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Abstract: Frequency-dependent adaptive noise cancellation-based tracking controller (ANC-TC) is a
known technique for the stabilization of several nonlinear dynamical systems. In recent years, this
control strategy has been introduced and applied for the stabilization of a flexible rotor supported
on full-lubricated journal bearings. This paper proposes a theoretical investigation, based on robust
immersion and invariance (I&I) theory, of a novel ANC-frequency estimation (FE) technique designed
to stabilize a flexible rotor shaft affected by self-generated sinusoidal disturbances, generalized to the
case of unknown frequency. A structural proof, under assumptions on closed-loop output signals,
shows that the sinusoidal disturbance rejection is exponential. Numerical simulations are presented
to validate the mathematical results in silico. The iterative Inexact Newton method is applied to
the disturbance frequency and phase estimation error point series. The data fitting confirms that
the phase estimation succession has an exponential convergence behavior and that the asymptotical
frequency estimation is a warm-up phase of the overall close-loop disturbance estimation process.
In two different operating conditions, the orders of convergence obtained by phase and frequency
estimate timeseries are pϕ = 1, pω,unc = 0.9983 and pω,cav = 1.005. Rejection of the rotor dynamic
disturbance occurs approximately 76% before in the cavitated than in the uncavitated condition, 2 (s)
and 8.5 (s), respectively.

Keywords: rotordynamic; adaptive rejection control; sinusoidal disturbance; flexible rotor;
hydrodynamic journal bearing

MSC: 37M05; 37N35

1. Introduction
1.1. Problem Statement: Flexible Rotor with Lubricated Journal Bearings

In rotating machines, bearings are used to transfer radial and axial forces in a sup-
porting structure ensuring a low value of the coefficient of friction and good system
stability [1,2]. For cases with high loads and high rotational speeds, fluid film lubricated
bearings are often preferred. The latter can be of two main categories: hydrodynamic
bearings and hydrostatic bearings [3]. In the case of hydrodynamic bearings, the relative
movement between the two coupled surfaces (journal and bearing) generates a pressurized
fluid film that reduces the friction forces, ensuring the necessary support for the exter-
nal load [3]. In the case of hydrostatic bearings, the pressure of the lubricating fluid is
guaranteed by the action of an external pump, which injects pressurized lubricant into the
bearing [4]. The most common version of hydrodynamic bearings is the full journal bearing,
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which consists of a rotor (journal) that rotates inside a bearing with a diameter slightly
larger than that of the rotor, and the fluid film exists in the small space between the two
(meatus) [3]. In the unsteady dynamical behavior, fluid film bearings can, however, present
oscillating behavior (typical elliptical orbits) due to destabilizing cross coupling forces
caused by the nonlinear fluid dynamic phenomena in the oil film [2,5]. To obtain acceptable
operating conditions, it is necessary to simultaneously analyze the rotor-journal bearing
couple in the case of a flexible rotor. These types of dynamic systems exhibit a particular
type of self-excited vibration due to fluid dynamics phenomena in the oil film [2] known as
oil whirl and oil whip, and are characterized by subsynchronous processional motions [6,7].
These vibrations appear when the subsynchronous vortex frequency reaches the natural
frequency of the system [8] and is typically characterized by high vibration amplitudes.
In recent years, research has shown that oil whirl phenomena are generated also when
the journal bearing runs on micropolar lubricant [9–11]. Many authors have studied the
effect of lubricant contamination [12] and the nonlinear behavior of film-oil main bearings
in rotating machines [13]. Furthermore, the performance of the bearing, in order to avoid
instability phenomena, has been analyzed, studied and simulated considering factors such
as misalignment [14], elasticity of the bearing liner [15], dynamic conditions and coupled
surface roughness [16].

1.2. Literary Review: Active Noise Rejection Control

One of the objectives of recent research has been to propose control strategies for
solving the classical problem of vibration rejection, in the frame of flexible mechanical
structures [17,18], flexible rotor bearings control [19–23] and their active balancing [21].
The aim is to absorb, or reject, any vibrational phenomena on a rotating shaft connected to
a motor, and stabilize it around an arbitrary equilibrium position [24], for example, using
a closed-loop controller with notch filtering actions [24–26]. Good attenuation features
are obtained if the disturbance frequency is well-known. Indeed, the stop bands of these
filtering-based controllers exhibit very steep edges. Usually, in the presence of unmodelled
dynamics, observer-based and sliding mode observer-based controls allow for the tracking
control precision to be improved by adapting to the unmatched uncertainties [18]. Never-
theless, the use of an adaptive observer to solve this category of problems, the vibration
suppression in flexible mechanical system, is not so widespread. For example [26], avoids
the application of an adaptive observer due to the risk of control spillover. Conversely, the
ANC control in D’Amato et al. [24] is implemented as an observer-based control. In [24],
the equations of the elastic contributions in the journal bearings and the relative vibrations
are modelled as a separated exosystem [27], which represents the disturbance acting on the
control. Then, the ANC operation consists of the observation of such disturbance elastic
contributions, so that the control injects, on purpose, a counterphase oscillation, aiming to
delete them. This makes the closed-loop control independent of the operating conditions of
the bearings: cavitated and uncavitated.

First results concerning controllability and observability problems in rotordynamic
systems date back to the 1980s. The flexible rotor and the flexibly-mounted journal bearings
were modelled by Stanway and Burrows, 1981 [22], as a spring-damping-mass system,
with well-known natural vibration modes. They determined the system observability
and controllability conditions in order to assign directly the closed-loop eigenvalues with
a linear controller. A linear control approach was also addressed by Lei and Palazzolo,
2008 [25]. To this aim they used the Finite-Element-Method (FEM) to model the rotor
dynamic system. In their approach, active magnetic bearings (AMB) were employed to
handle the rotordynamic systems by acting coaxially to the inertial axis through a linear
control law. In the framework of control techniques which uses AMB, Kumar and Tiwari,
2020 [28], investigated the rotordynamic system modeling unbalance and misalignment
with the rigid body theory. The possibility of modeling the flexible system with a new
set of nonlinear closed-form equations is a definite novelty introduced by D’Amato et al.,
2022 [24], and retrieved in this presented study. By considering the lubricated bearing
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dynamic effects and with lubricant film cavitation conditions, an input–output feedback
linearizing controller can be implemented. The proposed control law is adaptive with
respect to the control and disturbance parameter (i.e., phase and frequency of the sinusoidal
disturbance, corresponding to rotor angular speed of the rotor).

1.3. Proposed Control Strategy: ANC with Frequency Estimation

This paper proposes a theoretical investigation of a novel ANC-frequency estimation
(FE) technique designed to stabilize a flexible rotor shaft affected by self-generated sinu-
soidal disturbances. This work extends the adaptive noise cancellation tracking control
(ANC-TC) algorithm presented by D’Amato et al. in 2022 [24,29], generalized to the case of
unknown frequency. The disturbance frequency corresponds to the rotor operating angular
speed (ω) [20,24,30], which is driven by an external actuator, so that uncertainties may arise
in the frequency actual value due to actuation operating point fluctuations. Other incoming
nonlinear phenomena, such as gyroscopic moments acting on the disk—for example due to
asymmetries of the rotor support [31]-can make the operating frequency vary. The ANC-TC
in [24,29] uses such a frequency value as a known parameter, which is also a parameter
of the dynamics of the system. With respect to the specific uncavitated case study [29], a
theoretical formulation has been provided in [24]: structural proofs for noise suppression
estimation, cancellation and system stabilization are given when the disturbance frequency
is known but not the initial condition. In this paper, inspired by immersion and invariance
(I&I) robust control techniques [18,32,33], the possibility of estimating online the constant
unknown frequency of the disturbance is considered. Following I&I-based approaches, the
studied controlled system is immersed into a target dynamical model so that its trajectories
are an image of the target dynamic system into the immersion map. Then, the aim of this
kind of approach is to make the target system image an attractive manifold, so that the
controlled system is made globally, uniformly, asymptotically stable around its invariant
trajectories [18,32,33].

