋0(𝑝, 𝑞) = {
𝑝𝐷0(𝑝) − 𝑐𝑞 − ℎ[𝑞 − 𝐷0(𝑝)], 𝑞 ≥ 𝐷0(𝑝)

𝑝𝑞 − 𝑐𝑞 − 𝑠[𝐷0(𝑝) − 𝑞],           𝑞 < 𝐷0(𝑝)
 (6) 

Applying the solution method of [31], we define 𝑟 = 𝑞 −
𝑚

1+𝑎𝑡2 + 𝑘𝑝. Hence, when 

𝑟 ≥ 𝜀, we have 𝑞 ≥ 𝐷0(𝑝); when 𝑟 < 𝜀, we have 𝑞 < 𝐷0(𝑝). According to the probability 

distribution of 𝜀, we express the expected return function of the retailer as follows:  

𝐸[𝜋0(𝑝, 𝑟)] = ∫ {𝑝 [
𝑚

1 + 𝑎𝑡2
− 𝑘𝑝 + 𝜀] −

𝑟

−𝑑

ℎ(𝑟 − 𝜀)}𝑓(𝜀)𝑑𝜀 

+ ∫ {𝑝[
𝑚

1 + 𝑎𝑡2
− 𝑘𝑝 + 𝑟]

𝑑

𝑟

− 𝑠(𝜀 − 𝑟)}𝑓(𝜀)𝑑𝜀 − 𝑐 [
𝑚

1 + 𝑎𝑡2
− 𝑘𝑝 + 𝑟]. 

(7) 

Substituting 𝑟 = 𝑞 −
𝑚

1+𝑎𝑡2 + 𝑘𝑝 into (7), we have 

𝐸[𝜋0(𝑝, 𝑞)] = ∫ {𝑝 [
𝑚

1 + 𝑎𝑡2
− 𝑘𝑝 + 𝜀] −

𝑞−
𝑚

1+𝑎𝑡2+𝑘𝑝

−𝑑

ℎ (𝑞 −
𝑚

1 + 𝑎𝑡2
+ 𝑘𝑝 − 𝜀)}𝑓(𝜀)𝑑𝜀 

+ ∫ {𝑝𝑞
𝑑

𝑞−
𝑚

1+𝑎𝑡2+𝑘𝑝

− 𝑠 (𝜀 − 𝑞 +
𝑚

1 + 𝑎𝑡2
− 𝑘𝑝)}𝑓(𝜀)𝑑𝜀 − 𝑐𝑞. 

(8) 

Taking the first-order partial derivative of E[𝜋0(𝑝, 𝑟)] with respect to r and p, we 

have 

𝜕𝐸[𝜋0(𝑝, 𝑟)]

𝜕𝑟
= −(𝑐 + ℎ) + (𝑝 + 𝑠 + ℎ)[1 − 𝐹(𝑟)],  (9) 

𝜕𝐸[𝜋0(𝑝, 𝑟)]

𝜕𝑝
=

𝑚

1 + 𝑎𝑡2
+ 𝑘𝑐 − 2𝑘𝑝 − ∫ (𝜀 − 𝑟)

𝑑

𝑟

𝑓(𝜀)𝑑𝜀. (10) 

Taking the second-order partial derivative of E[𝜋0(𝑝, 𝑟)] with respect to r and p, we 

have  

𝜕2𝐸[𝜋0(𝑝, 𝑟)]

𝜕𝑟2
= (−𝑝 − 𝑠 − ℎ)𝑓(𝑟),  (11) 
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𝜕2𝐸[𝜋0(𝑝, 𝑟)]

𝜕𝑝2
= −2𝑘,  (12) 

By (11), we have 
𝜕2𝐸[𝜋0(𝑝,𝑟)]

𝜕𝑟2 ≤ 0. When the retail price p is given, the expected return 

is a concave function of r. Setting 
𝜕𝐸[𝜋0(𝑝,𝑟)]

