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Abstract: In this paper, we remove the solid incidence assumption in a characterization of H(4, q2)

by J. Schillewaert and J. A. Thasby proving that Hermitian plane incidence numbers imply Hermitian
solid incidence numbers, except for a few possible small cases.
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1. Introduction and Motivation

Let q denote a prime power ph with exponent h ≥ 1. In PG(r, q), the projective space
of dimension r and order q, let K denote a k-set, i.e., a set of k points. For each integer i
such that 0 ≤ i ≤ θd := ∑d

j=0 qj, let us denote by td
i = td

i (K) the number of d-subspaces of
PG(r, q) meeting K in exactly i points. The nonnegative integers td

i are called the characters
of K with respect to the dimension d, as can be seen in [1–3]. Let m1, m2, . . . , ms be s integers
such that 0 ≤ m1 < m2 < · · · < ms ≤ θd. A set K is said to be of class [m1, m2, . . . , ms]d
if td

i > 0 only if i ∈ {m1, m2, . . . , ms}. Moreover, K is said to be of type (m1, m2, . . . , ms)d
if td

i > 0 if and only if i ∈ {m1, m2, . . . , ms}. The nonnegative integers m1, m2, . . . , ms
are called intersection numbers with respect to the dimension d. Intersection numbers
with respect to dimensions 2 and 3 will be called plane and solid intersection numbers,
respectively. A full swing research topic is to recognize algebraic varieties by intersection
numbers, as can be seen in [4–6]. The Hermitian variety H(4, q2) is the set of all absolute
points of a non-degenerate unitary polarity in PG(4, q2); it is a non-singular algebraic
hypersurface of degree q + 1 in PG(4, q2) with three plane intersection numbers and two
solid intersection numbers (for more details, we refer the reader to Chapter 23 of [1]).
The size and the solid intersection numbers are generally not sufficient to characterize
Hermitian varieties due to the existence of quasi-Hermitian varieties, as can be seen in [7,8].
In [9], Theorem 4.2, J. Schillewaert and J. A. Thas proved the following

Result 1. In PG(4, q2), any set of class [q2 + 1, q3 + 1, q3 + q2 + 1]2 and of class [q5 + q2 +
1, q5 + q3 + q2 + 1]3 is the Hermitian variety H(4, q2).

In this paper, we remove the solid incidence assumption of Result 1 by proving
the following

Theorem 1. In PG(4, q2), apart from possible cases with q ∈ {2, 3, 5}, any set of class [q2 +
1, q3 + 1, q3 + q2 + 1]2 is the Hermitian variety H(4, q2).

In order to remove the solid incidence assumption, we have to calculate the solid
intersection numbers of a set of class [q2 + 1, q3 + 1, q3 + q2 + 1]2 in PG(4, q2). To do this,
in Section 2, we analyze the possible sizes of a set that have the same plane intersection
numbers in PG(3, q2).
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2. Sets of Class [q2 + 1, q3 + 1, q3 + q2 + 1]2 in PG(3, q2)

We start by recalling the following

Result 2 (see [10] Lemma 2.2). In PG(r, q) with r ≥ 2, let K be a k-set of class [m1, m2, . . . , ms]d
and of class [n1, n2, . . . , nu]d+1 with 1 ≤ d < d + 1 ≤ r. If there is an integer x such that for any
mi ∈ {m1, m2, . . . , ms}, we have mi ≡ x mod q; then, for any nj ∈ {n1, n2, . . . , nu}, we have
nj ≡ x mod q. Thus, k ≡ x mod q as well, since K is of type (k)r.

