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Abstract: We apply a new generalized Caputo operator to investigate the dynamical behaviour of
the non-integer food web model (FWM). This dynamical model has three population species and
is nonlinear. Three types of species are considered in this population: prey species, intermediate
predators, and top predators, and the top predators are also divided into mature and immature
predators. We calculated the uniqueness and existence of the solutions applying the fixed-point
hypothesis. Our study examines the possibility of obtaining new dynamical phase portraits with
the new generalized Caputo operator and demonstrates the portraits for several values of fractional
order. A generalized predictor–corrector (P-C) approach is utilized in numerically solving this food
web model. In the case of the nonlinear equations system, the effectiveness of the used scheme
is highly evident and easy to implement. In addition, stability analysis was conducted for this
numerical scheme.

Keywords: food web model (FWM); dynamical behaviour; generalized Caputo operator; uniqueness;
stability; existence; generalized P-C numerical algorithm

MSC: 45D05

1. Introduction

Energy and materials follow one path between species in a food chain model, whereas
food webs are more complex because they connect many food chains. Different trophic
levels are found in a food web. There are various categories of organisms within the trophic
levels, including producers, consumers, and decomposers. The structure of a food web is
typically represented by a lattice arrangement. Using a system of differential equations,
it is possible to design food chains and food webs. Food chains, in ecology, are a chain of
organisms feeding on the organism next to them, while food webs are a collection of food
chains joined together. It has been of interest to several researchers to analyse the dynamical
behaviour of the food chain model and the web model [1–4]. A modular food web theory,
which studies the structural and functional properties of low-species-based food webs,
aims to determine how the structure and interactions mediate ecosystem stability [5,6].
Several species in nature have life cycles that are divided into at least two stages: mature
and immature. These stages have different characteristics. Food web models (FWMs)
depicting a stage structure have been extensively studied [7,8]. The impact of cannibalism
on ecological systems has been studied extensively over the past few decades. Aquatic,
as well as terrestrial food webs have cannibalistic populations. This subject has been
addressed by several studies [9–12]. Stage-structured populations frequently engage in
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cannibalism, whether in the wild or in watery food webs. The cannibalism model was
examined and investigated by Diekmann et al. [13]. A watery food chain in which a
predator cannibalizes was studied by Bhattacharyya and Pal [14]. The dynamics of the
system are therefore influenced by cannibalism in a very significant way. Fishes, birds,
mammals, and others are among the animals that have cannibalistic natures.

There are over 300 years of development behind fractional calculus, and today, this
is still an important concept of studying real-world problems [15–20]. The literature of
fractional calculus has introduced a variety of fractional derivatives, including Caputo [21],
Atangana–Baleanu [22], and Caputo–Fabrizio [23], which are the most widely used deriva-
tives. Fractional differential equations can describe dynamic processes within biological
and ecological systems with a higher degree of accuracy and reliability since most biological
and ecological mathematical models have long-term memories. An understanding of frac-
tional species systems can provide new possibilities for describing the dynamic behaviours
of multi-species food web ecosystems, given the complexity and existence of nonlinear
effects [24]. In addition, fractional-order forms have a number of advantages, such as a
meticulous illustration and an accurate interpretation of operation rules. In order to further
explore the dynamics of systems with competition, predation, and parasitism, classical
integer differential equations of ecosystems are replaced with fractional differential equa-
tions. The literature contains a variety of nonlocal operators, which are used extensively in
applied mathematics. An integral and fractional derivative introduced by Katugampola in
2014 generalizes both Riemann–Liouville and Hadamard integrals and derivatives [25,26].
The generalized Caputo operator was recently constructed by Odibat et al. [27]. In the
literature, the generalized Caputo operator has been applied in various ways. A recent
study by Rubayyi T. Alqahtani et al. [28] utilized a generalized Caputo operator to model
bioethanol production. The new generalized Caputo operator was used to analyse the
COVID-19 model [29]. In the paper [30], the author investigated irregular meshes with
finite difference methods to determine the error estimates when the Caputo operator of
the solution of the FDEs has a low smoothness. The paper [31] developed the asymptotic
expansion formula for the trapezoidal approximation of the fractional integral, and the
author applied the expansion formula to calculate approximations for fractional integrals
of orders α, α + 1, α + 2, α + 3, and α + 4.

In this paper, we extend the classical integer-order food web model (FWM) to a non-
integer food web model through a generalized Caputo operator. Moreover, we discuss
a generalized predictor–corrector numerical solution that is a generalization of the P-C
numerical scheme [32,33] to study the complexity of the food web model’s behaviour,
and we analyse the stability of this scheme. With the generalized Caputo operator, a non-
uniform grid is used in the P-C scheme instead of the uniform grid in the Caputo operator.
ϕ and ρ are the only parameters needed to generalize the Caputo integral operator, which
provides a great deal of theoretical and numerical equipment for fractional mathematical
modelling. There are numerous applications of this P-C technique in various fields of
FDEs. In this study, we analysed the behaviour of the food web model on various different
fractional orders and on another parameter of the derivative, which gives us different
dynamic phase diagrams of this food web model.