𝜕𝑟
= 0, we derive the function of the optimal 

pricing for r as 𝑝(𝑟) =
𝑚

1+𝑎𝑡2+𝑘𝑐−∫ (𝜀−𝑟)
𝑑

𝑟 𝑓(𝜀)𝑑𝜀

2𝑘
. Therefore, we transform the retailer’s 

expected maximum return E [𝜋0(𝑝, 𝑟)]  into maximizing E [𝜋0(𝑝(𝑟), 𝑟)] , reducing the 

problem to a single variable-optimization problem. Defining 𝑟0 = argmax𝐸[𝜋0(𝑝(𝑟), 𝑟)], 

we find that the retailer’s optimal pricing and inventory decisions are 𝑝0 =
𝑚

1+𝑎𝑡2+𝑘𝑐−∫ (𝜀−𝑟0)
𝑑

𝑟0
𝑓(𝜀)𝑑𝜀

2𝑘
 and 𝑞0 = 𝑟0 +

𝑚

1+𝑎𝑡2 − 𝑘𝑝0, respectively. 

The analytical solution of the problem is related to specific values of the parameters. 

We refer the reader to [31] for the detailed analysis. We focus on the pricing and inventory 

decisions of the retailer that shows overconfidence behavior. We resort to numerical 

studies to examine the impacts of the overconfidence behaviors of over-estimation and 

over-precision on the retailer’s optimal return and identify the corresponding counter-

measures. 

2.2. Optimal Decision Making and Profit under Retailer’s Over-Estimation Scenario 

Under the over-estimation scenario, the retailer may mistakenly estimate the 

maximum market demand and make the optimal pricing and inventory decisions 

according to the market distribution function that it presumes. Therefore, the resulting 

decisions are different from those under the rational scenario. Define the revenue function 

that the retailer believes it can obtain under the over-estimation scenario as 𝜋1(𝑝, 𝑞), 

where p and q are the retail price of the product and the order quantity of the retailer, 

respectively. According to the relationship between the retailer’s forecast market demand 

𝐷1(𝑝) and the order quantity q, we express 𝜋1(𝑝, 𝑞) as follows:  

𝜋1(𝑝, 𝑞) = {
𝑝𝐷1(𝑝) − 𝑐𝑞 − ℎ[𝑞 − 𝐷1(𝑝)], 𝑞 ≥ 𝐷1(𝑝)

𝑝𝑞 − 𝑐𝑞 − 𝑠[𝐷1(𝑝) − 𝑞],          𝑞 < 𝐷1(𝑝)
 (13) 

Define 𝑟 = 𝑞 − (1 + 𝑏1)
𝑚

1+𝑎𝑡2 + 𝑘𝑝. Thus, when r ≥ ε, we have 𝑞 ≥ 𝐷1(𝑝). When 𝑟 <

𝜀 , we have 𝑞 < 𝐷1(𝑝) . According to the probability distribution of 𝜀 , we derive the 

expected income function deemed by the retailer as follows:  

𝐸[𝜋1(𝑝, 𝑟)] = ∫ {𝑝 [(1 + 𝑏1)
𝑚

1 + 𝑎𝑡2
− 𝑘𝑝 + 𝜀] −

𝑟

−𝑑

ℎ(𝑟 − 𝜀)}𝑓(𝜀)𝑑𝜀 

+ ∫ {𝑝[(1 + 𝑏1)
𝑚

1 + 𝑎𝑡2
− 𝑘𝑝 + 𝑟]

𝑑

𝑟

− 𝑠(𝜀 − 𝑟)}𝑓(𝜀)𝑑𝜀 − 𝑐 [(1 + 𝑏1)
𝑚

1 + 𝑎𝑡2
− 𝑘𝑝 + 𝑟] 

(14) 

When the retailer shows the over-estimation behavior, it may mistakenly think that 

its income function is (14), and it makes its optimal pricing and inventory decision 

accordingly. Define (𝑝1, 𝑟1) = argmax𝐸[𝜋1(𝑝, 𝑟)], and the retailer’s optimal pricing and 

inventory decisions are 𝑝1  and 𝑞1 = 𝑟1 + (1 + 𝑏1)
𝑚

1+𝑎𝑡2 − 𝑘𝑝1 , respectively, under the 

scenario of over-estimation. Having made the pricing and inventory decisions (𝑝1 , 𝑟1), the 

retailer’s real expected return is 𝐸[𝜋0(𝑝1 , 𝑞1)]. 