In this section, we will prove the following:

Theorem 2. In PG(3, q2), with q = ph a prime power, let K be a k-set of class [q2 + 1, q3 +
1, q3 + q2 + 1]2. Then, there is an integer a such that k = aq2 + 1 with either a ≡ 0 (mod q) or
a ≡ 1 (mod q). Furthermore:

1. t2
q2+1 = 0 if and only if k = q5 + q3 + q2 + 1;

furthermore, K is of type (q3 + 1, q3 + q2 + 1)2;
2. If t2

q2+1 ≥ 1, then

• q = 2 and k ∈ {25, 33, 49}; furthermore:

– If k = 25, then K is a set of type (5, 9)2 of PG(3, 4);
– If k ∈ {33, 49}, then K is a set of type (5, 9, 13)2 of PG(3, 4);
– If k = 49, then a line meets K in at most 4 points and therefore K contains no line;

• q = 3 and k = 244; furthermore:

– K is a set of type (10, 28, 37)2 of PG(3, 9);
– A line meets K in at most 8 points and therefore K contains no line;

• q = 5 and k = 3126; furthermore:

– K is a set of type (26, 126, 151)2 of PG(3, 25);
– A line meets K in at most 12 points and therefore K contains no line;

• k = q5 + q2 + 1 for any q ≥ 2;
furthermore, K is a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2;

• k = q5 + q3 + 1 for any q ≥ 2; furthermore:

– K is a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2;
– If α is a (q2 + 1)-plane, then α ∩ K is not a line;

• k = q5 + q4 − q3 + q2 + 1 for any q ≥ 3; furthermore:

– K is a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2;
– A line meets K in at most 2q + 1 points and therefore K contains no line.

Theorem 2 will be a consequence of Lemmas 2–5.
Now let K be a k-set of PG(3, q2) of class [l, m, n]2. Thus, by definition, l < m < n. By

double counting the number of planes, the number of pairs (P, α) where P ∈ K and α is a
plane through P, and the number of pairs ((P, Q), α) where P and Q are two distinct points
of K and α is a plane through P and Q, we obtain the following equations on the integers
ti = t2

i (K)
tl + tm + tn = (q2 + 1)(q4 + 1) (1)

ltl + mtm + ntn = k(q4 + q2 + 1) (2)

l(l − 1)tl + m(m− 1)tm + n(n− 1)tn = k(k− 1)(q2 + 1) (3)

Lemma 1. Let K be a k-set of class [q2 + 1, q3 + 1, q3 + q2 + 1]2 in PG(3, q2) and let rh be a line
meeting K in exactly h points. Then:

1. k ≡ 1 (mod q2);
2. h ≤ q3 + q2 + q + 2− k−1

q2 = [q3 + q + 1− k−1
q2 ] + q2 + 1;
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3. h ≤ [q3 + q + 1− k−1
q2 ] + tq3+q2+1;

4. If tq2+1 ≥ 2, then k ≤ q5 + q4 − q3 + 2q2 + 1.

Proof. By Result 2, we immediately have that k ≡ 1 (mod q2).
Now let rh be a line meeting K in exactly h points and let us denote by uh

i the number
of i-planes passing through rh with i ∈ {q2 + 1, q3 + 1, q3 + q2 + 1}. Counting the number
of points of K \ rh via the planes through rh, we obtain

k− h = (q2 + 1− h)uh
q2+1 + (q3 + 1− h)uh

q3+1 + (q3 + q2 + 1− h)uh
q3+q2+1 (4)

Since uh
q2+1 + uh

q3+1 + uh
q3+q2+1 = q2 + 1, we have that

h + uh
q3+1 + quh

q2+1 = q3 + q2 + q + 2− k− 1
q2 (5)

h + (q− 1)uh
q2+1 = q3 + q + 1− k− 1

q2 + uh
q3+q2+1 (6)

By (5), we immediately have that h ≤ q3 + q2 + q + 2− k−1
q2 . Since uh

q3+q2+1 ≤ tq3+q2+1,

by (6), we have that h ≤ q3 + q + 1− k−1
q2 + tq3+q2+1.