The approach of [33] was convoluted in the hybrid logic (even if in a more gen-
eral sense with respect to [32]). The general multi-harmonic disturbance case may be
considered [17,33]. An I&I-based strategy, adaptive with respect to perturbation parame-
ters, was recently presented and applied to a reversible cold strip rolling mill to control
the speed and tension system [18], characterized by severe coupling effects, multiple state-
variables, nonlinearities and model uncertainties. In [18], it was shown that the estimation
errors follow an exponential convergence.

A recent research work [17] deals with the problem of active multi-harmonic dis-
turbances cancellation in flexible mechanical structures, under the analysis of passivity
properties of a closed-loop system. The controller operates an inner loop, which performs
the position control of the system, while the frequency estimation is demanded to an outer
control loop, elaborating the position measurements of the plant. A robust linear compen-
sator scheme, non-accurate model-based, was employed and experimentally validated. An
exponential cancellation of the disturbance was obtained.

The ANC-TC in [24,29] already showed an intrinsic robustness since the vibrational
disturbances acting on the rotor were cancelled. Consequently, the introduction of a
frequency identifier for vibrational modes improves the robustness of the method.

The closed-loop sinusoidal noise rejection is conceived in two phases: first, the operat-
ing frequency identification is performed as a combination of state-observer and asymp-
totical parameter estimation [32,33]; second, the asymptotical frequency estimate is fed
back to the closed-loop adaptive noise cancellation control (ANC), which hooks the phase
of the disturbance by injecting on rotor dynamics a counterphase sinusoid acceleration.
The frequency estimation is in practice a warm-up phase of the overall closed-loop con-
trol [34,35]. This study proposed a unified theoretical structure including an I&I-based
frequency estimator as a plug-in control block. The proposed control architecture design
concerns the externalization of the FE process, which appears as an additive standalone
block downstream to the ANC closed-loop, elaborating its output data and generating the



Mathematics 2022, 10, 1703 4 of 26

asymptotical frequency estimate. Once such an asymptotical estimate converges at the
steady-state closed-loop, the ANC control exponentially hooks the sinusoidal disturbance,
following [24].

Table 1 itemizes and catalogues the scientific literary references that are investigated
as background for the proposed study.

Table 1. Literary review.

Authors Year Source Section
Content Authors Year Source Section

Content

Poritsky 1953 [8] PS Avramov and Borysiuk 2012 [31] PCS
Stanway and Burrows 1981 [22] LR Harika et al. 2013 [12] PS
Burrows and Sahinkaya 1983 [19] LR Marino and Tomei 2016 [27] LR
Lund 1987 [2] PS Carnevale 2016 [33] PCS
Vance 1988 [30] PCS Salazar and Santos 2017 [4] PS
Muszynska 1988 [6] PS Zheng et al. 2017 [23] LR
D’Agostno et al. 2001 [7] PS Ruggiero et al. 2018 [20] LR, PCS
Zhou and Shi 2001 [21] LR Ballnus et al. 2018 [35] PCS
Hamrock and Schimd 2004 [3] PS Das and Guha 2019 [10] PS
Sukumaran Nair and
Prabhakaran 2004 [15] PS Bhattacharjee et al. 2019 [11] PS

Das et al. 2005 [14] PS D’Amato et al. 2019 [29] PCS
Ypma 2006 [36] PCS Marko et al. 2020 [26] LR
Prabhakaran Nair et al. 2007 [16] PS Kumar and Tiwari 2020 [28] LR
Lei and Palazzolo 2008 [25] LR Chen et al. 2021 [5] PS
Carnevale and Astolfi 2008 [32] PCS Tripathy and Bhattacharyya 2022 [9] PS
Friswell et al. 2010 [1] PS Liu et al. 2022 [18] LR, PCS
Hoad et al. 2010 [34] PCS Marko et al. 2022 [17] LR, PCS
Vania et al. 2012 [13] PS D’Amato et al. 2022 [24] PCS

PS: Problem Statement

• flexible rotor with lubricated
journal bearings;

• fluid dynamics;
• self-excited vibrations due to

fluid dynamics;

LR: Literary Review

• flexible rotor bearings control;
• active rejection of vibrational phenomena;
• notch filtering;
• observer-based control;

PCS: Proposed Control Strategy

• adaptive noise
cancellation-rejection;

• immersion and invariance;
• method comparison;
• numerical analysis methods;

A mathematical proposition for the ANC-FE is formulated and a structural proof
is given under assumptions on closed-loop output signals, showing that the sinusoidal
disturbance rejection is exponentially performed. Numerical simulations are presented
to validate the theoretical results in silico. The simulations are designed to illustrate
the adaptive rejection performance in terms of time and residual vibration amplitude.
Moreover, it is shown that the proposed I&I-based asymptotical frequency estimation may
have a practical application since its duration is acceptable as an initialization process. This
is a training/warm-up phase for the ANC controller. In addition, in order to evaluate the
order of convergence of the disturbance frequency and phase estimation error point series
the iterative Inexact Newton method [36] was applied.

The main novelties of this study are summarized:

i generalization of ANC-TC control devised in [24] to the unknown/uncertain operating
frequency;

ii application of I&I robust technique for frequency estimation (FE), considering as input
an analytical reconstruction of the closed-loop output noise signals;

iii plug-in integration of the FE module with the ANC-TC control;
iv formulation of a mathematical proposition for the novel ANC-FE control;
v structural proof of the proposition under assumptions on closed-loop output signals.

This paper has the following outline: Section 2 introduces the closed formulation of
the rotor dynamics model and ANC-FE control conceptualization and design; in Section 3
the theoretical proposition is formulated and its proof is given; Section 4 reports numerical
simulation results with a detailed description of the data fitting analysis; in Section 5 the
numerical simulation results are discussed and some conclusions are reported.
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2. Materials and Methods

The dynamical system under investigation is composed by an unbalanced thin disk,
symmetrically disposed on a flexible shaft, and supported by two hydrodynamic full (short)
journal bearings, as represented in [24]. The mass of the rotor is 2 m and the flexible shaft
is a thin bar of a circular section with a negligible mass with respect to the disk mass.
According to Figure 1, during the motion, the disk remains in plane motion in x–y plane
without gyroscopic effects. The lubricated dynamical system can be studied by applying
the classical approach based on the Reynolds equation [20] in cylindrical coordinates and
under the classical hypothesis of short bearing approximation [30]. The scalar nonlinear
differential motion equations of the system are [20]

m
..
x + k

(
xc − xj

)
= muω2sinωt

m
..
y + k

(
yc − yj

)
= −muω2cosωt−W

Fx

(
xj,

.
x J , yj,

.
yJ

)
= −k

(
xc − xj

)
Fy

(
xj,

.
x J , yj,

.
yJ

)
= −k

(
yc − yj

) (1a)

where the forces Fx, Fy are defined in [24].
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2.1. Adaptive Noise Cancellation Tracking Control (ANC-TC)

In the following, for the lubricated dynamical system, the cavitated (π-film) and the
uncavitated short bearing model are considered. A closed-form model formulation for the
controlled model, which has been introduced in [24], is written as follows

..
x(t) =

[ ..
xc..
yc

]
.
= − k

m
(
x− zj

)
− dw −

..
de(t, ω) +

→
u x

.
zj(t, ω, i) =

[ .
xj.
yj

]
.
= ke3l−1(t, zj, e, i

){
Σ
(
t, zj, e, ω, i

)[ xj
yj

]
+ 1

µ0

[
xc
yc

]} (1b)

where: x = (xc, yc)
T and zj =

(
xj, yj

)T denote the disc center and journal center coordinates,

respectively; dw = [0, W/m]T is a constant load term and
→
u x is the control input. The

vector of sinusoidal disturbances acting on the two coordinate dynamics is denoted by
de(t, ω) = u[sin(ωt + ϕ01),− cos(ωt + ϕ02)]

T (ϕ01,2 unknown initial phase), so that

.
de(t, ω) = Ω · de(t, ω) ⇒

.
de(t, ω) =

[
0 −ω
ω 0

]
·
[

u sin(ωt + ϕ01)
−u cos(ωt + ϕ02)

]
(2)
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The dynamics of acceleration noise in Equation (2) has the canonical parametrization
(Ω) of a disturbance with ellipsoidal trajectories, whose dimensions depend on the values
of the system parameters, as found by the numerical simulations of the analytical model
Equation (1a) presented in [24,29]. The ω is the frequency of the disturbance and corre-
sponds to the operating rotation speed of the flexible rotor. The two matrices l−1 and Σ are
defined as follows

l−1(t, zj, e, i
)
i ·Λ−1(t, zj, e, i

)
= i

{[(
zxj −2ζπ(i−1)eyj
zyj +2ζπ(i−1)exj

)
+ (1− i) · 8λ

(
−yj exj
xj eyj

)]
·
(

exj eyj
−yj xj

)}−1

Σ
(
t, zj, e, ω, i

)( − 1
µ0

−ω ζ
k

π
i
(i−1)

ω ζ
k

π
i
(i−1) − 1

µ0

)
+ (1− i) ·

(
2λ
k ω t0

ke
− t0

ke
2λ
k ω

) (3)

where: e =
√

x2
j + y2

j denotes the orbit eccentricity; the i ∈ {1, 2} is the summary index,
which allows us to switch the model representation among uncavitated (i = 1) and cavitated
(i = 2) operating conditions, respectively. In [1], it was shown-analytically and by numerical
simulations- that the dynamical time-variant matrix Λ is always nonsingular with a high
determinant.