2.3. Optimal Decision Making and Profit under Retailer’s Over-Precision Scenario 

Under the over-precision scenario, the retailer may under-estimate the volatility of 

the market demand and make its optimal pricing and inventory decisions according to 

the market distribution function that it presumes. Therefore, the decisions are different 

from those under the rational scenario. Define the return function that the retailer believes 
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it can obtain under the over-precision scenario as 𝜋2(𝑝, 𝑞), where p and q are the retail 

price and order quantity of the retailer, respectively, under the over-precision scenario. 

According to the relationship between the retailer’s forecast market demand 𝐷2(𝑝) and 

the order quantity q, we express 𝜋2(𝑝, 𝑞) as follows: 

𝜋2(𝑝, 𝑞) = {
𝑝𝐷2(𝑝) − 𝑐𝑞 − ℎ[𝑞 − 𝐷2(𝑝)], 𝑞 ≥ 𝐷2(𝑝)

𝑝𝑞 − 𝑐𝑞 − 𝑠[𝐷2(𝑝) − 𝑞],          𝑞 < 𝐷2(𝑝)
 (15) 

Define 𝑟 = 𝑞 −
𝑚

1+𝑎𝑡2 + 𝑘𝑝. When 𝑟 ≥ (1 − 𝑏2)𝜀, we have 𝑞 ≥ 𝐷1(𝑝); when 𝑟 < (1 −

𝑏2)𝜀, we have 𝑞 < 𝐷1(𝑝). Since 𝜀 follows the uniform distribution U[−𝑑, 𝑑], (1 − 𝑏2)𝜀 

follows the uniform distribution U[(𝑏2 − 1)𝑑, (1 − 𝑏2)𝑑]. Then, the retailer’s own expected 

return function is as follows:  

𝐸[𝜋2(𝑝, 𝑟)] = ∫ {𝑝 [
𝑚

1 + 𝑎𝑡2
− 𝑘𝑝 + 𝜀] −

𝑟

(𝑏2−1)𝑑

ℎ(𝑟 − 𝜀)}𝑓(𝜀)𝑑𝜀 

+ ∫ {𝑝[
𝑚

1+𝑎𝑡2 − 𝑘𝑝 + 𝑟]
(1−𝑏2)𝑑

𝑟
− 𝑠(𝜀 − 𝑟)}𝑓(𝜀)𝑑𝜀 − 𝑐 [

𝑚

1+𝑎𝑡2 − 𝑘𝑝 + 𝑟]. 

(16) 

When retailer shows the over-precision behavior, it may mistakenly think that its 

income function is (16), and it makes optimal pricing and inventory decisions accordingly. 

Define (𝑝2, 𝑟2) = argmax𝐸[𝜋2(𝑝, 𝑟)]. Then, the retailer’s optimal pricing and inventory 

decisions are 𝑝2  and 𝑞2 = 𝑟2 +
𝑚

1+𝑎𝑡2 − 𝑘𝑝2 , respectively, under the over-precision 

scenario. Having made the pricing and inventory decisions (𝑝2, 𝑟2), the retailer’s real 

expected return is 𝐸[𝜋0(𝑝2, 𝑞2)]. 

3. Numerical Studies 

In this section, we perform numerical studies to examine the retailer’s decision 

making and profit under the scenarios of rationality and overconfidence to gain a deeper 

understanding of the analytical findings derived in the above section. We seek to study 

the impacts of the retailer’s overconfidence behavior on its optimal decisions and earning 

and generate management insights from the analytical results.  