Now let us suppose that tq2+1 ≥ 2. Let α and β be two (q2 + 1)-planes and let rh be
the line α ∩ β. Equation (5) can be rewritten in the following way

q3 + q2 − q + 2− k− 1
q2 = h + q(uh

q2+1 − 2) + uh
q3+1 (7)

Since uh
q2+1 − 2 ≥ 0, by (7), we have that q3 + q2 − q + 2− k−1

q2 ≥ 0 from which it

immediately follows that k ≤ q5 + q4 − q3 + 2q2 + 1.

Lemma 2. If K is a k-set of PG(3, q2) of class [q3 + 1, q3 + q2 + 1]2, then k = q5 + q3 + q2 + 1.

Proof. A set of class [m, n]2 is a set of class [l, m, n]2 having tl = 0. Putting tl = 0, m = q3 + 1
and n = q3 + q2 + 1 in Equations (1)–(3), we obtain

[k− (q5 + q3 + q2 + 1)][k− (q5 + q4 − q3 + 2q + 1− 2q
q2 + 1

)] = 0 (8)

Therefore, k = q5 + q3 + q2 + 1 necessarily, since q ≥ 2 and k is an integer.

From now on, K will ever be a k-set of class [q2 + 1, q3 + 1, q3 + q2 + 1]2 having tq2+1 ≥ 1.
By Lemma 1, there is an integer a such that k = aq2 + 1.

Lemma 3. We have that either a ≡ 0 (mod q) or a ≡ 1 (mod q).

Proof. Putting l = q2 + 1, m = q3 + 1, n = q3 + q2 + 1 and k = aq2 + 1 into Equations (1)–(3),
we obtain

tq2+1 = H + 3q4 + (6− 2a)q3 − 3aq2 − 7a− α + β (9)

tq3+1 = −H + (a− 4)q4 + (3a− 7)q3 + 4aq2 − (a− 1)2q + 8a− β (10)

tq3+q2+1 = q6 + (2− a)q4 + (1− a)q3 + (1− a)q2 + (a− 1)2q− a + 1 + α (11)

with H = q6 + 2q5 + 8q2 + (9− 5a)q + a2 + 11, α = a(a−1)
q and β = 2(a−2)(a−3)

q−1 . Since

α = a(a−1)
q an integer, we have that a(a− 1) ≡ 0 (mod q) and hence either a ≡ 0 (mod q) or

a ≡ 1 (mod q), since a and a− 1 are coprime and q is a prime power.
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Lemma 4. If a ≡ 0 (mod q), then:

1. q = 2 and k ∈ {25, 33, 49}; furthermore:

• If k = 25, then K is a set of type (5, 9)2 of PG(3, 4);
• If k ∈ {33, 49}, then K is a set of type (5, 9, 13)2 of PG(3, 4);
• If k = 49, then a line meets K in at most 4 points and therefore K contains no line;

2. q = 3 and k = 244; furthermore:

• K is a set of type (10, 28, 37)2 of PG(3, 9);
• A line meets K in at most 8 points and therefore K contains no line;

3. q = 5 and k = 3126; furthermore:

• K is a set of type (26, 126, 151)2 of PG(3, 25);
• A line meets K in at most 12 points and therefore K contains no line;

4. k = q5 + q3 + 1 for any q ≥ 2; furthermore:

• K is a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2;
• If α is a (q2 + 1)-plane, then α ∩ K is not a line.

Proof. Putting a = bq into Equations (9)–(11) we obtain

(q− 1)tq2+1 = q(q2 + 1)b2 − (2θ5 − q4 − 1)b + θ7 + 2q4 + q3 + q (12)

(q− 1)tq3+1 = −q2(q2 + 1)b2 + (θ5 + q4 + 2q2 + 1)qb− (θ7 + q5 + 2q4 + q2) (13)

tq3+q2+1 = q(q2 + 1)b2 − (θ5 + q2)b + θ6 − q5 + q4 (14)

where θd := ∑d
i=0 qi.

