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Abstract: Generally, it has been confirmed that applying multiple frequencies guarantees a successful
imaging result for various non-iterative imaging algorithms in inverse scattering problems. However,
the application of multiple frequencies does not yield good results for direct sampling methods
(DSMs), which has been confirmed through simulation but not theoretically. This study proves this
premise theoretically by showing that the indicator function with multi-frequency can be expressed
by the Bessel and Struve functions and the propagation direction of the incident field. This is based
on the fact that the indicator function with single frequency can be expressed by the exponential and
Bessel function of order zero of the first kind. Various simulation outcomes are shown to support the
theoretical result.

Keywords: direct sampling method; inverse scattering problem; multi-frequency imaging; perfectly
conducting cracks; simulation result
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1. Introduction

The direct sampling method (DSM) is a sampling-type, non-iterative technique for
retrieving unknown scatterers’ location and/or shape. It was first introduced for 2D
inverse medium scattering for fixed plane incident waves [1], and it was subsequently
applied and extended to various inverse problems, including identifying 2D and 3D elec-
tromagnetic inhomogeneities [2–5], electrical impedance tomography [6], diffusive optical
tomography [7], inhomogeneity detection in mono-static [8] measurement configurations,
source detection in stratified ocean waveguide [9,10], localizing short, linear, and perfectly
conducting cracks [11], retrieving magnetic inhomogeneity locations in transverse electric
(TE) polarization [12], anomaly detection in microwave imaging [13], phaseless inverse
source scattering [14], and real-world microwave imaging [15]. We reference various
studies [16,17] related to the direct sampling method.

Generally, DSM is a fast scheme because it does not require additional operations (e.g.,
singular-value decomposition, generating additional operators, solving ill-posed integral
equations or adjoint problems, etc.), and it is robust with respect to random noise. Although
DSM requires only a few (one or two) incident waves to identifying unknown target
locations, image quality is generally poorer than other techniques that use several incident
waves, such as Kirchhoff/subspace migrations, MUltiple SIgnal Classification (MUSIC),
and the linear sampling method. Therefore, it is natural to consider improvements for
traditional DSM.

Applying multiple frequencies is a promising method to help obtain good results for
many non-iterative techniques in various inverse scattering problems. Previous studies
regarding multi-frequency imaging have investigated many non-iterative methods and
successfully applied the approach to subspace migration [18,19], the linear sampling
method [20,21], topological derivatives [22,23], MUSIC [24,25], etc. However, it is difficult
to obtain good results from applying traditional multi-frequency methods for DSM and
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the orthogonality sampling method (OSM) with a fixed single incident field. Almost
every small target can be identified using single-frequency DSM or OSM, but only few
specific targets can be recognized using multi-frequency DSM or OSM. Many numerical
simulations have confirmed that detection is significantly dependent on the propagation
direction [1,26,27], but the underlying theoretical basis for this non-improvement for
multi-frequency compared with single-frequency DSM or OSM has not been confirmed.
Therefore, this paper establishes a mathematical theory to explain multi-frequency DSM
non-improvement.

This study analyzed the DSM multi-frequency indicator function structure with a
fixed incident field to identify a set of short, well-separated, linear, and perfectly conducted
cracks for the full-aperture inverse scattering problem. We first established a relationship
with combined Bessel and Struve functions of order zero and one as well as the plane-wave
incident field propagation direction, since the single-frequency DSM indicator function
can be expressed by the exponential and Bessel function of order zero of the first kind.
Based on the analyzed structure, we examine certain multi-frequency DSM properties and
why only few targets can be recognized and recognition is significantly dependent on the
incident field direction.

The remainder of this paper is organized as follows. Section 2 briefly introduces 2D
direct scattering in the presence of small cracks and the DSM single and multi-frequency
indicator function. Section 3 presents qualitative analysis regarding the DSM multi-
frequency indicator function structure and discusses intrinsic multi-frequency DSM prop-
erties. Section 4 presents numerical simulation results to support the theoretical result.
Section 5 summarizes and concludes the paper.

Finally, let us mention that in connection with the current contribution about the full-
aperture inverse scattering problem, we refer the reader to [28–30] as remarkable references
indicating that the application of multiple frequencies is essential for obtaining good results
in the limited-aperture inverse scattering problem.

2. Two-Dimensional Direct Scattering Problem and the Indicator Function of OSM

In this section, we briefly survey the two-dimensional direct scattering problem in the
existence of perfectly conducting cracks. Throughout this paper, we denote Γm as a linear
crack with a small length 2`m centered at rm, m = 1, 2, · · · , M, and they are well-separated
from each other. For that sake, we let Γ be the collection of all Γm and assume the length of
all cracks to be the same i.e., `m = ` for all m.

Let uinc(x, d) = eikd·x be the given incident plane-wave with a fixed propagation
direction d ∈ S1, where S1 denotes the two-dimensional unit circle centered at the origin,
and utot(x, d) denotes the total field that satisfies the following Helmholtz equation

4utot(x, d) + k2utot(x, d) = 0 in R2\Γ (1)

with Dirichlet boundary condition

utot(x, d) = 0 on Γ. (2)

here, k = 2π/λ denotes the background wavenumber that satisfies 4k|rm − rm′ | � 1 for
m 6= m′, while λ is the given wavelength. Since each Γm is a small crack, we assume that `
is small enough such that 2`� λ.