Due to Caputo derivatives describing better certain physical problems involving
memory effects, we defined the generalized fractional derivatives in a Caputo form. This
Caputo version of generalized fractional derivatives would prove useful for researchers
interested in describing real-world phenomena using fractional operators. Finally, by
noticing that limρ→0

(
xρ−aρ

ρ

)
= In

( x
a
)

and limρ→0

(
bρ−xρ

ρ

)
= In

(
b
x

)
lead to Hadamard

and Caputo–Hadamard results, we saw that the limiting case as ρ → 0 leads to those
results. Furthermore, when ρ→ 1, the fractional derivatives of Riemann–Liouville and of
Caputo were obtained.
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Outline of the Paper

We divided this whole work into the following sections: Section 2 represents the
description of the food web model. The preliminaries of fractional calculus (FC) are covered
in Section 3. The existence of solutions is demonstrated in Section 4. Solution uniqueness is
demonstrated in Section 5. Section 6 presents generalized predictor–corrector numerical
algorithms for fractional-order food web models using the generalized Caputo operator.
Section 7 contains simulations and discussions of the numerical results. A conclusion is
given in Section 8.

2. Description of the Food Web Model

Our study proposes and analyses a three-species FWM that includes cannibalism and
a stage structure within top predator species. Predators at the top are generally divided
into immature and mature stages. Initial stage individuals are unable to hunt or reproduce,
as they are dependent on their mature parents for survival. Additionally, we constructed
an ecological model that includes stage cannibalism and structure in the top predators as
part of a three-species food web model.

A food web model can be constructed using the above considerations [34].

dx(t)
dt

= rx(t)
(

1− x(t)
H

)
− a1x(t)y(t),

dy(t)
dt

= a1e1x(t)y(t)− a2y(t)z(t)− d1y(t), (1)

dz(t)
dt

= a2e2y(t)z(t) + a3e3z(t)u(t) + cu(t)− d2z(t),

du(t)
dt

= bz(t)− cu(t)− a3z(t)u(t)− d3u(t).

Prey density (lower level species) at time t is denoted by x(t); intermediate predator
density (middle-level species) at time t is denoted by y(t); top predator density (mature
and immature of higher-level species) at time t is denoted by z(t), u(t). With an intrinsic
growth rate r and carrying capacity H, the prey grows logistically. Based on the Lotka–
Volterra functional response, the intermediate predator consumes the prey at the lowest
level, with an attack rate a1 and a conversion rate e1. In the absence of their food source,
it continues to decay exponentially as a result of natural mortality rate d1. There are two
kinds of top predators: mature and immature. Immature populations are assumed to grow
exponentially along with their parents denoted by the mature population with growth rate
b, while a part grows up to become a mature population with growth rate c. Additionally,
both the mature and immature populations face natural death with mortality rates of d2
and d3, respectively. With maximum attack rate a3 and conversion rate e2, the mature top
predator attacks the intermediate predator using the Lotka–Volterra response functional.
When the availability of their preferred food becomes rare, they cannibalise the immature
top predator based on the Lotka–Volterra functional response with maximum attack rate a3
and conversion rate e3.

Equilibrium Points of the Food Web Model

In the part of this section, we calculate the equilibrium points corresponding to the
food web model. The steady-state conditions for the model are as follows:

• E0 = (0, 0, 0, 0) is the trivial equilibrium point that always exists.
• E1 = (H, 0, 0, 0) is the axial equilibrium point.

• E2 = (x̌, y̌, 0, 0) =
(

d1
a1e1

, r
a1

(
1− d1

a1e1H

)
, 0, 0

)
is the top predator free equilibrium point.

If the conditionH > d1
a1e1

holds, then it exists.
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• E3 = (ẍ, ÿ, z̈, ü) =
(

ẍ, r
a1

(
1− ẍ

H
)
, a1e1 ẍ−d1

a2
, b(a1e1 ẍ−d1)

a2(c+d3)+a3(a1e1 ẍ−d1)

)
is the interior equilib-

rium point. The characteristic equation for ẍ is as follows:

γ1 ẍ3 + γ2 ẍ2 + γ3 ẍ + γ4 = 0. (2)

where

γ1 = −a2
1a2a3e2

1e2r < 0.

γ2 = a1e1[a2e2r(d1a3 − a2(c + d3)) + a2
1a3e1H(be3 − d2) + a2a3r(a1e1e2H+ d1)]

γ3 = a2
2r(c + d3)(a1e1e2H+ 2d1)− 2Ha1a3e1d1(ra2e2 − a1d2)

− He1a2
1a2(d2d3 + c(d2 − b))− bHe1a2

1d1(a3e3 + 1)− ra2a3d1.

γ4 = rHa2e2d1(a3d1 − a2(c + d3)) +Ha1a3d2
1(be3 − d2) +Ha1d1(a2d2(c + d3)− bc).

Thus, a simple computation shows that this exists only if and only if the following
is true:

x̌ < ẍ < H, (3)

with one set condition (γ2 < 0 and γ4 < 0) or (γ3 > 0 and γ4 > 0).

3. Preliminaries

Definition 1. The non-integer-order Riemann–Liouville (RL) integral of a function f(t) is de-
scribed as

RL
a I

ϕ
t [ f (t)] =

1
Γ(ϕ)

∫ t

a
f (ς)(t− ς)ϕ−1dς.