If q = 2, then we obtain t5 = 10b2 − 109b + 297, t9 = −20b2 + 176b − 323 and
t13 = 10b2− 67b+ 111. Since t5 ≥ 1, t9 ≥ 0 and t13 ≥ 0, it is easy to prove that b ∈ {3, 4, 5, 6}
necessarily.

If b = 3, then a = bq = 6 and k = aq2 + 1 = 25. Furthermore, we obtain that
(t5, t9, t13) = (60, 25, 0). K is a 25-set of type (5, 9)2 in PG(3, 4).

If b = 4, then a = bq = 8 and k = aq2 + 1 = 33. Furthermore, we obtain (t5, t9, t13) =
(21, 61, 3). K is therefore a 33-set of type (5, 9, 13)2 in PG(3, 4).

If b = 5, then a = bq = 10 and k = aq2 + 1 = 41. Let us note that in such a case,
k = 41 = 25 + 23 + 1 = q5 + q3 + 1. This case is therefore included in item 4 in the statement
of the lemma.

If b = 6, then a = bq = 12 and k = aq2 + 1 = 49. Furthermore, we obtain that
(t5, t9, t13) = (3, 13, 69). K is therefore a 49-set of type (5, 9, 13)2 in PG(3, 4). Finally, by
point (2) of Lemma 1, we obtain that h ≤ 4.

Now let us study the case q ≥ 3.
Since tq2+1 ≥ 1, by Equation (12), we obtain that:

f (b) := q(q2 + 1)b2 − (2θ5 − q4 − 1)b + θ7 + 2q4 + q3 + 1 ≥ 0 (15)

It is easy to see that:

• f (q2 + 1) = q3 − 2q2 + 1 > 0 for any q;
• f (q2 + 2) = −q(q− 1)(q2 − 3q + 1) < 0 for any q ≥ 3;
• f (q2 + q− 1) = −2q2 + 3q + 3 < 0 for any q ≥ 3;
• f (q2 + q) = (q− 1)(q3 − 2q− 2) > 0 for any q.

For any q ≥ 3, there are therefore two real numbers b1 and b2 such that q2 + 1 < b1 <
q2 + 2, q2 + q− 1 < b2 < q2 + q and g(b1) = g(b2) = 0. Thus, for any q ≥ 3, we have
b ≤ q2 + 1 or b ≥ q2 + q.
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Since tq3+1 ≥ 0, by Equation (13), we obtain

g(b) := q2(q2 + 1)b2 − (θ5 + q4 + 2q2 + 1)qb + θ7 + q5 + 2q4 + q2 ≤ 0 (16)

It is easy to see that

• g(q) = (q + 1)(q4 + 1) > 0 for any q;
• g(q + 1) = −(q− 1)(q5 − q3 + 1) < 0 for any q;
• g(q2 + q) = −2q3 + q + 1 < 0 for any q;
• g(q2 + q + 1) = (q− 1)(q5 + q4 + 3q3 − 1) > 0 for any q.

Thus, for any q, there are two real numbers b1 and b2 such that q < b1 < q+ 1, q2 + q <
b2 < q2 + q + 1 and g(b1) = g(b2) = 0. For any q, we therefore have q + 1 ≤ b ≤ q2 + q.

Since tq3+q2+1 ≥ 0, by Equation (14), we obtain

h(b) := q(q2 + 1)b2 − (θ5 + q2)b + θ6 − q5 + q4 ≥ 0 (17)

It is easy to see that:

• h(q) = q4 + 1 > 0 for any q;
• h(q + 1) = −(q− 2)q4 < 0 for any q ≥ 3;
• h(q2 − 1) = −(q− 2)(q4 + q3 + 2q2 + 2q + 1) < 0 for any q ≥ 3;
• h(q2) = q + 1 > 0 for any q.