Define 𝜌1 =
𝐸[𝜋0(𝑝0,𝑞0)]−𝐸[𝜋0(𝑝1,𝑞1)]

𝐸[𝜋0(𝑝0,𝑞0)]
× 100  and  𝜌2 =

𝐸[𝜋0(𝑝0,𝑞0)]−𝐸[𝜋0(𝑝2,𝑞2)]

𝐸[𝜋0(𝑝0,𝑞0)]
× 100 .  𝜌1 

and 𝜌2 represent the relative losses of earning for the over-estimation and over-precision 

retailers, respectively. The greater the values of ρ1 and ρ2 are, the more unfavorable the 

overconfidence behavior is to the retailer.  

We set the main parameters as follows: 𝑚 = 50, 𝑘 = 1, 𝑎 = 0.1, and 𝑡 = 1, and let 

𝜀  follow the uniform distribution U[−30,30]. We carried out the numerical studies in 

several parameter settings and obtained similar results, so we used such parameter 

values. The product is a perishable agricultural product (e.g., a fruit or vegetable), which 

is a daily necessity for human consumers. It has a large market and a low price, and the 

product cost c is much smaller than the market scale m. In general, for a perishable 

agricultural product, the parameters s, c, and h have the same order of magnitude. We set 

the upper bound U at a moderate value compared with m. On the one hand, if the upper 

bound U is very large, customer demand will be negative under extreme conditions. On 

the other hand, if the upper bound U is very small, the impact of overconfidence will be 

negligible. Following [30], we set the market sensitivity coefficient k as 1. 

We first study the effect of the overconfidence behavior on the optimal returns of the 

retailer under different parameter values given the level of overconfidence. In [20], they 

found that the degrees of participants’ overconfidence observed in the newsvendor 

experiment were mainly in the interval [0.52,0.83] . We set the parameters of 

overconfidence at 𝑏1 = 0.3 and 𝑏2 = 0.7 . Next, we fix the unit production cost of the 

product while changing one of the two items of the unit shortage penalty cost and the unit 

surplus cost to observe changes in the retailer’s decisions and earning.  

We set 𝑠 = 5; 𝑐 = 5; and ℎ = −3, −1, 1, 3, and 5 and obtain the following results.  
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We make the following observations from the results in Table 2: (1) Both over-

estimation and over-precision will damage the retailer’s earning. (2) Under the over-

estimation scenario, the retailer will set a higher retail price than that under the rational 

scenario, and it will order more than under the rational scenario, which leads to a decrease 

in its own earning. (3) As h increases, the over-estimation retailer’s relative loss of earning 

will also rise because it needs to spend more to handle the surplus. (4) Under the over-

precision scenario, the retail price is no different from that under the rational scenario, but 

the retailer will order less than under the rational scenario, which leads to a reduction in 

its own earning. (5) As h increases, the risk of overstocking increases (being unable to sell 

means paying the cost h), so the advantage of the rational retailer over the over-precision 

retailer decreases, and the relative earning loss of the over-precision retailer is reduced. 

(6) As h increases, the rational, over-estimation, and over-precision retailers will stock less, 

and their prices will increase. The reason is that the retailer increases the price to 

compensate for the potential risk of having surplus stock while reducing the stock to cut 

down the surplus stock. 

Table 2. Retailer’s decisions and earning when the unit processing cost of surplus cost changes. 

ℎ −3 −1 1 3 5 

𝑝0 (rational) 25.15 24.94 24.65 24.31 23.92 

𝑝1 (over-estimated) 31.99 31.86 31.66 31.43 31.16 

𝑝2 (over-precise) 25.20 25.14 25.06 24.96 24.86 

𝑞0 (rational) 45.88 43.22 39.05 36.28 33.84 

𝑞1 (over-estimated) 53.57 50.54 47.87 45.49 43.35 

𝑞2 (over-precise) 27.93 26.84 25.91 25.12 24.43 

𝐸[𝜋0(𝑝0, 𝑞0)] 353.56 305.65 264.05 227.73 195.88 

𝐸[𝜋0(𝑝1, 𝑞1)] 306.94 258.53 216.44 179.36 146.83 

𝐸[𝜋0(𝑝2, 𝑞2)] 280.86 249.25 220.88 195.25 171.81 

𝜌1 (over-estimated) 13.19 15.42 18.03 21.24 25.04 

𝜌2 (over-precise) 20.56 18.45 16.35 14.26 12.29 

For the convenience of observation, we draw the curve of the relative earning loss of 

the overconfident retailer with changing h in the following: 

As shown in Figure 1, the velocity of 𝑝2 decreasing with h is uniform. The growth 

of 𝑝1 with increasing h is generally uniform, with a slightly faster growth trend.  