Let uscat(x, d) = utot(x, d) − uinc(x, d) be the scattered field corresponding to the
incident field uinc(x, d) that satisfies the Sommerfeld radiation condition. The far-field
pattern u∞(θ, d) of scattered field uscat(x, d) is given by the following relation

uscat(x, d) =
eik|x|√
|x|

{
u∞(θ, d) +O

(
1
|x|

)}
, |x| −→ +∞
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uniformly in all the directions θ = x/|x|. Note that u∞(θ, d) can be represented as the
single-layer potential with unknown density function ϕ(r, d):

u∞(θ, d) = − 1 + i
4
√

πk

M

∑
m=1

∫
Γm

e−ikθ·r ϕm(r, d)dr. (3)

Based on [31], the densify function ϕm is assumed to be of the form

ϕm(r, d) =
ϕ̃m(r, d)√

|r− em,1||r− em,2|
, r ∈ Γ\

M⋃
m=1
{em,1, em,2},

where ϕ̃m ∈ C(Γm), em,1 and em,2 denote the end-points of Γm, m = 1, 2, · · · , M.
Now, let us denote Vmeas(k) as the arrangement of the far-field pattern data with

several directions θn, n = 1, 2, · · · , N at given wavenumber k such that

Vmeas(k) =
(

u∞(θ1, d), u∞(θ2, d), · · · , u∞(θN , d)
)

,

where the observation directions θn are distributed uniformly on S1 such that

θn =

(
cos

2nπ

N
, sin

2nπ

N

)
.

Since the complete form of the density function ϕ of (3) is unknown, it is hard to di-
rectly design the indicator function of the DSM. Instead, we apply the asymptotic expansion
formula, which is derived in [32].

Lemma 1 (Asymptotic Expansion Formula). Let utot(x, d) satisfy (1) and (2). Then, for
0 < 2`� λ, the following asymptotic expansion formula holds

u∞(θ, d) = − (1 + i)
√

π√
4k ln(`/2)

M

∑
m=1

eik(d−θ)·rm +O
(

1
| ln `|2

)
. (4)

In view of expansion (4), we can examine the structure of Vmeas(k) as

Vmeas(k) ≈ −
(1 + i)

√
π√

4k ln(`/2)

M

∑
m=1

eikd·rm

(
e−ikθ1·rm , e−ikθ2·rm , · · · , e−ikθN ·rm

)
.

Thus, to extract rm from Vmeas(k), it is natural to examine the orthonormality between
Vmeas(k) and the following test vector

Vtest(x, k) =
(

e−ikθ1·x, e−ikθ2·x, · · · , e−ikθN ·x
)

.

With this, the indicator function FDSM(x, k) at k can be introduced as follows

FDSM(x, k) =
∣∣∣∣ Vmeas(k)
|Vmeas(k)|

· Vtest(x, k)
|Vtest(x, k)|

∣∣∣∣ = |〈u∞(θn, d), e−ikθn ·x〉|
‖u∞(θn, d)‖L2(S1)‖e−ikθn ·x‖L2(S1)

,

where

〈u∞(θn, d), e−ikθn ·x〉 =
N

∑
n=1

u∞(θn, d)e−ikθn ·x ≈
∫
S1

u∞(θ, d)e−ikθ·xdθ
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and

‖u∞(θn, d)‖L2(S1) =
(
〈u∞(θn, d), e−ikθn ·x〉

)1/2
.

Then, FDSM(x, k) ≈ 1 when x = rm whereas 0 ≤ FDSM(x, k) < 1 when x 6= rm for
m = 1, 2, · · · , M. We refer to [3] for a detailed description of the indicator function.

Now, we introduce the following general multi-frequency indicator function (see [18]
for instance): for several wavenumbers k f , f = 1, 2, · · · , F,

FMDSM(x, k1, kF, F) =
1
F

∣∣∣∣∣ F

∑
f=1

Vmeas(k f )

|Vmeas(k f )|
·

Vtest(x, k f )

|Vtest(x, k f )|

∣∣∣∣∣
=

1
F

∣∣∣∣∣ F

∑
f=1

〈u∞(θn, d), e−ik f θn ·x〉
‖u∞(θn, d)‖L2(S1)‖e

−ik f θn ·x‖L2(S1)

∣∣∣∣∣.
(5)

here, the wavenumbers k f are assumed to be equidistributed in the interval [k1, kF]. No-
tice that in contrast to the general multi-frequency imaging, the result obtained by the
FMDSM(x, k1, kF, F) is worse than the one via the FDSM(x, k). This fact has been examined
through the simulation results (see ([27], Section 3.2) for a related discussion), but the
theoretical reason has not been satisfactorily established.