For any q ≥ 3, there are therefore two real numbers b1 and b2 such that q < b1 < q + 1,
q2 − 1 < b2 < q2 and g(b1) = g(b2) = 0. Thus, for any q ≥ 3, we have b ≤ q or b ≥ q2.

Finally, if q ≥ 3, then b ∈ {q2, q2 + 1, q2 + q} necessarily.
If b = q2, then k = q5 + 1, tq3+q2+1 = q + 1, tq3+1 = q6 + q4 − q3 − 2q − 3− 4

q−1 , and

tq2+1 = q3 + q2 + q + 3 + 4
q−1 . Thus, q− 1 must divide 4 with q ≥ 3. Hence, q ∈ {3, 5}

and K is a 244-set of type (10, 28, 37)2 in PG(3, 9) or q = 5 and K is a 3126-set of type
(26, 126, 151)2 in PG(3, 25). Furthermore, since tq3+q2+1 = q + 1, by point (3) of Lemma 1,
we have that h ≤ 2(q + 1).
If b = q2 + 1, then k = q5 + q3 + 1, tq2+1 = q2 − q, tq3+1 = q6 − q5 + 2q4 − 2q3 + 2q2 + 1,
tq3+q2+1 = q5− q4 + 2q3− 2q2 + q; therefore, K is of type (q2 + 1, q3 + 1, q3 + q2 + 1)2. Now,
let us suppose that there is a (q2 + 1)-plane α such that α ∩ K is a line r. Substituting
h = q2 + 1 into Equation (5), we obtain uq3+1 = 1− quq2+1. Hence, uq2+1 = 0 necessarily
and no (q2 + 1)-plane passes through line r, which is a contradiction.
If b = q2 + q, then k = q5 + q4 + 1. Since tq2+1 ≥ 2, by point (4) of Lemma 1, we have that
q5 + q4 + 1 = k ≤ q5 + q4 − q3 + 2q2 + 1. Thus, q ≤ 2, which is a contradiction.

Lemma 5. If a ≡ 1 (mod q), then:

1. k = q5 + q2 + 1 for any q ≥ 2; furthermore:
K is a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2.

2. k = q5 + q4 − q3 + q2 + 1 for any q ≥ 3; furthermore:

• K is a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2;
• A line meets K in at most 2q + 1 points and therefore K contains no line.

Proof. Putting a = cq + 1 into Equations (9)–(11), we obtain

(q− 1)tq2+1 = q(q2 + 1)c2 − (2θ5 − q4 − 2q2 − 3)c + θ7 − 2q2 − 2 (18)

(q− 1)tq3+1 = −q2(q2 + 1)c2 + (θ6 + q5 − q− 1)c− (θ7 − θ3) (19)

tq3+q2+1 = q(q2 + 1)c2 − (θ5 − q2 − 2)c + q6 + q4 (20)

where θd := ∑d
i=0 qi.
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Since tq2+1 ≥ 1, by Equation (18) we obtain:

f (c) := q(q2 + 1)c2 − (2θ5 − q4 − 2q2 − 3)c + θ7 − 2q2 − q− 1 ≥ 0 (21)

It is easy to see that:

• f (q2) = (q− 1)q3 > 0 for any q;
• f (q2 + 1) = −(q− 1) < 0 for any q;
• f (q2 + q− 2) = −q4 + 4q3 − 6q2 + 9q− 2 < 0 for any q ≥ 3;
• f (q2 + q− 1) = (q− 1)(q2 − 3q + 1) > 0 for any q ≥ 3.

Thus, for any q ≥ 3, there are two real numbers c1 and c2 such that q2 < c1 < q2 + 1,
q2 + q− 2 < c2 < q2 + q− 1 and g(c1) = g(c2) = 0. For any q ≥ 3, we therefore have
c ≤ q2 or c ≥ q2 + q− 1.

If q = 2 and c = q2 + q − 2 = 4, then a = cq + 1 = 9 and k = aq2 + 1 = 37 =
(23 + 1)22 + 1 = (q3 + 1)q2 + 1. Thus, this case is included in item 1 in the statement of the
lemma.