RL
a I0

t [ f (t)] = f (t).
(4)

Definition 2. Consider f (t) ∈ H1 to be a differentiable function in the interval (a, b), a < b, and
ϕ ∈ [0, 1], then we define the Caputo non-classical operator as

C
a D

ϕ
t f (t) =

{
1

Γ(n−ϕ)

∫ t
a f (n)(ς)(t− ς)(n−ϕ−1)dς, if n− 1 < ϕ < n,

dn f (t)
dtn , if ϕ = n,

(5)

Gamma functions are represented by Γ(.). Here is the definition of the gamma function:

Γ(x) =
∫ +∞

0
Ωx−1e−ΩdΩ, (Re(x) > 0). (6)

Definition 3. Here, the order of derivative ϕ > 0 and ρ > 0, and the generalized non-classical
integral GCI

ϕ,ρ
a+ of a function f(t) is defined (assuming it exists) as

GCI
ϕ,ρ
a+ [ f (t)] =

ρ1−ϕ

Γ(ϕ)

∫ t

a
ςρ−1 f (ς)(tρ − ςρ)ϕ−1dς, t > a. (7)

Definition 4. Here, the order of derivative ϕ > 0 (m− 1 < ϕ < m) and ρ > 0. For a function
f(t), the generalized Riemann-type non-classical derivative GRLD

ϕ,ρ
a+ is defined as

GRLD
ϕ,ρ
a+ [ f (t)] =

ρϕ−m+1

Γ(m− ϕ)

(
t1−ρ d

dt

) ∫ t

a
ςρ−1 f (ς)(tρ − ςρ)ϕ−1dς, t > a ≥ 0. (8)

Definition 5. Here, the order of derivative ϕ > 0, ρ > 0 and m = dϕe. For a function f(t), the
generalized Caputo-type non-classical derivative GCD

ϕ,ρ
a+ is defined as

GCD
ϕ,ρ
a+ [ f (t)] =

(
GRLD

ϕ,ρ
a+

[
f (x)−

m−1

∑
n=0

f (n)(a)
n!

(x− a)n

])
(t), t > a ≥ 0. (9)
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Definition 6. Here, the order of derivative ϕ > 0 (m− 1 < ϕ < m) and ρ > 0. For a function
f(t), the generalized Caputo-type non-classical derivative GCD

ϕ,ρ
a+ is defined as

GCD
ϕ,ρ
a+ [ f (t)] =

ρϕ−m+1

Γ(m− ϕ)

∫ t

a
ςρ−1 f (ς)(tρ − ςρ)ϕ−1

(
ς1−ρ d

dς

)
dς, t > a ≥ 0. (10)

• The relation between the Riemann–Liouville and the generalized non-classical integral
from the substitution χρ → χ is as follows

GC
a I

ϕ,ρ
t [ f (t)] = ρ−ϕRL

aρ I
ϕ
tρ [ f (t1/ρ)]. (11)

When the lower limit is zero a = 0, the relation is

GC
0 I

ϕ,ρ
t [ f (t)] = ρ−ϕRL

0 I
ϕ
tρ [ f (t1/ρ)]. (12)

4. Existence of Solutions

The fixed-point assumption is used to investigate the existence of a solution for the
fractional food web mathematical model. Now, a non-integer food web mathematical
model can be described as follows.

GCD
ϕ,ρ
0+ [x(t)] = rx(t)

(
1− x(t)

H

)
− a1x(t)y(t),

GCD
ϕ,ρ
0+ [y(t)] = a1e1x(t)y(t)− a2y(t)z(t)− d1y(t), (13)

GCD
ϕ,ρ
0+ [z(t)] = a2e2y(t)z(t) + a3e3z(t)u(t) + cu(t)− d2z(t),

GCD
ϕ,ρ
0+ [u(t)] = bz(t)− cu(t)− a3z(t)u(t)− d3u(t).

The initial conditions of a mathematical model of a food web are as follows:

x(0) = x0, y(0) = y0, z(0) = z0, u(0) = u0. (14)

Using the generalized Caputo-type non-classical integral, we have

x(t) − x(0) =
ρ1−ϕ

Γ(ϕ)

∫ t
0

{
rx(t)

(
1− x(t)

H

)
− a1x(t)y(t)

}
ςρ−1(tρ − ςρ)(ϕ−1)dς,

y(t) − y(0) =
ρ1−ϕ

Γ(ϕ)

∫ t

0
{a1e1x(t)y(t)− a2y(t)z(t)− d1y(t)}ςρ−1(tρ − ςρ)(ϕ−1)dς,

z(t) − z(0) =
ρ1−ϕ

Γ(ϕ)

∫ t

0
{a2e2y(t)z(t) + a3e3z(t)u(t) + cu(t)− d2z(t)}ςρ−1(tρ − ςρ)(ϕ−1)dς,

u(t) − u(0) =
ρ1−ϕ

Γ(ϕ)

∫ t

0
{bz(t)− cu(t)− a3z(t)u(t)− d3u(t)}ςρ−1(tρ − ςρ)(ϕ−1)dς.

(15)

In order to simplify, we determine

f1(t, x) = rx(t)
(

1− x(t)
H

)
− a1x(t)y(t),

f2(t, y) = a1e1x(t)y(t)− a2y(t)z(t)− d1y(t), (16)

f3(t, z) = a2e2y(t)z(t) + a3e3z(t)u(t) + cu(t)− d2z(t),

f4(t, u) = bz(t)− cu(t)− a3z(t)u(t)− d3u(t).

Theorem 1. When 0 ≤ f1,f2,f3,f4 < 1, then the kernels fl ,f2,f3,f4 satisfy the Lips-
chitz condition.
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Proof of Theorem 1. Then, if f1(t, x) = rx(t)
(

1− x(t)
k

)
− a1x(t)y(t) is the kernel and x(t)

and x1(t) are two function, we can find

‖f1(t, x)−f1(t, x1)‖ =

∥∥∥∥rx(t)
(

1− x(t)
H

)
− a1x(t)y(t)−

(
rx(t)

(
1− x(t)

H

)
− a1x(t)y(t)

)∥∥∥∥,

=

∥∥∥∥(r
(

1− x(t) + x1(t)
H

)
− a1y(t)

)
(x(t)− x1(t))

∥∥∥∥,

≤
∥∥∥∥r
(

1− x(t) + x1(t)
H

)
− a1y(t)

∥∥∥∥‖x(t)− x1(t)‖,

≤
(

r
(

1− ‖x(t)‖+ ‖x1(t)‖
k

)
− a1‖y(t)‖

)
‖x(t)− x1(t)‖,

≤
(

r
(

1− 2q1

H

)
− a1q2

)
‖x(t)− x1(t)‖,

≤ q1‖x(t)− x1(t)‖.