 

Figure 1. Relative earning loss of overconfident retailer when the unit cost of handling surplus 

changes. 
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We set 𝑠 = 5;  ℎ = 1; and 𝑐 = 1, 3, 5, 7, and 9 and obtain the following results. 

The management implications of the results in Table 3 are as follows: (1) As c 

increases, the relative earning loss of the over-estimation retailer increases because it will 

order more than the rational retailer and spend more on the production cost. (2) As c 

increases, the relative loss of earning of the over-precision retailer decreases. The over-

precision retailer will order less than the rational retailer. Although such a behavior can 

make the over-precision retailer lose revenue because it cannot meet customers’ demand, 

its relative loss of earning will decrease when the production cost increases. (3) As c 

increases, the rational, over-estimation, and over-precision retailers will choose to raise 

their retail prices and reduce their stocks available to cope with the increased costs. 

Table 3. Retailer’s decisions and earning when the unit production cost changes. 

𝑐 1 3 5 7 9 

𝑝0 23.16 23.96 24.65 25.24 25.74 

𝑝1 30.00 30.87 31.66 32.39 33.06 

𝑝2 23.21 24.15 25.06 25.94 26.81 

𝑞0 48.17 43.48 39.05 34.85 30.81 

𝑞1 55.76 51.71 47.87 44.20 40.67 

𝑞2 30.01 27.91 25.91 24.00 22.15 

𝐸[𝜋0(𝑝0, 𝑞0)] 438.16 364.55 264.05 190.17 124.54 

𝐸[𝜋0(𝑝1, 𝑞1)] 391.52 299.49 216.44 141.72 75.02 

𝐸[𝜋0(𝑝2, 𝑞2)] 358.22 286.69 220.88 160.47 105.10 

𝜌1 10.64 13.58 18.03 25.48 39.76 

𝜌2 18.24 17.27 16.35 15.62 15.61 

For the convenience of observation, we further draw the curve of the relative earning 

loss of the overconfident retailer with changing c in the following: 

As shown in Figure 2, 𝑝2 decreases with c at an even slower rate. 𝑝1 increases with 

𝑝1 at an increasingly faster rate. 

 

Figure 2. Relative loss of earning of overconfident retailer when the unit production cost changes. 

We set 𝑐 = 5; ℎ = 1; and 𝑠 = 1, 3, 5, 7, and 9 and obtain the following results. 

We observe from the results in Table 4 the following: (1) As s increases, the relative 

earning loss of the over-estimation retailer increases, but the growth rate is slow because 

the retailer will order more than the rational retailer, with a low probability of stockout. 

(2) As s increases, the relative loss of earning of the over-precision retailer increases, and 

the growth rate is much higher than that of the over-estimation retailer. This is because 
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the over-precision retailer will order less than the rational retailer and is prone to be out 

of stock. Therefore, the relative earning loss rises with increasing shortage loss. (3) As s 

increases, the rational, over-estimation, and over-precision retailers will choose to raise 

their retail prices to compensate for the potential shortage losses while increasing their 

orders to reduce the probability of shortage. 

Table 4. Retailer’s decisions and earning when the unit-shortage penalty cost changes. 