To reduce Equation (1a) into Equations (1b)–(3), the following analytical positions are
introduced in [24]

z =
2πζ(1+2ε2)

(1−ε2)
ζ = 1

2(1−ε2)
3/2 µ0 = µR

(
L
c

)3

σ = e
(c2−e2)

1/2 λ = σζ

ρ0 = 2RLp0 ε = e
c t0 = ρ0

µ0

(4)

where: k, m, µ, R, L, c, π, p0, u are dynamical and geometrical parameters of the system
collected in Table 1 [24].

In the case of known operating frequency ω, in [24] the closed-loop ANC-TC algo-
rithm

→
u x in Equations (5)–(7) was proposed for the flexible rotor Equations (1a) and (2),

and an exponential tracking of a desired trajectory for the disc center

[
→
x r;

.
→
x r;

..
→
x r] = [xcr, ycr ;

.
xcr,

.
ycr ;

..
xcr,

..
ycr] is obtained (the detailed formal proof is reported

in [24]). The ANC-TC includes two main parts: it allows both the sinusoidal disturbance
in closed-loop and the springback force contribution to be adaptively canceled due to the
always nonzero displacement between disc and journal (eccentricity). The overall vectorial
control law is reported in Equations (5)–(7) (the vector symbols are omitted for convenience)

ux , ûx0 +
..
d̂e(t, ω)

ûx0 , k
m x + dw + v̂x

v̂x , − k
m ẑj +

..
xr − k1

.
x̃− k2 x̃

(5)



..
d̂(t, ω) , ω2

[
−usin(ωt + ϕ̂(t))
ucos(ωt + ϕ̂(t))

]
ϕ̂(t, ω) ,

∫ t
0

(
φ(τ, ω)

[
kϕ1 0
0 kϕ2

]
·
(

ω2
∼
de(τ, ω)

))
dτ =

(
φ(τ, ω)

[
kϕ1 0
0 kϕ2

]
·
( ..

x̃ + k1
.
x̃ + k2

∼
x
))

dτ

φ(t, ω) , u
[

cos(ωt + φ0) 0
0 sin(ωt + φ0)

] (6)

{
ẑj , −m

k
(
η̂ + cη ·

.
x
)

.
η̂ , −cη · v̂x + cη · η̂ + c2

η ·
.
x

⇒ η̂(0) .
= 0 , ẑj , −

m
k
· cη ·

.
x(0) , (7)

where: x̃ = (x− xr),
.
x̃ =

.
x − .

xr,
..
x̃ =

..
x − ..

xr are the tracking errors of position, velocity
and acceleration of disc center, respectively; d̂e(t, ω) is the sinusoidal disturbance estimate;
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ϕ̂(t) = [ϕ̂1, ϕ̂2]
T is the phase estimate vector, which is responsible for matching at steady-

state the initial conditions of the noise (ϕ0 = [ϕ0, ϕ0]
T = [ϕ01, ϕ02]

T) in (2), provided
that the amplitude (u) and frequency (ω) are known; φ0 = ϕ̂i(0) = rand(−2π, 2π) is a
random value chosen as the (arbitrary) initial value for the phase estimation. According
to [24], ω2d̃e =

..
x̃ + k1

.
x̃ + k2 x̃ is a known term, which has been modeled in Equation (6) in

terms of residual spurious dynamics, under the assumption that the asymptotic control
ûx0—linked to the estimation of the displacement Equation (7)—is already converged on
target value. Equation (6) is written according to a linear parametrization of the estimation
error d̃e(t, ω) = de − d̂e [37]: it appears as product of regressor Φ(t, ω) and the parameter
estimation error, namely d̃e = ΦT(t, ω) · ϕ̃(t) (see [24]).

The control gains k1, k2, kϕ1 , kϕ2 and cη are found by trial-and-error procedures re-
ported in Table 2.

Table 2. Simulation parameters.

Dynamical
Parameters Values Initial

Conditions Values Operating
Parameters Values

m (kg) 1.5 xc(0) 0 f (Hz) 500
K (N/m) 4 × 106 .

xc(0) 0 ω (rad/s) 3141
u (m) 10−3 yc(0) −10−5 µ0 (m kg/s) 7.06 × 104

R (m) 1.6 × 10−2 .
yc(0) 0 ρ0 (N) 1 × 10−3

L (m) 1.6 × 10−2 xj(0) 0 t0 (s−1) 1.45 × 10−8

µ (kg/s) 3.4 × 10−2 yj(0) −10−5 p0 (bar) 2
c (m) 3.16 × 10−5 ϕ0(rad) [5.2, 5.2]

g (m/s2) 9.81
π 180◦

Step 5 × 10−6

Time (s) 12

The phase estimator part of Equation (6) is devised since the main problem in sinu-
soidal noise rejection is the knowledge of the initial disturbance phase [27,38], so it acts as a
dynamic Phase-Locked-Loop (PLL [39]). The displacement estimation part of Equation (7)
represents a reduced-order observer of the dynamical subsystem

[ .
xc,

.
yc, xj, yj

]
of the over-

all system Equation (1b). It is required due to technical limitation to install a sensor to
measure the center position of the journal. For the same reasons, moreover, even if an
analytical value of zj was considered by Equation (1b), even in this case, the uncertainty on
the initial condition zj0 = zj(0) may have a fundamental role in the vibration attenuation
at steady-state.

Remark 1. It is noteworthy that only the disc center position (x), speed (
.
x) and acceleration (

..
x)

measurements are required and fed back for control closed-loop adaptation Equation (7), as well as
for frequency estimation (Figure 2). ♦

2.2. Adaptive Noise Cancellation with Frequency Estimation (ANC-FE) Control

Now, even if the operating frequency was known, which is used as a parameter in the
ANC-TC [24], it can be affected by a percentage uncertainty due to possible miscalibration
of the actuator, which is keeping the rotor in rotation at ω speed. In practice, this makes the
operating frequency, and consequently the disturbance frequency, unknown. Moreover,
other incoming nonlinear phenomena, such as gyroscopic moments acting on the disk, for
example, due to asymmetries of the rotor support [31], can make the operating frequency
vary. For this scope, consider the problem of estimating the operating frequency of the
system. The following control scheme is adopted (Figure 2). The scheme recovers the
one adopted in [24], where the exosystem Equation (2) (hereafter EXO) acts as an exter-
nal dynamics. Downstream of the control loop, a further stage is added: the frequency
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estimator (FE). This module elaborates the analytical output yan of the closed-loop system
Equations (1a)–(7) in loop with the frequency online estimate ω̂(t). Eventually, the FE
module feeds back to the control loop the value of estimated frequency ωest, which is used
in the ANC-TC module as an input.
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2.2.1. ANC-FE Control Design with Measured Output Noise (y)

In the following, a mathematical formulation of the novel adaptive noise cancellation
control with frequency estimation (ANC-FE) is given. It is inspired by immersion and
invariance (I&I) approach (see [32,33]), which unifies the asymptotic parameter and state
estimation problems as reduced-order-observer-based problems (see Remarks 3–5). Let
some notations be introduced. From Equation (2)

.
de(t, ω) = Ω

[
usin(ωt + ϕ0)
−ucos(ωt + ϕ0)

]


...
.
dei
...