If q = 2 and c = q2 + q − 1 = 5, then a = cq + 1 = 11 and k = aq2 + 1 = 45 =
25 + 23 + 22 + 1 = q5 + q3 + q2 + 1. Therefore, tq2+1 = 0, which is a contradiction.

Since tq3+1 ≥ 0, by Equation (19), we obtain

g(c) := q2(q2 + 1)c2 − (θ6 + q5 − q− 1)c + (θ7 − θ3) ≤ 0 (22)

It is easy to see that:

• g(q) = (q− 1)q3 > 0 for any q;
• g(q + 1) = −(q− 1)(q + 1)q4 < 0 for any q;
• g(q2 + q− 1) = −(q− 1)(q3 + 2)q2 < 0 for any q;
• g(q2 + q) = (q− 1)(q + 1)q3 > 0 for any q.

Therefore, for any q, there are two real numbers c1 and c2 such that q < c1 < q + 1,
q2 + q− 1 < c2 < q2 + q and g(c1) = g(c2) = 0. For any q, we thus have q + 1 ≤ c ≤
q2 + q− 1.

Since tq3+q2+1 ≥ 0, by Equation (20), we obtain

h(b) := q(q2 + 1)c2 − (θ5 − q2 − 2)c + q6 + q4 ≥ 0 (23)

It is easy to see that:

• h(q) = q(q2 − q + 1) > 0 for any q;
• h(q + 1) = −q5 + q4 + q3 + q2 + q + 1 < 0 for any q;
• h(q2 − 1) = −q5 + 2q4 − q3 + q2 + 2q− 1 < 0 for any q;
• h(q2) = q2(q2 − q + 1) > 0 for any q.

Therefore, for any q there are two real numbers c1 and c2 such that q < c1 < q + 1,
q2 − 1 < c2 < q2 and g(c1) = g(c2) = 0. For any q, we thus have c ≤ q or c ≥ q2.

Finally, if q ≥ 3, then c ∈ {q2, q2 + q− 1} necessarily.
If c = q2, then k = q5 + q2 + 1, tq2+1 = q3 + 1, tq3+1 = q6, tq3+q2+1 = q4 − q3 + q2; K is
therefore a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2.
If c = q2 + q− 1, then k = q5 + q4 − q3 + q2 + 1, tq2+1 = (q− 1)(q− 2), tq3+1 = (q3 + 2)q2,
tq3+q2+1 = q6− q5 + q4− 2q2 + 3q− 1; K is therefore a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2.
Furthermore, by point (2) of Lemma 1, we have that h ≤ 2q + 1.

3. The Proof of the Main Result

In this section, K is a k-set of class [q2 + 1, q3 + 1, q3 + q2 + 1]2 in PG(4, q2). By Result 2,
we immediately have that k ≡ 1 (mod q2).

We will prove that, apart from possible initial cases with q ∈ {2, 3, 5} as in Corollary 1,
K is the Hermitian variety H(4, q2).
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As an immediate consequence of Theorem 2, we have the following

Corollary 1. Apart from the following initial possible cases:

1. q = 2, K is a set of class [25, 33, 37, 41, 45, 49]3, and there is at least one 25-solid or one
33-solid or one 49-solid (otherwise K is of class [37, 41, 45]3 as in the next general case);
furthermore:

• If S is a 25-solid, then K ∩ S is a set of type (5, 9)2 of PG(3, 4);
• If S is a 45-solid, then K ∩ S is a set of type (9, 13)2 of PG(3, 4);
• If S is a n-solid with n ∈ {33, 37, 41, 49}, then K ∩ S is a set of type (5, 9, 13)2 of

PG(3, 4).