𝑠 1 3 5 7 9 

𝑝0 24.46 24.57 24.65 24.72 24.78 

𝑝1 31.57 31.62 31.66 31.70 31.74 

𝑝2 25.01 25.04 25.06 25.08 25.10 

𝑞0 37.38 38.28 39.05 39.73 40.32 

𝑞1 46.80 47.36 47.87 48.32 48.73 

𝑞2 25.44 25.69 25.91 26.11 26.27 

𝐸[𝜋0(𝑝0, 𝑞0)] 269.37 266.51 264.05 261.89 259.99 

𝐸[𝜋0(𝑝1 , 𝑞1)] 221.08 218.60 216.44 214.45 212.60 

𝐸[𝜋0(𝑝2, 𝑞2)] 238.42 229.55 220.88 212.44 204.00 

𝜌1 17.93 17.98 18.03 18.11 18.23 

𝜌2 11.49 13.87 16.35 18.88 21.54 

For the convenience of observation, we further draw the curve of the relative earning 

loss of the overconfident retailer with changing s in the following: 

As shown in Figure 3, 𝑝2 decreases with c at an even, slow decline rate. 𝑝1 increases 

with c at an increasingly faster rate. 

 

Figure 3. Relative earning loss of the overconfident retailer when the unit-shortage penalty cost 

changes. 

To further study the impact of the overconfidence level on the retailer’s earning loss, 

we set 𝑐 = 5;  ℎ = 1 ; and 𝑠 = 5  and change 𝑏1  and 𝑏2  to observe changes in the 

retailer’s decisions and return. 

We set 𝑏2 = 0.7  and 𝑏1 = 0.1,0.2,0.3,0.4,0.5  and obtain the following results in 

Table 5. 

Table 5. Retailer’s decisions and return when the level of over-estimation changes. 

𝑏1 0.1 0.2 0.3 0.4 0.5 

𝑝0 24.65 24.65 24.65 24.65 24.65 
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𝑝1 27.00 29.34 31.66 33.98 36.29 

𝑞0 39.05 39.05 39.05 39.05 39.05 

𝑞1 42.09 45.02 47.87 50.66 53.38 

𝐸[𝜋0(𝑝0, 𝑞0)] 264.05 264.05 264.05 264.05 264.05 

𝐸[𝜋0(𝑝1, 𝑞1)] 258.73 242.79 216.44 179.55 132.30 

𝜌1 2.01 8.05 18.03 32.00 49.90 

We further draw the curve of over-estimation retailer’s relative earning loss with 

changing level of overconfidence in the following: 

As shown in Figure 4, with the increase of 𝑏1, the over-estimation retailer and the 

rational retailer deviate further in their ordering, and the over-estimation retailer’s retail 

price increases further, which makes it hard to sell more products. Thus, the over-

estimation retailer has a relatively higher earning loss. 

 

Figure 4. Retailer’s relative loss of earning when the level of over-estimation changes. 

We set 𝑏1 = 0.3  and 𝑏2 = 0.3,0.4,0.5,0.6,0.7  and obtain the following results in 

Table 6. 

Table 6. Retailer’s decisions and return when the level of over-precision changes. 

𝑏2 0.3 0.4 0.5 0.6 0.7 

𝑝0 24.65 24.65 24.65 24.65 24.65 

𝑝2 24.83 24.89 24.95 25.00 25.04 

𝑞0 39.05 39.05 39.05 39.05 39.05 

𝑞2 33.54 31.57 29.68 27.80 25.91 

𝐸[𝜋0(𝑝0, 𝑞0)] 264.05 264.05 264.05 264.05 264.05 

𝐸[𝜋0(𝑝2, 𝑞2)] 256.26 250.14 242.19 232.46 220.88 

𝜌2 2.95 5.27 8.28 11.96 16.35 

We further draw the curve of over-precision retailer’s relative earning loss with 

changing level of overconfidence in the following. 

As shown in Figure 5, with the increase of 𝑏2, the ordering of the over-precision 

retailer will be further reduced, which leads to failure in meeting customers’ demand. The 

retailer needs to pay more for understocking. As a result, the relative loss of earning of 

the over-precision retailer increases.  
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Figure 5. Retailer’s relative loss of earning when the level of over-precision changes. 