(t, ω) = Ω ·


...

dei
...

 = Ω
[

de1
de2

]
⇒ y(t, ω)dei(t, ω) ⇒

{
.
y =

.
dei = ε

.
ε = −ςy = −ω2y

(8)

First, the signal y can be regarded as a (measured) scalar output of the closed-loop
system Equations (1a)–(7) (Figure 1); ς = ω2, u and ϕ0 are related to the initial states
y(0) = y(t = 0) and ε(0) = ε(t = 0).

Remark 2. The following computation is performed for the only scalar variable dei first since the
two components’ analyses are analogous and since the two disturbance components are shifted of
π/2, so that the estimation is shared among the two components [24]. For convention, let the first
component y = de1 = u sin(ωt + ϕ0) be used. ♦

Consistently with the notation used in Equations (5)–(7) (see [24]), by calling ε̂ and
ς̂ the online state and parameter estimates of the disturbance, respectively, the following
injected scalar estimation errors [18] are defined as follows

zε(y) = kεy +
{

ε̂
(

k2
ε + ς

)
− ε

} .
= βε(y) + (αε) ε̂− ε ;zς(y) = y ε̂ + { ς̂− ς } .

= βς(y, ε̂) + ς̃ (9)

where kε > 0 is an arbitrary control parameter reported in Table 2. The two errors [zε, zς] in
Equation (9) differ from the classical error definition ε̃ = ε̂− ε and ς̃ = ς̂− ς. They contain
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two injection terms [βε(y), βς(y, ε̂)] acting as a dynamical correction; αε =
(
k2

ε + ς
)
> 0

acts a kind of scaling. The Equation (9) is written as follows

ε = −zε(y) + ε̂ (αε) + βε(y); ς = −zς(y) + ς̂ + βς(y, ε̂). (10)

By setting at zero the estimation errors zε(y), zς(y) in Equations (9) and (10), it follows that

εest =
(

k2
ε + ςest

)
ε̂ + kεy;ςest = ς̂ + y ε̂, (11)

where, εest(0) =
(
k2

ε + ςest(0)
)
ε̂(0) + kεy(0) and ςest(0) = ς̂(0) + y(0)ε̂(0).

The two asymptotic estimates [εest, ςest] are found as with a PI (proportional integral)
law with respect to the measured output y. Indeed, both (αε) ε̂ and ς̂ turn out to be an
integration process, αε denotes the gain of the integral part, while both the two injection
terms represent the proportional part. To prove this point, derive in time the errors [zε, zς](y)
in Equation (9). From Equation (8) it follows that

.
zε(y) = (αε)

.
ε̂ + ςy + kε ε;

.
zς(y) =

.
ς̂ + ε ε̂ + y

.
ε̂, (12)

while, replacing Equation (10) in Equation (12), it follows

.
zε =

(
k2

ε + ς
) .

ε̂ + ςy + kε

(
−zε + k2

ε ε̂ + ε̂ ς + kεy
)

= −kε zε +
(
k2

ε + ς
){

y + kε ε̂ +
.
ε̂
}

;
(13a)

.
zς =

.
ς̂ + y

.
ε̂ + ε̂

[
−zε + k2

ε ε̂ + kεy + ε̂ (−zς + ς̂ + y ε̂)
]

= −ε̂ zε − ε̂2zς +
{ .

ς̂−
[
−y

.
ε̂− k2

ε ε̂2 − kεyε̂− ε̂2ς̂− y ε̂3
]}

= −ε̂ zε − ε̂2zς +
{ .

ς̂− ∆(y, ε̂, ς̂)
}

.
(13b)

The term ∆(y, ε̂, ς̂) is a function of known signals. By setting at zero the quantities
between braces in both Equations (13a) and (13b), the two scalar adaptation laws for
(ε̂, ς̂)(t) are found as follows

.
ε̂ = −y− kε ε̂,

.
ς̂ = −

[
y

.
ε̂ + k2

ε ε̂2 + kεyε̂ + ε̂2ς̂ + y ε̂3
]
, (14)

where, from Equations (6) and (8), ε̂(0) = u ω0 cos(ω0 t + ϕ̂i(0)) and ς̂(0) = ω2
0.

Consequently, Equations (13a) and (13b) become[ .
zε.
zς

]
=

[
−kε 0
−ε̂ −ε̂2

]
·
[

zε

zς

]
. (15)

The first-row of Equation (15) makes that zε → 0 exponentially. However, this is not
sufficient to construct an estimation of the state variable ε since the overall convergence
of the estimation is linked to the convergence of all the error dynamics [zε, zς]. However,

once the two adaptation laws have reached their steady-state values, namely
[ .
ε̂,

.
ς̂
]
= [0, 0],

the asymptotic estimates for [εest, ςest] = [ε, ω2] are given by Equation (11) (see the proof in
Section 3). Note that ω0 may be the rough initial estimate of the operating rotor frequency,
taken from the rotor actuator datasheet as the steady-state operation value. As mentioned
above, the estimates of Equation (11) are two PI, with integral parts (αε) ε̂ and ς̂, as may be
inferred from Equation (14).

2.2.2. ANC-FE Control Design with Analytical Output Noise (yan)

Regarding the assumption about y, which in Equations (8)–(14) is regarded as the
measured output of the closed-loop system Equations (1a)–(7), it requires a sensor in output
able to distinguish and provide only the sinusoidal vibration measurement (de(t, ω)). First,
it is a logic short-circuit since once the disturbance measurement is available a direct
cancellation could be viable. Second, the sensor in turn may be affected by measurement
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noise, which is source of uncertainty. Then, the ANC-FE control Equations (8)–(14) with
measured output noise (y(t, ω)) cannot be directly implemented in closed-loop. For this
scope, the value of the output noise y, which is used as a known quantity in the ANC-FE
Equations (8)–(14), is reconstructed analytically from Equation (1b). By using position,
speed and acceleration measurements of the disc center coordinates (

[ ..
x,

.
x, x
]T) and an

analytical chasing of the journal center displacement (zJ(ω0)), the analytical output noise
(yan) is computed from Equations (1b)–(3) as follows

yan
(
t, zj, ω̂

)
−
{

..
x(t) +

k
m
(

x− zj(t, ω̂(t))
)
+ dw −

→
u x

}
(16)

zj(t, ω̂(t), i)zj0 +
∫ t

0

[
ke3l−1(τ, zj, e, i

){
Σ
(
τ, zj, e, ω̂(τ), i

)
zj(τ, ω̂(τ)) +

1
µ0

x(τ)
}]

dτ (17)

where: zj0 is the arbitrary initial condition of the analytical chasing zj(t, ω̂(t), i) of the
journal displacement (zj); zj(t, ω, i) is a function of the frequency through the matrix
Σ
(
t, zj, e, ω, i

)
in Equation (3); e is the eccentricity computed in the analytical chasing

coordinates (zj). From Equations (1b) and (16), it follows

yan
(
t, zj, ω̂

)
=


...

yani
...

 .
=

..
de(t, ω) +

k
m
[
−zj(t, ω) + zj(t, ω̂(t))

]
=

..
de(t, ω) + δy

(
t, zj0, ω, ω̂(t)

)
≡ yan

(
t, zj, ω, ω̂

)
(18)

where from (8)
..
dei(ω, t) ∝ dei = y, so that yani ∝

..
dei(ω, t). The constant proportional

factor is the square of unknown frequency −ω2, which, from (11), is absorbed in the
tuning procedure of kε. Then, yan and the bounded disturbance de(t, ω) are consistent
since, eventually, the two sinusoidal vibrations have the same frequency (ω). Indeed, from
Equation (18), yan

(
t, zj, ω, ω̂

)
is a function of ω. We now state the main assumption in

this paper.