2. q = 3, K is a set of class [244, 253, 271, 280, 307]3 and there is at least one 244-solid (otherwise
K is of class [253, 271, 280, 307]3 as in the next general case); furthermore:

• If S is a 280-solid, then K ∩ S is a set of type (28, 37)2 of PG(3, 9);
• If S is a n-solid with n ∈ {244, 253, 271, 307}, then K ∩ S is a set of type (10, 28, 37)2

of PG(3, 9).

3. q = 5, K a set is of class [3126, 3151, 3251, 3276, 3651]3 and there is at least one 3126-solid
(otherwise K is of class [3151, 3251, 3276, 3651]3 as in the next general case); furthermore:

• If S is a 3276-solid, then K ∩ S is a set of type (126, 151)2 of PG(3, 25);
• If S is a n-solid with n ∈ {3126, 3151, 3251, 3651}, then K ∩ S is a set of type

(26, 126, 151)2 of PG(3, 25).

K is of class [q5 + q2 + 1, q5 + q3 + 1, q5 + q3 + q2 + 1, q5 + q4− q3 + q2 + 1]3; furthermore,
if S is an n-solid, then

• If n = q5 + q3 + q2 + 1, then K ∩ S is a set of type (q3 + 1, q3 + q2 + 1)2 of PG(3, q2);
otherwise, K ∩ S is of type (q2 + 1, q3 + 1, q3 + q2 + 1)2;

• If n ∈ {q5 + q3 + 1, q5 + q4 − q3 + q2 + 1}, then for any (q2 + 1)-plane α of S the set α ∩ K
is not a line.

Remark 1. If H is a set of type (m)d of PG(r, q) with 1 ≤ d ≤ r, then m = 0 or m = θd.
Furthermore, in the first case, H is the empty set, while in the second one, H is the whole space.

Lemma 6. K is of type (q2 + 1, q3 + 1, q3 + q2 + 1)2.

Proof. If there is no (q2 + 1)-plane, then K is of type (q5 + q3 + q2 + 1)3, which is a contra-
diction since q5 + q3 + q2 + 1 6= 0 and q5 + q3 + q2 + 1 6= θ3. There is therefore at least one
(q2 + 1)-plane.

If there is no (q3 + 1)-plane, then K has no type with respect to solids, which is a
contradiction. There is therefore at least one (q3 + 1)-plane.

If there is no (q3 + q2 + 1)-plane, then q = 2, and K is a set of type (25)3, which is a
contradiction since 25 6= 0 and 25 6= 15 = θ3. There is therefore at least one (q3 + q2 + 1)-
plane.

Lemma 7. Apart from the possible initial cases as in Corollary 1, at least one (q5 + q3 + q2 + 1)-
solid passes through each (q3 + q2 + 1)-plane.

Proof. Let α be a h-plane with h ∈ {q2 + 1, q3 + 1, q3 + q2 + 1} such that no (q5 + q3 + q2 +
1)-solid passes through α and let:

• w be the number of (q5 + q2 + 1)-solids passing through α;
• x be the number of (q5 + q3 + 1)-solids passing through α;
• y be the number of (q5 + q4 − q3 + q2 + 1)-solids passing through α.

Counting the point of K via the q2 + 1 solids passing through α, we have

k = h + w(q5 + q2 + 1− h) + x(q5 + q3 + 1− h) + y(q5 + q4 − q3 + q2 + 1− h) (24)
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Substituting x = q2 + 1− w− y and k = aq2 + 1 into (24), we obtain

w = q4 + q3 + 3q2 + (y + 3)q− y + 4− a + h− 5
q− 1

(25)

By Lemma 6, there is at least one (q2 + 1)-plane α. By Corollary 1, no (q5 + q3 + q2 + 1)-
solid passes through α. Substituting h = q2 + 1 into Equation (25), we obtain

w = q4 + q3 + 3q2 + (y + 2)q− y + 3− a− 3
q− 1

(26)

Thus, q− 1 divides a− 3. Now, let β a (q3 + q2 + 1)-plane and let us suppose that no
(q5 + q3 + q2 + 1)-solid passes through β. Substituting h = q3 + q2 + 1 into Equation (25),
we obtain

w = q4 + q3 + 2q2 + (y + 1)q− y + 2− a− 2
q− 1

(27)

Thus, q− 1 divides a− 2, which is a contradiction. Thus, the statement is true.