(17)

By putting q1 =
(

r
(

1− 2q1
H

)
− a1q2

)
, ‖x(t)‖ ≤ q1, ‖y(t)‖ ≤ q2, ‖z(t)‖ ≤ q3, and

‖u(t)‖ ≤ q4 are the bounded functions; furthermore, we have

‖f1(t, x)−f1(t, x1)‖ ≤ q1‖x(t)− x1(t)‖. (18)

Therefore, the Lipschitz condition holds for f1 if the inequality 0 ≤ f1 < 1 is the
contraction of f1. As we apply the same procedure to kernels f2, f3, and f4, the following
results emerge:

‖f2(t, y)−f2(t, y1)‖ ≤ q2‖y(t)− y1(t)‖,
‖f3(t, z)−f3(t, z1)‖ ≤ q3‖z(t)− z1(t)‖, (19)

‖f4(t, u)−f4(t, u1)‖ ≤ q4‖u(t)− u1(t)‖.

Kernels f1, f2, f3, and f4 are determined by Equation (16). Afterwards, we determine
the associated integrals:

x(t) = x(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
f1(ς, x)ςρ−1(tρ − ςρ)(ϕ−1)dς,

y(t) = y(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
f2(ς, y)ςρ−1(tρ − ςρ)(ϕ−1)dς,

z(t) = z(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
f3(ς, z)ςρ−1(tρ − ςρ)(ϕ−1)dς,

u(t) = u(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
f4(ς, u)ςρ−1(tρ − ςρ)(ϕ−1)dς;

(20)

furthermore, we obtain

xn(t) = x(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
f1(ς, xn−1)ς

ρ−1(tρ − ςρ)(ϕ−1)dς,

yn(t) = y(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
f2(ς, yn−1)ς

ρ−1(tρ − ςρ)(ϕ−1)dς,

zn(t) = z(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
f3(ς, zn−1)ς

ρ−1(tρ − ςρ)(ϕ−1)dς,

un(t) = u(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
f4(ς, un−1)ς

ρ−1(tρ − ςρ)(ϕ−1)dς,

(21)
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and the initial condition is

x(0) = x0, y(0) = y0, z(0) = z0, u(0) = u0. (22)

When we subtract consecutive terms, we obtain

Ξn(t) = xn(t)− xn−1(t) =
ρ1−ϕ

Γ(ϕ)

∫ t
0 (f1(ς, xn−1)−f1(ς, xn−2))ς

ρ−1(tρ − ςρ)(ϕ−1)dς,

∆n(t) = yn(t)− yn−1(t) =
ρ1−ϕ

Γ(ϕ)

∫ t
0 (f2(ς, yn−1)−f2(ς, yn−2))ς

ρ−1(tρ − ςρ)(ϕ−1)dς,

ℵn(t) = zn(t)− zn−1(t) =
ρ1−ϕ

Γ(ϕ)

∫ t
0 (f3(ς, zn−1)−f3(ς, zn−2))ς

ρ−1(tρ − ςρ)(ϕ−1)dς,

n(t)ג = un(t)− un−1(t) =
ρ1−ϕ

Γ(ϕ)

∫ t
0 (f4(ς, un−1)−f4(ς, un−2))ς

ρ−1(tρ − ςρ)(ϕ−1)dς.

(23)

Take the following

xn(t) =
n

∑
j=1

Ξn(t), yn(t) =
n

∑
j=1

∆n(t), zn(t) =
n

∑
j=1
ℵn(t), un(t) =

n

∑
j=1

.n(t)ג (24)

Equation (23) is found using the triangular and norm properties.

‖Ξn(t)‖ = ‖xn(t)− xn−1(t)‖

≤ ρ1−ϕ

Γ(ϕ)

∥∥∥∫ t
0 (f1(ς, xn−1)−f1(ς, xn−2))ς

ρ−1(tρ − ςρ)(ϕ−1)dς
∥∥∥,

(25)

and under the Lipschitz condition, the Kernels will exhibit the following outcomes:

‖xn(t)− xn−1(t)‖ ≤
ρ1−ϕ

Γ(ϕ)

∫ t
0 ‖f1(ς, xn−1)−f1(ς, xn−2)‖ςρ−1(tρ − ςρ)(ϕ−1)dς,

≤ q1ρ1−ϕ

Γ(ϕ)

∫ t
0 ‖xn−1 − xn−2‖ςρ−1(tρ − ςρ)(ϕ−1)dς.