Assumption 1. The analytical chasing error δy
(
t, zj0, ω, ω̂(t)

)
in Equation (18) is bounded and

small enough that yan
(
t, zj, ω̂

)
is assumed at the same frequency of

.
de(t, ω) = Ω de(t, ω). H

From Equations (8) and (16)–(18), according to Remark 2, and under the Assump-
tion 1, the asymptotic adaptation laws Equations (11)–(14) are updated considering the
computation for only one component yani, as follows

εest =
(
k2

ε + ςest
)
ε̂ + kεyani;

ςest = ς̂ + yani ε̂;
.
ε̂ = −yani − kε ε̂;

.
ς̂ = −

[
yani

.
ε̂ + k2

ε ε̂2 + kεyani ε̂ + ε̂2ς̂ + yani ε̂
3
]
,

ωest = lim
t→∞

ω̂(t) = lim
t→∞

√
ςest(t)

with εest(0) =
(
k2

ε + ςest(0)
)
ε̂(0) + kεyani(0); ςest(0) = ς̂(0) + yani(0)ε̂(0);

ε̂(0) = u ω0 cos(ω0 t + ϕ̂i(0)) ; ς̂(0) = ω2
0.

(19)

Equations (16), (17), and (19), constitute the frequency estimator (FE) equations.
Equation (15) holds as function of yani.

By absorbing Equations (16), (17) and (19) in the ANC-TC Equations (5)–(7), the
ANC-FE control, Equations (19)–(20c) with analytical output noise (yan

(
t, zj, ω̂

)
), is imple-

mentable in closed-loop as follows
ûx , ûx0 +

..
d̂e(t, ωest)

ûx0 , k
m x + dw + v̂x

v̂x , − k
m ẑj +

..
xr − k1

.
x̃− k2 x̃

(20a)
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..
d̂e(t, ωest) , ωest

2
[
−u sin(ωestt + ϕ̂(t))
u cos(ωestt + ϕ̂(t))

]
ϕ̂(t, ωest) ,

∫ t
0

(
ϕ(τ, ωest)

[
kϕ1 0
0 kϕ2

]
·
( ..
∼
x + k1

.
∼
x + k2

∼
x
) )

dτ

ϕ(t, ωest) , u
[

cos(ωestt + φ0) 0
0 sin(ωestt + φ0)

] (20b)

{
ẑj , −m

k
(
η̂ + cη ·

.
x
)

.
η̂ , −cη · v̂x + cη · η̂ + c2

η ·
.
x

⇒ η̂(0) .
= 0, ẑj , −

m
k
· cη ·

.
x(0) , (20c)

where, in Equations (20a)–(20c), the asymptotic estimate ωest = ω̂(t)t→∞ (Equation (19)) is
considered for the constant ω as the constant frequency parameter in the phase estimator
(compare Equations (5)–(7) with Equations (20a)–(20c).

At steady-state, when all the estimates’ terms are converged (i.e.,
v̂x → vx, ẑj → zj , d̂e → de ), the closed-loop system, Equations (1b)–(4) and (19)–(20c),
is regulated by ûx → ux around the reference xr (Figure 2).

Remark 3. The idea of frequency estimation, namely Equations (8)–(15), inspired from immersion
and invariance (I&I) approach, are borrowed from the algorithm proposed in [32]. Nevertheless,
the novelty of applying this technique to a rotordynamic model Equation (1a) [24,30] consists of a
further manipulation. Equations (16)–(19) have been introduced with the aim of reconstructing
analytically (yan) an unavailable signal, the output noise (y)). The signal chasing Equation (17)
is possible by virtue of the closed-form formulation, Equations (1b)–(4), presented in [24], which
allows a reliable numerical extraction of the coordinates of the journal disc center to be performed,
with a very high determinant value of the matrix Λ, by integration of Equation (1b).

In particular, the system Equation (8) of dimension 3 [ς, ε, yani] is immersed in a wider space
with 5 dimensions [ς, ς̂, ε, ε̂, yani]. Then, the observer problem is attracted by the surface at zε = 0
and zς = 0, where it remains at steady-state, so that the resultant invariant locus is a manifold
(Figure 3). ♦

Remark 4. It is worth highlighting that Equation (20c) is identical to Equation (7), namely, the
reduced-order-observer, which estimates the zj displacement, acts independently from the other
control blocks. The FE controller designed in this paper (Equations (16)–(19)) based on the analytical
output yan results as a plug-in estimation block downstream to the ANC-TC Equations (5)–(7)
proposed in [24]. This property shall be exploited for control convergence proof. ♦

Remark 5. The control ANC-FE Equations (19) and (20a)–(20c) are a general-purpose control with
respect to the actual lubricated rotordynamics’ operating condition, namely cavitated/uncavitated. Indeed,
according to the notations in Equations (1b)–(4), the matrices l−1(t, zj, e, i

)
and Σ

(
t, zj, e, ω̂(t), i

)
in

Equation (17) are functions of the parameter i. ♦
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3. Closed-Loop ANC-FE Control Convergence Proof
3.1. Proposition Statement

In this section a formal convergence proof of the proposed closed-loop ANC-FE control
Equations (19) and (20a)–(20c) is provided through the following proposition statement.

Proposition 1. Consider the lubricated rotordynamic model Equations (1b)–(4) and y = dei(t, ω)
Equation (8) as the sinusoidal output noise from the exosystem (2), with unknown constant frequency
( ω) and initial phase (ϕ0). Consider the reference dynamics

→
x r = [xcr, ycr] for the disc center

coordinates, with x̃ = (x− xr).
From Equations (9) and (16)–(20c), ϕ̃ = (ϕ0 − ϕ̂(t)), z̃j =

(
zj − ẑj

)
, zε(t, yani) =(

−εest +
(
k2

ε + ςest
)
ε̂ + kεyani

)
and zς(t, yani) =

(
−ω̂2(t) + ς̂ + yani ε̂

)
.

Under the Assumption 1, the ûx control in Equations (20a)–(20c) makes that for the closed-loop
system Equations (1b)–(4) and (19)–(20c):

i. the equilibrium point (zε(yani), ε̂(yani)zς(yani)) = (0, 0) is asymptotically stable;
ii. εest =

(
k2

ε + ςest
)
ε̂ + kεyani. is an asymptotic estimate of the analytical output noise deriva-

tive
.
yani and ωest = lim

t→∞
ω̂(t) =

√
ς̂ + yani ε̂ is an asymptotic estimate of the rotor

operating frequency ω; ��
iii.

(
ϕ̃, z̃j, x̃

)
= (0, 0, 0) is exponentially stable (thesis from [24]). ���

3.2. Proof

Let V1(t, zε, zς) be a suitable Lyapunov function

V1(t, zε, zς) =
z2

ε

2 kε
+

z2
ς

2
≥ 0. (21)

Deriving in time Equation (21), from Equation (15)

.
V1(t, zε, zς) = −z2

ε − ε̂zςzε − ε̂2z2
ς = −

[
zε ε̂zς

][ 1 1
2

1
2 1

][
zε

ε̂zς

]
≤ 0, ∀(zε, ε̂zς). (22)

Due to
.

V1 ≤ 0, V1(t, zε, zς) is always nonincreasing in t ∈ (0, ∞), so that V1 is bounded
and, consequently, (zε, zς) are bounded. By deriving in time

.
V1 Equation (22) and from

Equations (15) and (19), it follows

..
V1(t, zε, zς) = −2zε

.
zε −

.
ε̂zςzε − ε̂

.
zςzε − ε̂zς

.
zε −

.(
ε̂2)z2

ς − ε̂2
.(

z2
ς

)
= 2kεz2

ε − zςzε(−yani − kε ε̂ )− ε̂zε

(
−ε̂zε − ε̂2zς

)
+ kε ε̂zςzε

−2ε̂z2
ς(−yani − kε ε̂)− 2ε̂2zς

(
−ε̂zε − ε̂2zς

)
.

(23)
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The
..
V1 is bounded since under the Assumption 1 the analytical output noise yani

is bounded and the estimate ε̂(s) = [−yani(s)/(s + kε)] is a passive filter of a bounded
signal, so it is bounded and also its derivative

.
ε̂ = (−yani − kε ε̂ ) is bounded in turn.

Then, B.2.1 Barbalat’s Lemma [40] applies on
.