Lemma 8. Apart from the possible initial cases as in Corollary 1, a (q3 + q2 + 1)-plane contains
no external line.

Proof. Let β be a (q3 + q2 + 1)-plane and rh be a line of β meeting K in exactly h points. In
view of the previous Lemma, at least one (q5 + q3 + q2 + 1)-solid S passes through β. By
Corollary 1, S contains no (q2 + 1)-plane. Substituting uh

q2+1 = 0 and k = q5 + q3 + q2 + 1

into Equation (6), we obtain h = uh
q3+q2+1. Since uh

q3+q2+1 ≥ 1, we have the statement.

Lemma 9. Apart from the possible initial cases as in Corollary 1, only (q5 + q3 + q2 + 1)-solids
can pass through an external line.

Proof. Let r0 be an external line and let S an n-solid passing through r0. By the previous
Lemma, we have that no (q3 + q2 + 1)-plane passes through r0. Substituting h = 0,
u0

q3+q2+1 = 0 and k = n into Equation (6), we obtain:

(q− 1)u0
q2+1 = q3 + q + 1− n− 1

q2 (28)

• If n = q5 + q2 + 1, then we have that u0
q2+1 = 1 + 1

q−1 ;

• If n = q5 + q3 + 1, then we have that u0
q2+1 = 1

q−1 ;

• If n = q5 + q3 + q2 + 1, then we have that u0
q2+1 = 0;

• If n = q5 + q4 − q3 + q2 + 1, then we have that u0
q2+1 = 1− q + 1

q−1 .

Since q > 2 and u0
q2+1 are integers, we necessarily obtain n = q5 + q3 + q2 + 1.

Lemma 10. Apart from the possible initial cases as in Corollary 1, if α is a (q2 + 1)-plane, then
K ∩ α is a line.

Proof. By Lemma 6, there is at least one (q2 + 1)-plane α. Let S be a solid passing through
α. If K ∩ α is not a line, then K ∩ α is not a blocking-set with respect to the lines of α. Hence,
in α (and hence in S), there is at least one line r0 external to K. By the previous Lemma, S is
a (q5 + q3 + q2 + 1)-solid. Finally, by Corollary 1, S contains no (q2 + 1)-plane, which is a
contradiction.

Lemma 11. Apart from the possible initial cases as in Corollary 1, K is a set of class [q5 + q2 +
1, q5 + q3 + q2 + 1]3. Furthermore, K has exactly q7 + q5 + q2 + 1 points.
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Proof. By Corollary 1 and Lemma 10, we immediately have that K is of class [q5 + q2 +
1, q5 + q3 + q2 + 1]3.

Now, let α be a (q2 + 1)-plane. Again, by Corollary 1, we have that only (q5 + q2 + 1)-
solids pass through the plane α. Counting the points of K via these solids, we obtain
k = (q2 + 1)q5 + q2 + 1 = q7 + q5 + q2 + 1.

Finally, Theorem 1 follows either by Result 1 or, as can be seen in [11], by the following:

Result 3. In PG(4, q2) with q > 2, let K be a (q7 + q5 + q2 + 1)-set having two solid intersection
numbers and three plane intersection numbers. If the minimum plane intersection number is q2 + 1,
then K is H(4, q2).

4. Conclusions

The principal aim of this paper was to prove that the lower dimensional incidence as-
sumption is stronger that the higher one. Therefore, applications and future developments
are improvements on other combined characterizations that are obtained through different
dimensional assumptions that remove the higher dimensional one.
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