(26)

Therefore, we obtain the following:

‖Ξn(t)‖ ≤
q1ρ1−ϕ

Γ(ϕ)

∫ t

0
‖Ξn(ς)‖ςρ−1(tρ − ςρ)(ϕ−1)dς. (27)

We obtain the same results for ∆n(t), ℵn(t), and n(t)ג when we follow the same procedure:

‖∆n(t)‖ ≤
q2ρ1−ϕ

Γ(ϕ)

∫ t

0
‖∆n(ς)‖ςρ−1(tρ − ςρ)(ϕ−1)dς,

‖ℵn(t)‖ ≤
q3ρ1−ϕ

Γ(ϕ)

∫ t

0
‖ℵn(ς)‖ςρ−1(tρ − ςρ)(ϕ−1)dς, (28)

‖n(t)ג‖ ≤
q4ρ1−ϕ

Γ(ϕ)

∫ t

0
n(ς)‖ςρ−1(tρג‖ − ςρ)(ϕ−1)dς.

Following the above conclusion, we can prove the new theorem.

Theorem 2. The generalized Caputo-type non-classical-order food web mathematical model has a
unique solution if tmax fulfills the following criteria.

q1

Γ(1 + ϕ)

(
tρ
max
ρ

)ϕ

< 1. (29)
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Proof of Theorem 2. By assuming that x(t), y(t), z(t), and u(t) are bounded functions and
considering that we have already shown that the kernels possess the Lipschitz condition,
the following relation is then given:

‖Ξn(t)‖ ≤ ‖x(0)‖
[
q1

Γ(1 + ϕ)

(
tρ
max
ρ

)ϕ]n

,

‖∆n(t)‖ ≤ ‖y(0)‖
[
q2

Γ(1 + ϕ)

(
tρ
max
ρ

)ϕ]n

,

‖ℵn(t)‖ ≤ ‖z(0)‖
[
q3

Γ(1 + ϕ)

(
tρ
max
ρ

)ϕ]n

,

‖n(t)ג‖ ≤ ‖z(0)‖
[
q4

Γ(1 + ϕ)

(
tρ
max
ρ

)ϕ]n

,

(30)

Considering that all the above functions exist and are smooth, we prove that these
functions are the solution to the food web mathematical model. Hence, we assume

x(t)− x(0) = xn(t)−An(t),

y(t)− y(0) = yn(t)−Bn(t),

z(t)− z(0) = zn(t)− Cn(t).

u(t)− u(0) = un(t)−Dn(t).

(31)

When n→ 0 is taken as the limit in Equation (31), we obtain

‖An(t)‖ ≤
ρ1−ϕ

Γ(ϕ)

∥∥∥∫ t
0 (f1(ς, x)−f1(ς, xn−1))ς

ρ−1(tρ − ςρ)(ϕ−1)dς
∥∥∥,

≤ ρ1−ϕ

Γ(ϕ)

∫ t
0 ‖f1(ς, x)−f1(ς, xn−1)‖ςρ−1(tρ − ςρ)(ϕ−1)dς,

≤ q1ρ1−ϕ

Γ(ϕ)

∫ t
0 ‖x− xn−1‖ςρ−1(tρ − ςρ)(ϕ−1)dς,

≤ q1

Γ(1 + ϕ)

(
tρ

ρ

)ϕ
‖x− xn−1‖.

(32)

A recursive process leads to the following equation:

‖An(t)‖ ≤ ‖x(0)‖
[

1
Γ(1 + ϕ)

(
tρ

ρ

)ϕ]n+1

qn
1 F , (33)

then, for tmax, we obtain:

‖An(t)‖ ≤ ‖x(0)‖
[

1
Γ(1 + ϕ)

(
tρ
max
ρ

)ϕ]n+1

qn
1 F . (34)

We can obtain ‖An(t)‖ → 0 at n→ ∞ by taking the limits of both sides of the above
equation, and ‖Bn(t)‖ → 0, ‖Cn(t)‖ → 0 and ‖Dn(t)‖ → 0 can also be obtained by taking
the limits of both sides. Therefore, the proof is complete.

5. Find the Uniqueness of the Solution

In this segment of the food web mathematical model, unique solutions are presented.
Consider x1(t), y1(t), z1(t), and u1(t) to be the other solutions of the proposed system, then
we have
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x(t)− x1(t) =
ρ1−ϕ

Γ(ϕ)

∫ t

0
(f1(ς, x)−f1(ς, x1))ς

ρ−1(tρ − ςρ)(ϕ−1)dς. (35)

When the norm is applied to each side of Equation (35), the following result is obtained:

‖x(t)− x1(t)‖ ≤
ρ1−ϕ

Γ(ϕ)

∫ t

0
‖f1(ς, x)−f1(ς, x1)‖ςρ−1(tρ − ςρ)(ϕ−1)dς. (36)

The Lipschitz condition applied to the kernel yields

‖x(t)− x1(t)‖ ≤
f1ρ1−ϕ

Γ(ϕ)

∫ t
0 ‖x− x1‖ςρ−1(tρ − ςρ)(ϕ−1)dς,

≤ q1

Γ(1 + ϕ)

(
tρ

ρ

)ϕ

‖x− xn−1‖.
(37)

In addition, we obtain the following:

‖x(t)− x1(t)‖
(

1− q1

Γ(1 + ϕ)

(
tρ

ρ

)ϕ)
≤ 0, (38)

‖x(t)− x1(t)‖ = 0⇒ x(t) = x1(t). (39)

According to the above, the first differential equation of the financial model has a
unique solution. Similarly, we show that y(t), z(t), and u(t) have unique solutions.

6. Generalized Predictor–Corrector Technique

We converted the model into a fractional Volterra type in order to obtain numerical
solutions. We propose a P-C scheme with a generalized Caputo operator to solve the food
web system.