V1, so that lim
t→∞

.
V1(t) = 0. Consequently,

(zε, ε̂zς)→ (0, 0) globally asymptotically. Now, according to [32] and from
Equations (10), (13) and (19), εest =

(
k2

ε + ςest
)
ε̂ + kεyani is an asymptotic estimate of ana-

lytical output noise derivative
.
yani, while ωest = ω̂(t)t→∞ =

√
ς̂ + yani ε̂ is an asymptotic

estimate of the rotor operating frequency ω. This proves the theses (i)–(ii).
The rest of the proof is inherited from [24].
Let V2(t, ϕ̃) and V3(t, η̃) be introduced as two suitable Lyapunov functions

V2(t, ϕ̃) =
1
2

ϕ̃T · ϕ̃ ≥ 0, (24)

V3(t, η̃) =
1
2

η̃T · η̃ ≥ 0. (25)

Deriving V2(t) Equation (24) in time, from Equations (6) and (20b) it follows

.
V2(t) = ϕ̃T

.
ϕ̃ = −ϕ̃TΦ(t, ωest)

[
kϕ1 0
0 kϕ2

](
ω2d̃e(t, ωest)

)
= −d̃T

e

[(
ω2kϕ

)
I(2×2)

]
d̃e ≤ 0, (26)

where: kϕ1 = kϕ2 = kϕ > 0; I(2×2) is the 2-by-2 identity matrix; the linear parametrization of
the estimation error in Equation (6) has been considered, i.e., d̃e(t, ωest) = ΦT(t, ωest)ϕ̃(t, ωest)
(where the ωest has been considered constant at steady-state so that it is replaced for the actual
constant ω). Due to

.
V2 ≤ 0, V2(t) does not increase in t ∈ (0, ∞). Then, V2 is bounded and

so ϕ̃ is bounded. By time-deriving V2 again, under the assumption of bounded
(

Φ,
.

Φ
)

, the

Barbalat’s Lemma in [40] applies on
.

V2. Then, lim
t→∞

.
V2(t) = 0 and d̃e → 0; consequently,

ϕ̃→ 0 asymptotically. To prove the exponential convergence of ϕ̃(t, ωest) estimation error the
Persistency of Excitation condition [40] is required, provided that ∃ T, kT ∈ R+ such that∫ t+T

t
Φ(τ, ωest)ΦT(τ, ωest) dτ ≥ kT I(2×2) > 0 , ∀t ≥ 0 , (27)

which is always trivially fulfilled, given the regressor definition in Equations (6) and (20b).
Now, consider, from Equations (7) and (20c), the following definitions of η̃,

.
η̃, ṽx, ũx

− k
m
(
zj − ẑj

)
=
(
cη

.
x + η

)
−
(
cη

.
x + η̂

)
η̃

.
η −

.
η̂ = (−cvx + cη)− (−cv̂x + cη̂) = −cṽx + cη̃

.
η̃ ,

vx − v̂x = (ux − ûx) + ω2 d̃e = ũx + ω2 d̃eṽx

− k
m z̃j −ω2 d̃eũx

(28)

with cη < 0 (see [24] for detailed derivation of Equation (28)). Deriving V3(t) Equation (25)
in time, from (28) it follows

.
V3(t) = η̃T ·

.
η̃ = c · η̃T η̃ + (−c) · η̃T

(
ũx + ω2d̃e

)
≤ c

2 · ‖η̃‖
2 +

(
− c

2
)(
‖ũx‖+ ‖ω2d̃e‖

)2

= c
2 · ‖η̃‖

2 +
(
− c

2
)
‖ω2d̃e‖2 +

(
− c

2
)
‖ − k

m z̃j −ω2 d̃e‖2 + (−c)‖ − k
m z̃j −ω2 d̃e‖‖ω2d̃e‖

≤ c
2 · ‖η̃‖

2 +
(
− c

2
)
‖ω2d̃e‖2(− c

2
)(
‖ − k

m z̃j‖+ ‖ω2 d̃e‖
)(
‖ − k

m z̃j‖+ ‖ω2 d̃e‖+ 2‖ω2d̃e‖
)

= −2c ‖ω2d̃e‖2 − 2c‖η̃‖‖ω2 d̃e‖ ≤ c‖η̃‖2 − c ω4‖d̃e‖2 .

(29)

Equation (29) is obtained considering the triangular inequalities η̃T
(

ũx + ω2d̃e

)
≤

1
2

(
‖η̃‖2 + ‖ũx + ω2d̃e‖2

)
and ‖

(
− k

m z̃j

)
+ (−ω2 d̃e)‖

2 ≤
(
‖ − k

m z̃j‖+ ‖ −ω2 d̃e‖
)2

; then,
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the square of ξ(t) ,
(
‖η̃‖+ ‖ω2d̃e‖

)
has been reconstructed, so that the inequalities

‖η̃‖‖ω2 d̃e‖ ≤ − 1
2

(
‖η̃‖2 + ‖ω2d̃e‖2

)
have been used.

Following this, d̃e(t) is bounded on [0, ∞) so that, according to Lemma A.1 in [41], any
globally exponentially convergent observer for the modal disturbance d̃e(t) guarantees the
exponential convergence for η̃ → 0 and, consequently, for z̃j → 0 and ũx = (ux − ûx)→ 0
(see Equation (28)). This is enforced by the global exponential zero convergence of d̃e(t), as
has been proved in Equations (26) and (27).

Eventually, by replacing in Equation (1a) the control ûx Equation (20a) (ûx for ux), it
follows that for ũx → 0

..
x̃ = −k1

.
x̃− k2 x̃ +

k
m

z̃j −
..

d̃e = −k1
.
x̃− k2 x̃− ũx = −k1

.
x̃− k2 x̃ (30)

is a Hurwitz system dynamics. Hence, also x̃ → 0 globally exponentially. This proves the
thesis (iii). ���

Remark 6. It has been proved that, under the Assumption 1, the convergence of asymptotical
frequency estimate FE in Equation (19)—with its additional inner loop (ω̂(t), yan

(
t, zj, ω, ω̂

)
) )

in which the FE is elaborated—is standalone with respect to the rest of the control loop: it is a
plug-in estimation block, according to Remark 2. In this case, once ωest → ω , at steady-state ωest
is considered as an internal parameter for the control loop. Then, the frequency estimation phase
is a warm-up process for the ANC-TC Equations (5)–(7) [34,35], which through Equation (19) is
transformed into Equations (20a)–(20c). ♦

Remark 7. From [24,32], as aforementioned at the beginning of Section 2.2.1, the closed-loop system
from the input disturbance de(t) to the output x(t), including the phase estimator
Equation (20b), the journal displacement observer Equation (20c) and the asymptotic frequency
estimator Equation (19), results in a regulation loop unifying the parameter and state estimation
problems as reduced-order observed-based problems, with adaptive notch filtering
characteristics [24]. ♦

4. Results
4.1. Numerical Simulation Setup and Method Description

The proposed control is implemented in the Simulink MATLAB environment with
the parameter set as shown in Table 2 and with the control parameters reported in Table 3.
The results are presented in four simulation cases for cavitated and uncavitated operating
conditions with measured and analytical output noise.

The subscript “i” in the notation of the analytical output noise yani is omitted for
editing convenience of the graphs. Hence, yan in all figures is referred to as the only one
component yani, accordingly to Equation (16) and Remark 2.

The signal
..
dei(t, ω) and zj in the figures represent the actual sinusoidal disturbance

and the journal center vector coordinates, respectively, whose values are computed from
the simulated model differential equations. These signals, (

..
dei(t, ω), zj) would not be

available in practice, so their analytical chasing in simulation is reported only for the sake
of comparison with respect to the analytical signals.
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Table 3. Control Parameters.

Control
Gains Values Initial

Conditions Values

cη[s−1] −400 x̂j(0) 0
k1, k2 2000 ^

yj(0) 0

kϕ1 50.66 ^
ϕ(0) (rad) [4, 4]

kϕ2 50.66 ω0 (rad/s) 2985
kε 7.5 zJ0 (m) [0, −2 × 10−5]

Bias and initialization issues can mislead the estimated response measure of perfor-
mance obtained from a simulation. Several techniques surveyed in [34] can be used to
estimate online the length of the warm-up phase in the output data collection of a simu-
lation model, to understand, automatically, when this preliminary phase ends and when
the actual numerical simulation starts giving a reliable response. The same issue is tackled
in Bayesian parameter estimation [35] where the parameters of the model under study
are usually derived from the available data, using optimization and sampling method
estimations. It is shown that a warm-up phase occurs (the asymptotical frequency estima-
tion phase) before the closed-loop ANC control can start its exponential hooking of the
exosystem output disturbance signal. In practice, such a length cannot be quantified, but
for the proposed technique, the warm-up phase length estimation is not required.