4. Conclusions 

We consider the impacts of overconfidence on the perishable product retailer’s 

optimal pricing and inventory strategies. Specifically, we explore two types of 

overconfidence, i.e., over-estimation and over-precision. We find that the over-estimation 

retailer always orders more than the rational retailer, so there is much surplus stock after 

the selling season, causing a high disposal cost to the over-estimation retailer. On the 

contrary, the over-precision retailer always orders less than the rational retailer, so much 

customer demand remains unsatisfied after the selling season, causing a high 

understocking cost to the over-precision retailer. Our model theoretically shows why the 

overconfident retailer earn less revenue than the rational one does. We find that, under 

some conditions, overconfidence can hurt the retailer’s revenue to a large degree. If the 

retailer’s order quantity is always larger or smaller than the actual market demand, then 

the retailer may be overconfident. It is beneficial for retailer to test whether it is 

overconfident or not. In practice, if the retailer recognizes that it is overconfident, it should 

adjust its inventory decision. In particular, the over-estimation retailer should decrease its 

inventory while the over-precision retailer should increase its inventory. Our study 

provides a quantitative method for the retailer to adjust its inventory level. Using our 

research findings, the overconfident retailer can determine the inventory amount that it 

should adjust. With proper adjustment of the optimal order quantity, the retailer can earn 

more revenue. 

As for future research, we assume that the retailer is risk neutral, but the retailer’s 

pricing and ordering decisions are influenced by its risk appetite in reality. Taking the 

retailer’s risk preference into account will render the study closer to reality. In addition, 

we only study the single-period newsvendor model. Future research should consider the 

multi-period newsvendor model involving an overconfident retailer and also consider the 

retailer’s sales effort and advertising cost. 

Author Contributions: Conceptualization, M.Z.; Formal analysis, M.Z.; Funding acquisition, M.Z.; 

Methodology, M.Z. and X.Y.; Supervision, M.Z. and T.E.C.; Writing—original draft, M.Z., X.Y. and 

C.C.; Writing—review & editing, M.Z. and T.E.C. All authors have read and agreed to the published 

version of the manuscript. 

Funding: This work was funded by [National Natural Science Foundation of China] grant number 

[71901027] and [Beijing Forestry University 2021 Education and Teaching Research Project] grant 

number [BJFU2021JY035]. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 



Mathematics 2022, 10, 1716 13 of 13 
 

 

Data Availability Statement: Not applicable. 

Acknowledgments: Cheng was also supported in part by The Hong Kong Polytechnic University 

under the Fung Yiu King–Wing Hang Bank Endowed Professorship in Business Administration. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Hendalianpour, A. Optimal lot-size and price of perishable goods: A novel game-theoretic model using double interval grey 

numbers. Comput. Ind. Eng. 2020, 149, 106780. 

2. Bai, R. A model for fresh products shelf-span allocation and inventory management with freshness condition dependent 

demand. INFORMS J. Comput. 2008, 20, 101–106. 

3. Arcelus, F.J.; Shah, N.H.; Srinivasan, G. Retailer’s pricing, credit and inventory policies for deteriorating items in response to 

temporary price/credit incentives. Int. J. Prod. Econ. 2003, 81, 153–162. 

4. Waisman, C. Selling mechanisms for perishable goods: An empirical analysis of an online resale market for event tickets. Quant. 

Mark. Econ. 2021, 19, 127–178. 

5. Jing, F.; Chao, X. A dynamic lot size model with perishable inventory and stockout. Omega 2021, 103, 102421. 

6. Fang, F.; Nguyen, T.D.; Currie, C.S. Joint pricing and inventory decisions for substitutable and perishable products under 

demand uncertainty. Eur. J. Oper. Res. 2021, 293, 594–602. 

7. Sasanuma, K.; Hibiki, A.; Sexton, T. An opaque selling scheme to reduce shortage and wastage in perishable inventory systems. 

Oper. Res. Perspect. 2022, 9, 100220. 

8. Ju, X.; Rosenberger, J.M.; Chen, V.C.; Liu, F. Global optimization on non-convex two-way interaction truncated linear 

multivariate adaptive regression splines using mixed integer quadratic programming. Inf. Sci. 2022, 597, 38–52. 