Consider the Volterra integral form of the first equation of the food web system:

x(t) = x(0) +
1

Γ(ϕ)

∫ t

0
A1(ς, x, y, z, u)

(
(tρ − ςρ)

ρ

)(ϕ−1) dς

ς1−ρ
; (40)

we can write the above equation as follows:

x(t) = x(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
A1(ς, x, y, z, u)ςρ−1(tρ − ςρ)ϕ−1dς. (41)

In order to simplify, we write A1(ς, x(ς)) instead of A1(ς, x, y, z, u). The interval
[0, T] is divided into N subintervals {[tr, tr+1], r = 0, 1, 2, . . . , N − 1} with the mesh points
as follows: {

t0 = 0,
tn+1 = (tρ

n + h)1/ρ, n = 0, 1, . . . , N − 1,
(42)

Here, h = Tρ

N . The approximate solution xn+1 ≈ x(tn+1) of Equation (41) can be
calculated as follows:

x(tn+1) = x(0) +
ρ1−ϕ

Γ(ϕ)

∫ tn+1

0
A1(ς, x(ς))ςρ−1(tρ

n+1 − ςρ)ϕ−1dς. (43)
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Let k = ςρ; therefore, the above equation becomes:

x(tn+1) = x(0) +
ρ−ϕ

Γ(ϕ)

∫ tρ
n+1

0
A1(k

1
ρ , x(k

1
ρ ))(tρ

n+1 − k)ϕ−1dk. (44)

The integral can now be discretized as follows:

x(tn+1) = x(0) +
ρ−ϕ

Γ(ϕ)

n

∑
r=0

∫ tρ
r+1

tρ
r

A1(k
1
ρ , x(k

1
ρ ))(tρ

n+1 − k)ϕ−1dk. (45)

Using the trapezoidal rule, the right-hand side of (45) is evaluated relative to the

weight function (tρ
n+1 − k)ϕ−1. We can replace A1(k

1
ρ , x(k

1
ρ )) with its piecewise linear

interpolant by choosing nodes at tρ
r (r = 0, 1, 2, . . . , n + 1). Then, we have:

∫ tρ
r+1

tρ
r

A1(k
1
ρ , x(k

1
ρ ))(tρ

n+1 − k)ϕ−1dk =
hϕ−1

ϕΓ(ϕ + 1)
[
((n− r)ϕ+1 − (n− r− ϕ)(n− r + 1)ϕ)

× A1(tr, x(tr)) + (n− r + 1)ϕ− (n− r + 1 + ϕ)(n− r)ϕ

× A1(tr+1, x(tr+1))].

(46)

The corrector expression for x(tn+1), n = 0, 1, 2, . . . , N − 1 is as follows if the above
term is substituted into (45):

x(tn+1) = x(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

∆r,n+1A1(tr, x(tr)) +
ρ−ϕhϕ

Γ(ϕ + 2)
A1(tn+1, x(tn+1)), (47)

where

∆r,n+1 =

{
nϕ+1 − (n− ϕ)(n + 1)ϕ, if r = 0,
(n− r + 2)(ϕ+1) + (n− r)(ϕ+1) − 2(n− r + 1)(ϕ+1), if 1 ≤ r ≤ n.

(48)

Using the Adams–Bashforth method, we determine the predictor value xp(tn+1) for

integral (44). We replace A1(k
1
ρ , x(k

1
ρ )) with A1(tr, x(tr)) at each integral in Equation (45)

to obtain the following:

xp(tn+1) = x(0) +
ρ−ϕ

Γ(ϕ)

n

∑
r=0

∫ tρ
r+1

tρ
r

A1(tr, x(tr))(t
ρ
n+1 − k)ϕ−1dk. (49)

Thus, we can conclude that:

xp(tn+1) = x(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

[(n + 1− r)ϕ − (n− r)ϕ]A1(tr, x(tr)). (50)

We now approximate x(tn+1) ≈ xn+1 to develop the P-C algorithm by replacing
xp(tn+1) with x(tn+1) in Equation (47), as follows:

xn+1 = x(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

∆r,n+1A1(tr, xr) +
ρ−ϕhϕ

Γ(ϕ + 2)
A1(tn+1, xp

n+1). (51)

We developed a P-C scheme specified in (50) and (51). In this case, the P-C algorithm
for the whole model can be written as follows:
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xn+1 = x(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

∆r,n+1A1(tr, xr) +
ρ−ϕhϕ

Γ(ϕ + 2)
A1(tn+1, xp

n+1),

yn+1 = y(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

∆r,n+1A2(tr, yr) +
ρ−ϕhϕ

Γ(ϕ + 2)
A2(tn+1, yp

n+1),

zn+1 = z(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

∆r,n+1A3(tr, zr) +
ρ−ϕhϕ

Γ(ϕ + 2)
A3(tn+1, zp

n+1),

un+1 = u(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

∆r,n+1A4(tr, ur) +
ρ−ϕhϕ

Γ(ϕ + 2)
A4(tn+1, up

n+1);

(52)

here, h = Tρ

N and xp
n+1, yp

n+1, zp
n+1, and up

n+1 are defined as follows:

xp(tn+1) = x(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

[(n + 1− r)ϕ − (n− r)ϕ]A1(tr, xr),

yp(tn+1) = y(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

[(n + 1− r)ϕ − (n− r)ϕ]A2(tr, yr),

zp(tn+1) = z(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

[(n + 1− r)ϕ − (n− r)ϕ]A3(tr, zr),

up(tn+1) = u(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

[(n + 1− r)ϕ − (n− r)ϕ]A4(tr, ur),

(53)

where A1,A2 and A3 are defined as follows:

A1(t, x) = rx(t)
(

1− x(t)
H

)
− a1x(t)y(t),

A2(t, y) = a1e1x(t)y(t)− a2y(t)z(t)− d1y(t), (54)

A3(t, z) = a2e2y(t)z(t) + a3e3z(t)u(t) + cu(t)− d2z(t),

A4(t, u) = bz(t)− cu(t)− a3z(t)u(t)− d3u(t).