The simulations are designed in order to validate numerically the theoretical analytical
proof reported in the previous Section 3. In practice, the settling time and trajectory
behavior of the phase estimate can be forecast since its trend is exponential, properly,
while this does not occur for the frequency estimate, which converges asymptotically.
Hence, to highlight the differences in the convergence behaviors of the estimation errors, a
further numerical evidence is provided. The Inexact Newton method [36] is applied to the
frequency estimation error and phase estimation error successions, while the convergence of
the overall disturbance error succession is considered only in the time since it follows from
the previous two errors. The iterative Newton method is applied to the error successions in
both cavitated and uncavitated conditions, and only in the case of analytical output noise,
which is more interesting in practice.

To analyze and evaluate the order of the convergence of the estimation errors, the
following point series are defined as the difference between the estimation dynamics terms
and the constant target values of each series (ω and ϕ0). Denoting the successions of
frequency and phase estimation with

{
ωest,yann

}
n and

{
ϕ̂−,yann

}
n, respectively, sampled at

discrete time instants n (1 sample each 5 (ms)), the following

eωn =
{

ωest,yann

}
n −ω eϕn =

{
ϕ̂−,yann

}
n − ϕ0 (31)

represent the successions of the frequency and phase estimation errors, respectively. Consid-
ering the absolute value of the ratio between the {n + 1}-element of each error succession
and the {n}-element power of pω,ϕ, as long as the limits of these ratios are constant for
n→ ∞ , namely

lim
n→∞

∣∣ωest,yann+1 −ω
∣∣∣∣ωest,yann −ω

∣∣pω
= constant lim

n→∞

∣∣ϕ̂−,yann+1 − ϕ0
∣∣∣∣ϕ̂−,yann − ϕ0

∣∣pϕ
= constant (32)

then, each succession converges with at least a polynomial behavior.
We can rewrite Equation (32) as follows∣∣ωest,yann+1 −ω

∣∣ ≤ kω ·
∣∣ωest,yann −ω

∣∣pω
∣∣∣ϕ̂−,yann+1 − ϕ0

∣∣∣≤ kϕ ·
∣∣ϕ̂−,yann − ϕ0

∣∣pϕ (33)
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parametrized by the coefficient pair
(
kω,ϕ, pω,ϕ

)
. In Equation (33): pω,ϕ represents the

order of convergence for each error succession, Equations (31) and (32), while kω,ϕ is a
proportional factor, denoting the exponential convergence time-constant (when pω,ϕ = 1).

The following numerical simulations are proposed to: (1a) evaluate the convergence
performance of disturbance estimation errors in time; (2) verify that the initial frequency
estimation warm-up phase length is acceptable in practice in a real application (namely the
asymptotical convergence occurs at t < ∞). In all four simulation scenarios, 5% of initial
frequency estimation error and about 25% (about 70 deg) of initial phase estimation error
are considered.

4.2. Figure Descriptions

Figures 4 and 5 illustrate the frequency estimation performance in time, in the case of
the cavitated condition (Figure 4) and in the case of the uncavitated condition (Figure 5).
Three curves are plotted: ω denotes the real constant operating frequency; ωest,yan denotes
the asymptotical frequency estimate with the analytical output noise; ωest,y denotes the
asymptotical frequency estimate in the case of measured output noise.
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In Figure 6 the frequency estimation performance in time, considering the analytical
output noise yan, is compared in uncavitated and cavitated conditions.
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Figure 7 shows the comparison (in offset view) of phase estimation performance
in time, in the four simulation cases. The (ϕ̂unc,yan, ϕ̂unc,y) represent the phase estimate
for the uncavitated case, with analytical and measured output noise, respectively; the
(ϕ̂cav,yan, ϕ̂cav,y) represent the phase estimate for the cavitated case, with analytical and
measured output noise, respectively. In the graph, the warm-up phase edges, and time
interval labels, are marked-up in the four cases for illustration purposes.
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Figure 8 shows the scatter plot of the (k, p)-parametrized successions of frequency esti-
mation error

∣∣eωn+1

∣∣ = kω |eωn |
pω (Figure 8A,B) and phase estimation error∣∣eϕn+1

∣∣ = kϕ

∣∣eϕn

∣∣pϕ (Figure 8C,D), following Equations (31)–(33). Both cavitated and
uncavitated conditions with analytical output noise yan are considered. The timeseries in
Figure 8A,B are plotted considering the overall simulation time data. To evaluate whether
the phase estimates’ convergent behavior is exponential starting from the warm-up phase
end (according to Proposition 1), the timeseries in Figure 8C,D are plotted on the two
restricted simulation time intervals starting from 8.41 (s) and 1.59 (s) for uncavitated and
cavitated cases, respectively, as shown in Figure 7.

The text boxes in Figure 8 report the fitting data statistics obtained applying the
iterative Inexact Newton method on the frequency and phase estimation error timeseries,
in cavitated and uncavitated conditions with analytical output noise. Such statistics are
used to evaluate the order of the convergence pω,ϕ in the four cases. The arrows indicate
the direction of the succession point distribution from eωn=0 to eωn→∞ , and from eϕn=0 to
e ϕn→∞ , as defined in Equation (31).

Figure 9 shows the difference between the scalar analytical noise yan and the actual
disturbance component

..
dei(t, ω) for the uncavitated case (Figure 9A) and for the cavitated

case (Figure 9C). For ease of graph interpretation, due to the high frequency of the signals,
a restricted time lapse (0–0.0012) (s) was chosen, arbitrarily, on the overall simulation time
of 12 (s), in order to highlight the detail of the comparison over a few periods.
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In Figure 9B,D, the behavior of only one component of the journal displacement
coordinate vector, zji , is shown in time. It is compared with the same component “i” of its
analytically reconstructed value zJ i. Both Figure 9B,D contain a subplot showing the scaled
difference δyi = − k

m
(
zji − zJ i

)
, where δyi is the acceleration injected error referred to as

only one component of the vector δy
(
t, zj0, ω, ω̂(t)

)
, as defined in Equation (18).

Figure 10 shows the journal displacement observation errors z̃j as defined according

to Equations (20c) and (28), in the four simulation cases. The signals zj =
[
xj, yj

]T are
not available in practice, but they are shown only for comparison to their corresponding
observation ẑj =

[
x̂j, ŷj

]T .
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Figure 10. Observation errors of the journal displacement coordinate z̃j with analytical output noise
for uncavitated and cavitated conditions (A,C) and with measured output noise for uncavitated and
cavitated conditions (B,D).

Figure 11 illustrates the hooking of the sinusoidal disturbance
..
dei(t, ω) by the estimate

..
d̂ei(t, ωest) in the case of the uncavitated condition with analytical noise. For ease of graph
interpretation, due to the high frequency of the signals, the signal hooking is shown on the
restricted time interval (7.5–8.5) (s).
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Figure 12 illustrates the sinusoidal disturbance estimation errors
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d̃ei(t, ω) in the four
simulation cases.
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In Figure 13, the control vector ûx = [ûx,1, ûx,2]
T (Equation (20a)) is plotted in the four

simulation cases. A zoomed plot, referred to by the dashed rectangle, highlights the detail
of the last transient variation in the control before the steady-state behavior.
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Figure 13. Control vector ûx = [ûx,1, ûx,2]
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Figure 14 illustrates the disturbance attenuation on disc center coordinates [xc, yc] in
the four simulation cases.
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Figure 14. Disturbance attenuation of disc center coordinates (xc, yc) for uncavitated and cavitated
conditions with analytical output noise (A,C) and for uncavitated and cavitated conditions with
measured output noise (B,D).
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5. Discussions and Conclusions
5.1. Discussions

The closed-loop ANC-FE operates on the output noise date to compute the asymptoti-
cal frequency estimate. In the following simulative analysis, both measured and analytical
noise reconstruction is considered (in two cavitated and uncavitated operating conditions).
Due to the reconstruction error δy (Figure 9), the analytical output noise is affected by an
intrinsic additive disturbance, which entails a data quality lowering with respect to the
measured output noise case. The latter is considered an ideal case, and it is used in this
analysis only for the sake of comparison.