9. Vahdani, M.; Sazvar, Z. Coordinated inventory control and pricing policies for online retailers with perishable products in the 

presence of social learning. Comput. Ind. Eng. 2022, 168, 108093. 

10. Smith, M.; Alvarez, F. Identifying mortality factors from Machine Learning using Shapley values–a case of COVID19. Expert 

Syst. Appl. 2021, 176, 114832. 

11. Li, M.; Petruzzi, N.C.; Zhang, J. Overconfident competing newsvendors. Manag. Sci. 2017, 63, 2637–2646. 

12. Hwang, S.; Rubesam, A.; Salmon, M. Beta herding through overconfidence: A behavioral explanation of the low-beta anomaly. 

J. Int. Money Financ. 2021, 111, 102318. 

13. Plous, S. The Psychology of Judgment and Decision Making; McGraw-Hill: New York, NY, USA, 1993. 

14. Meng, J.L. Demand prediction and allocation optimization of manufacturing resources. Int. J. Simul. Model. 2021, 20, 790–801. 

15. Wu, P.J.; Yang, D. E-commerce workshop scheduling based on deep learning and genetic algorithm. Int. J. Simul. Model. 2021, 

20, 192–200. 

16. Weinstein, N.D. Unrealistic optimism about future life events. J. Personal. Soc. Psychol. 1980, 39, 806–820. 

17. Stuart, O. Overconfidence in case-study judgments. J. Consult. Psychol. 1965, 29, 261–265. 

18. Moore, D.; Healy, P. The trouble with overconfidence. Psychol. Rev. 2008, 115, 502–517. 

19. Croson, D.; Croson, R.; Ren, Y. How to Manage an Overconfident Newsvendor; Working Paper; University of Texas at Dallas: 

Richardson, TX, USA, 2011. 

20. Ren, Y.; Croson, R. Overconfidence in newsvendor orders: An experimental study. Manag. Sci. 2013, 59, 2502–2517. 

21. Jain, T.; Hazra, J.; Cheng, T.C.E. Sourcing under overconfident buyer and suppliers. Int. J. Prod. Econ. 2018, 206, 93–109. 

22. Ren, Y.; Croson, D.; Croson, R. The overconfident newsvendor. J. Oper. Res. Soc. 2017, 68, 496–506. 

23. Chen, V.C.; Ruppert, D.; Shoemaker, C.A. Applying experimental design and regression splines to high-dimensional 

continuous-state stochastic dynamic programming. Oper. Res. 1999, 47, 38–53. 

24. Liu, J.; Zhou, H.; Wan, M.; Liu, L. How does overconfidence affect decision making of the green product manufacturer? Math. 

Probl. Eng. 2019, 2019, 1–14. 

25. Kirshner, S.N.; Shao, L. The overconfident and optimistic price-setting newsvendor. Eur. J. Oper. Res. 2019, 277, 166–173. 

26. Song, Z.; Tang, W.; Zhao, R.; Zhang, G. Inventory strategy of the risk averse supplier and overconfident manufacturer with 

uncertain demand. Int. J. Prod. Econ. 2021, 234, 108066. 

27. Mills, E.S. Uncertainty and price theory. Q. J. Econ. 1959, 73, 116–130. 

28. Gupta, D.; Gerchak, Y. Joint product durability and lot sizing models. Eur. J. Oper. Res. 1995, 84, 371–384. 

29. Yi, C.; Li, H.; Cheng, Z. Dynamic pricing model of fresh food considering freshness. Stat. Decis.‑Mak. 2016, 8, 47–50. 

30. Li, Y.; Shan, M.; Li, M.Z.F. Advance selling decisions with overconfident consumers. J. Ind. Manag. Optim. 2015, 12, 891–905. 

31. Petruzzi, N.C.; Dada, M. Pricing and the newsvendor problem: A review with extensions. Oper. Res. 1999, 47, 183–194. 