Remark 1. The comparison of our adaptive P-C formula with that of [12], based on the product
integration methods described in [30], shows that the error should behave in this way:

max
r=0,1,..N

|x(tr)− xr| = O
((

h
ρ

)p)
. (55)

where p = min{2, 1 + ϕ}.

Theorem 3. (P-C stability) Suppose A1(t, x(t)) fulfills the Lipschitz condition and Se(e =
1, 2, 3, . . . , i + 1) is a solution of Systems (53) and (54). Consequently, the P-C numerical al-
gorithm is conditionally stable.

Proof of Theorem 3. Consider x̂0, x̂e(e = 0, 1, 2, . . . , i + 1), and x̂p
i+1(i = 0, 1, 2, . . . , N − 1)

to be perturbations of x0, xe and xp
i+1. Equations (52) and (53) become

x̂p
i+1 = x̂(0) +

ρ−ϕhϕ

Γ(ϕ + 1)

i

∑
e=0

Θe,i+1[A1(te, xe + x̂e)−A1(te, xe)], (56)

where Θe,i+1 = [(i + 1− e)ϕ − (i− e)ϕ]. Therefore,

x̂i+1 = x̂(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

[
A1(ti+1, xp

i+1 + x̂p
i+1)−A1(ti+1, xp

i+1)
]

+
ρ−ϕhϕ

Γ(ϕ + 2)

i

∑
e=0

Πe,i+1[A1(te, xe + x̂e)−A1(te, xe)],
(57)
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and we use the Lipschitz property of A1(t, x(t)), then we can have

|x̂i+1| ≤ T0 +
ρ−ϕhϕψ1

Γ(ϕ + 2)

{∣∣∣x̂p
i+1

∣∣∣+ i

∑
e=1

Πe,i+1|x̂e|
}

. (58)

where T0 = max0≤i≤N

{
|x̂0|+

ρ−ϕhϕψ1Πi,0
Γ(ϕ+2) |x̂0|

}
. The following equation can also be eas-

ily derived: ∣∣∣x̂p
i+1

∣∣∣ ≤ S0 +
ρ−ϕhϕψ1

Γ(ϕ + 1)

{
i

∑
e=1

Θe,i+1|x̂e|
}

. (59)

where S0 = max0≤i≤N

{
|x̂0|+

ρ−ϕhϕψ1Θi,0
Γ(ϕ+1) |x̂0|

}
. Now, substituting

∣∣∣x̂p
i+1

∣∣∣ from Equation (59)
into (58), we obtain:

|x̂i+1| ≤ R0 +
ρ−ϕhϕψ1

Γ(ϕ + 2)

{
ρ−ϕhϕψ1

Γ(ϕ + 1)

i

∑
e=1

Θe,i+1|x̂e|+
i

∑
e=1

Πe,i+1|x̂e|
}

,

≤ R0 +
ρ−ϕhϕψ1

Γ(ϕ + 2)

i

∑
e=1

{
ρ−ϕhϕψ1

Γ(ϕ + 1)
Θe,i+1 + Πe,i+1

}
|x̂e|,

≤ R0 +
ρ−ϕhϕψ1Dϕ,2

Γ(ϕ + 2)

i

∑
e=1
{i + 1− e}ϕ−1|x̂e|.

(60)

Here, R0 = max
{
T0 +

ρ−ϕhϕψ1Πi+1,i+1
Γ(ϕ+2) S0

}
and a constant Dϕ,2 > 0 is determined by ϕ.

It follows that |x̂i+1| ≤ DR0.

7. Numerical Results and Discussion

For the numerical simulation of the food web mathematical model, we propose a
predictor–corrector (P-C) algorithm involving a generalized Caputo operator. Our nu-
merical solution for the food web generalized Caputo derivative model illustrates the
applicability and efficiency of the proposed algorithm. MATLAB was used to perform the
simulations. The proposed algorithms should be beneficial for the simulation of non-integer
models. The dynamical behaviours of the food web model were examined in our analysis.
We considered the following parameter values and initial values in Table 1.

Table 1. Representation and numerical values of the assumed parameters.

Parameters Numerical Values Description References

r 1 Intrinsic growth rate [34]
H 100 Carrying capacity [34]
a1 1.0 Maximum attack rate [34]
a2 0.25 Maximum attack rate [34]
a3 0.1 Maximum attack rate [34]
d1 0.01 Natural mortality rate [34]
d2 0.2 Natural mortality rate [34]
d3 0.01 Natural mortality rate [34]
c 0.15 Growth rate [34]
b 0.15 Growth rate [34]
e1 0.65 Conversion rate [34]
e2 0.5 Conversion rate [34]
e3 0.5 Conversion rate [34]

Generalized Caputo-type fractional derivatives also possess the same properties as
Caputo-type derivatives. In order to solve the fractional IVP efficiently, consistently, and
accurately, the predictor–corrector (PC) scheme is one of the best available. We solved the
projected model using the modified PC scheme in the current study. According to the
generalized Caputo algorithm, adaptive PC schemes use a nonuniform grid, which differs
from the derivative Caputo PC algorithm. In fractional calculus applications, the generalized
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fractional integral operator is a valuable tool for controlling and building mathematical
models due to the effect of its parameters ϕ and ρ. This new generalized Caputo fractional
derivative has extra features over the other fractional derivatives such as Caputo, Caputo–
Fabrizio, and Atangana–Baleanu. There is another parameter ρ that is very helpful to
graphical simulations when it comes to true data, in addition to the fractional-order parameter
ϕ. Changing the parameter value ρ allows us to see more kinds of graphs.