The control performance, in terms of settling time, is evaluated in four simulation cases.
From Figure 4 it emerges that, from the comparison between the case of analytical output
noise ωest,yan and the case of measured output noise ωest,y, for the cavitated operating
condition, the frequency estimation performance is very close. The residual vibration in the
analytical case is due to the discrepancy between y and yan, but it has a very low amplitude
so that, macroscopically, the two curves cannot be distinguished. The comparison of the
frequency estimation for the uncavitated condition is presented in Figure 5, showing that
the performance degradation in terms of the settling of time, for analytical output noise
ωest,yan with respect to measured output noise ωest,y, is restrained in 2 s. In Figure 6,
both curves refer to the analytical output noise, and it is visible that different convergence
performances are registered in cavitated and uncavitated cases. This difference is also
recovered by the performance in phase estimation (Figure 7). As expected, the frequency
estimation procedure represents a warm-up phase of the overall closed-loop disturbance
estimation. In fact, according to Remark 6, the convergence of the asymptotical frequency
estimate is standalone with respect to the rest of the control loop. Hence, only once
the frequency estimate has reached its steady-state value, the phase estimation starts its
exponential convergence ((thesis iii) of Proposition 1) in the last segment of all four curves
(Figures 4, 5 and 7). The worst performance is registered in the uncavitated condition
with analytical noise (solid black line in Figure 7) since the phase estimation settling time
exceeds the other three simulation cases by 6 s.

The numerical analysis of the frequency and phase estimation timeseries gives the
fitting results shown in Figure 8, considering 95% confidence in the goodness of fit (GOF)
statistics. The order of convergence calculated for the frequency estimation timeseries are
pω,unc = 0.9983 and pω,cav = 1.005 under uncavitated and cavitated conditions, respec-
tively (Figure 8A,B), with acceptable GOF where the R2

ω,unc = 0.9998 and R2
ω,cav = 1.0.

The frequency estimation timeseries are sampled in the overall simulation time (degree of
freedom, dfe = 2398). Aiming to show that the phase estimation converges exponentially
only after the initial warm-up (according to Proposition 1), in the case of phase estima-
tion (Figure 8C,D), each timeseries sampling is restricted to the interval in which its own
warm-up phase ends: 8.41 (s) (dfe = 716) and 1.59 (s) (dfe = 2079) under uncavitated and
cavitated conditions, respectively, as shown in Figure 7. The convergence of phase estima-
tion approximates the exponential behavior better than frequency estimation, obtaining
pϕ,unc = 1.001 and pϕ,cav = 1 under uncavitated and cavitated conditions, respectively
(Figure 8C,D) with acceptable GOF where R2

ϕ,unc = 0.9983 and R2
ϕ,cav = 0.9989. The final

phase estimation error is registered within 0.43%. Overall, with respect to the fitting curve,
both frequency and phase estimation error timeseries exhibit less dispersion of the points
in the cavitated case than the points sampled in the uncavitated condition.

Figure 9 illustrates that, although an additive disturbance δyi affects the analytical
output yan, due to the disturbance δyi amplitude, which is bounded and considerably
smaller than the output noise itself (nine orders of magnitude less), yan fits the real distur-
bance

..
dei(t, ω) very well in both cavitated and uncavitated conditions (Figure 9A,C). This

enforces Assumption 1, and Proposition 1 applies. Figure 10 illustrates the comparison of
the reduced-order observer performance (Equation (20c)) in the center journal coordinates’
estimation in the four simulation cases. It emerges that the performance degradation in
the journal vibration absorption in the two cases with the analytical output (Figure 10A,C)
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is restrained in a few tenths of millimeters with respect to the ideal case with measured
output (Figure 10B,D). The exponential hooking of the disturbance

..
dei(t, ω) by the adaptive

noise cancellation control
..
d̂ei(t, ωest) (Equation (20b)) is illustrated in Figure 11. For sake

of brevity, only the worst case (uncavitated condition with analytical output noise) is re-
ported. Analogous results are obtained in the other three simulation cases. The preliminary
phase of the overall disturbance estimations is dictated by the asymptotical convergence
of the frequency estimate ωest. From that instant, the same closed-loop behavior of [24]
is recovered, with the last segment of the disturbance convergence, which is exponential.

The disturbance adaptation error
..

d̃ei(t, ω), reported in Figure 12, in the four cases recovers
the observer behavior (Figure 10). Moreover, the behavior and performance of the control
input (Figure 13) recover the behaviors of the displacement observation error (Figure 10)
and the sinusoidal estimation errors (Figure 11) in the four cases. A zoomed plot is reported
to highlight the sinusoidal trend of the two control vector components, oscillating at the
same frequency as the rejected disturbance (as shown also in [24]). Figure 13 shows that
the control amplitude stabilizes at the same time (respectively, in the four cases) in which
all the estimation errors converge. Figure 14 illustrates that, from the comparison of the
rotor center coordinate stabilization in the four cases, it emerges that the performance
degradation in terms of vibration amplitude, for analytical output noise with respect to the
(ideal) measured output noise case, is restrained in a few tenths of millimeters.

Overall, better estimation performance is obtained in the cavitated condition with
respect to the uncavitated case. As the main figures of merit for the proposed adaptive
closed-loop control, the rotor vibration attenuation time (about 8.5 (s) in the worst case) and
the vibration residual amplitude (order of 10−1(mm)) are considered, which are acceptable
values for a practical application. Similar results, in terms of estimation error convergence
time, are obtained in [17,18] (order of seconds), which presented tests of an experimental
setup on thin steel strips [17] (order of millimeters) and simulative in silico validation on a
reversible cold strip rolling mill [18].

5.2. Conclusions

The aim of this study was to provide a mathematical model for a novel adaptive
noise cancellation (ANC) technique designed to stabilize a flexible rotor shaft supported by
two hydrodynamic full (short) journal bearings and affected by a sinusoidal disturbance
output noise with unknown frequency. The disturbance frequency corresponds to the rotor
operating angular speed (ω), which is driven by an external actuator, so that uncertainties
may arise in the frequency actual value due to actuation operating point fluctuations.
The adaptation with respect to the frequency estimation (FE) generalizes the ANC to the
novel ANC-FE.

As the main novelty in this study, inspired from immersion and invariance (I&I)
techniques, an asymptotical frequency estimation (FE) module is designed as a combination
of state-observer and asymptotical parameter estimation. The FE operation represents
the warm-up phase of the overall adaptive noise cancellation control. The FE module is
externalized as an additive plug-in block, which processes the analytical reconstruction of
the output data downstream of the ANC closed-loop system (Figure 2).

The mathematical structural proof of the ANC-FE control theoretical formulation,
Proposition 1, is provided under Assumption 1, which requires that the analytical output
noise reconstruction is a signal at the same frequency of disturbance. It follows that: the
frequency estimation convergence is asymptotical; the disturbance phase estimation and
the rotor center coordinate stabilization are exponential.

The mathematical results have been validated experimentally in silico by numerical
simulations performed in four scenarios: cavitated and uncavitated conditions with analyt-
ical and measured output noise. Moreover, a data fitting analysis with the Inexact Newton
method (with 95% of confidence) is performed on frequency and phase estimation error
point series, in order to also validate numerically Proposition 1, demonstrating that the
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phase estimate succession approximates the exponential behavior better than frequency
estimate succession. The orders of convergence obtained by the frequency estimation
timeseries are pω,unc = 0.9983 and pω,cav = 1.005; the order of convergence obtained by
the phase estimation timeseries is pϕ = 1 for both uncavitated and cavitated conditions.
Considering the analytical output noise as the case of practical interest, the settling time of
disturbance rejection and then of the rotor center coordinates stabilization is about 76% less
in the cavitated than in the uncavitated condition, 2 (s) and 8.5 (s), respectively.

Simulation shows that the analytical output noise is very close to the measured output
noise, enforcing Assumption 1. The warm-up phase length is restrained in less than 10 s,
which is acceptable as an initialization process duration in a real application. For future
investigations the possible application of the proposed control technique to other dynamical
complex systems can be considered.
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