Figures 1 and 2 illustrate the three-dimensional and two-dimensional dynamic phase
portrait of the fractional food web system with the generalized Caputo derivative, respec-
tively, when ϕ = 1 and ρ = 1.1. Figure 3 exhibits the state variables x(t), y(t) z(t), and u(t) of
the proposed model when ϕ = 1 and ρ = 1.1. It can be seen that the value of ρ strongly
influences the characteristics of the fractional derivative, and this provides a different way
of approaching control applications. Figures 4 and 5 illustrate the three-dimensional and
two-dimensional dynamic phase portrait of the fractional food web system with the gener-
alized Caputo derivative, respectively, when ϕ = 1 and ρ = 1.1. Figure 6 exhibits the state
variables x(t), y(t) z(t), and u(t) of the proposed model when ϕ = 1 and ρ = 1.2. At fixed
ρ, depending on the fractional-order value, our fractional food web system displays the
complexity of the chaotic phase portrait. Hence, Figures 7–9 are the graphical illustrations
of the proposed system at different fractional-order ϕ = 1, 0.95, 0.90 and fixed ρ. Further,
we took the different values of ρ and ϕ to be fixed, then the fractional food web system
exhibits different phase portraits, which are shown in Figures 10–12. During the simulation
of models with two fractional parameters, we observed chaos, and we noticed that the
dynamics became more complex.
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Figure 1. Three-dimensional phase plot for food web mathematical System (13) with generalized
Caputo fractional operator when ϕ = 1 and ρ = 1.1.
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Figure 2. Two-dimensional phase plot for food web mathematical System (13) with generalized
Caputo fractional operator when ϕ = 1 and ρ = 1.1.

0 50 100 150 200 250 300 350 400 450 500

time

0

1

2

3

4

5

6

P
re
y
p
o
p
u
la
ti
o
n
x
(t
)

(a)

0 50 100 150 200 250 300 350 400 450 500

time

0.4

0.6

0.8

1

1.2

1.4

1.6

In
te
rm

e
d
ia
te

p
re
d
a
to
r
y
(t
)

(b)

Figure 3. Cont.



Mathematics 2022, 10, 1702 15 of 23

0 50 100 150 200 250 300 350 400 450 500

time

0

2

4

6

8

10

12

14

M
a
tu
re

p
re
d
a
to
r
z
(t
)

(c)

0 50 100 150 200 250 300 350 400 450 500

time

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Im
m
a
tu
re

p
re
d
a
to
r
u
(t
)

(d)

Figure 3. State variables x(t), y(t) z(t), and u(t) plots of food web mathematical System (13) with
generalized Caputo fractional operator when ϕ = 1 and ρ = 1.1.
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Figure 4. Three-dimensional chaotic phase plot for food web mathematical System (13) with general-
ized Caputo fractional operator when ϕ = 1 and ρ = 1.2.
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Figure 5. Two-dimensional chaotic phase plot for food web mathematical System (13) with general-
ized Caputo fractional operator when ϕ = 1 and ρ = 1.2.
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Figure 6. State variables x(t), y(t) z(t), and u(t) plots of food web mathematical System (13) with
generalized Caputo fractional operator when ϕ = 1 and ρ = 1.2.
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Figure 7. Three-dimensional chaotic phase plot for food web mathematical System (13) with general-
ized Caputo fractional operator when ρ = 0.80.
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Figure 8. Two-dimensional chaotic phase plot for food web mathematical System (13) with general-
ized Caputo fractional operator when ρ = 0.80.
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Figure 9. Time series graphical representations for food web mathematical System (13) with general-
ized Caputo fractional operator when ρ = 0.80.
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Figure 10. Three-dimensional chaotic phase plot for food web mathematical System (13) with
generalized Caputo fractional operator when ϕ = 0.90.
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Figure 11. Two-dimensional chaotic phase plot for food web mathematical System (13) with general-
ized Caputo fractional operator when ϕ = 0.90.
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Figure 12. Time series graphical representations for food web mathematical System (13) with general-
ized Caputo fractional operator when ϕ = 0.90.

8. Conclusions

Here, we examined a three-species food web model. According to this model, top
predators are stage-structured, with a mature predator having a cannibalism trait. In the
absence of the predator, the prey grows logistically at the first level. Food consumption
at different levels of the food web is described by Lotka–Volterra functional responses.
The proposed mathematical model of the food web was examined using the generalized
Caputo fractional derivative. Using a fixed-point hypothesis, this study presented an
investigation of the existence and uniqueness of the fractional food web system. The
algorithm described in this study is based on a numerical technique called ‘predictor–
corrector’, which allows the approximate solution of the fractional food web model to be
found. We demonstrated the stability of this numerical method. The fractional food web
model was geometrically presented under the generalized Caputo operator for different
choices of ϕ and ρ. The new dynamical behaviour and phase portrait were demonstrated
for various fractional orders (ϕ) and the value of ρ. This graphical illustration showed
how the order of derivatives and the system parameters greatly affect the system. The new
generalized fractional derivative will be used in future efforts to model other biological
systems with memory or with hereditary properties, as well as to identify other important
properties of this new generalized derivative.
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