Remark 1 (Different type of indicator functions). Since, in some times, the indicator function
FMDSM(x, k1, kF, F) does not guarantee good results, various multi-frequency indicator functions
have been proposed. For example, in ([27], Section 3.2),

FMF(x, k1, kF, F) =
F

∑
f=1

∣∣∣Vmeas(k) ·Vtest(x, k)
∣∣∣p =

F

∑
f=1

∣∣∣〈u∞(θn, d), e−ikθn ·x〉
∣∣∣p (6)

for some integer p. As already mentioned in [27], it is different from (5) to use the modulus | · |
before the summation of the contribution of the different frequencies. Following ([11], Section 4.2),
another indicator function can be introduced

FWMF(x, k1, kF, F) =
1
F

∣∣∣∣∣ F

∑
f=1

eik f d·x
(

Vmeas(k f )

|Vmeas(k f )|
·

Vtest(x, k f )

|Vtest(x, k f )|

)∣∣∣∣∣
=

1
F

∣∣∣∣∣ F

∑
f=1

eik f d·x〈u∞(θn, d), e−ik f θn ·x〉
‖u∞(θn, d)‖L2(S1)‖e

−ik f θn ·x‖L2(S1)

∣∣∣∣∣,
which is different from (5) to use the weight by the incident field eik f d·x. It is worth emphasizing
that the location of cracks can be identified successfully through the maps of FMF(x, k1, kF, F) and
FWMF(x, k1, kF, F). We also refer to [16] for the application of an appropriate weight function at
several frequencies.

3. Theoretical Reason behind the Non-Improvement of the Multi-Frequency Imaging

In this section, we establish the mathematical theory for explaining the diminishment
of the multi-frequency imaging of DSM. Before starting, we recall the following result
derived in [11].

Lemma 2. Assume that the total number of measurement data N is sufficiently large. Then,

FDSM(x, k) ≈ |Φ(x, k)|
max
x∈Ω
|Φ(x, k)| ,
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where

Φ(x, k) =
M

∑
m=1

eikd·rm J0(k|x− rm|).

here, Jn denotes the Bessel function of order n of the first kind.

Now, we introduce the main result as follows:

Theorem 1. Assume that the total number of measurement data N and applied frequencies F are
sufficiently large. Then, FMDSM(x, k1, kF, F) can be represented as follows:

FMDSM(x, k1, kF, F) ≈ |Ψ(x)|
max
x∈Ω
|Ψ(x)| , (7)

where

Ψ(x) = ∑
m∈M

(
Θ(x, rm, kF)−Θ(x, rm, k1)

)
+ ∑

m∈M?

(
Λ1(x, rm) + Λ2(x, rm)

)
(8)

here,M = {m : d · rm = 0} andM? = {m : d · rm 6= 0}. Let Sn denotes the Struve function of
order n; then,

Θ(x, rm, k) = kJ0(k|x− rm|)

+
kπ

2

(
J1(k|x− rm|)S0(k|x− rm|)− J0(k|x− rm|)S1(k|x− rm|)

)
(9)

and

Λ1(x, rm) =
1

i(d · rm)

(
eikFd·rm J0(kF|x− rm|)− eik1d·rm J0(k1|x− rm|)

)
,

Λ2(x, rm) =
|x− rm|
i(d · rm)

∫ kF

k1

eikd·rm J1(k|x− rm|)dk.
(10)

Proof. Based on the Lemma 2, we can split

〈u∞(θn, d), e−ik f d·x〉
‖u∞(θn, d)‖L2(S1)‖e

−ik f d·x‖L2(S1)

=
M

∑
m=1

eikd·rm J0(k|x− rm|)

= ∑
m∈M

J0(k|x− rm|) + ∑
m∈M?

eikd·rm J0(k|x− rm|).

Thus,

F

∑
f=1

〈u∞(θn, d), e−ik f d·x〉
‖u∞(θn, d)‖L2(S1)‖e

−ik f d·x‖L2(S1)

≈
∫ kF

k1

(
∑

m∈M
J0(k|x− rm|) + ∑

m∈M?

eikd·rm J0(k|x− rm|)
)

dk.

Since the following relation holds (see ([33], Formula 11.1.7)),∫ x

0
J0(t)dt = xJ0(x) +

xπ

2

(
J1(x)S0(x)− J0(x)S1(x)

)
,

we can obtain∫ kF

k1
∑

m∈M
J0(k|x− rm|)dk = ∑

m∈M

(
Θ(x, rm, kF)−Θ(x, rm, k1)

)
, (11)
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where the term Θ(x, rm, k) is given in (9).
Since d

dx J0(x) = −J1(x), by performing an integration by parts, we have

∫ kF

k1
∑

m∈M?

eikd·rm J0(k|x− rm|)dk = ∑
m∈M?

(
Λ1(x, rm) + Λ2(x, rm)

)
, (12)

where the terms Λ1(x, rm) and Λ2(x, rm) are given in (10). By combining (11) and (12), we
can obtain the structure (7).

Remark 2 (Limitation of multi-frequency DSM). Assume that d · rm 6= 0 for all m =
1, 2, · · · , M. Then, since J0(0) = 1, J1(x) ≈ x/2 when x → 0, andM = ∅ from (8),

Ψ(x) =
M

∑
m=1

(
Λ1(x, rm) + Λ2(x, rm)

)
.

Thus, we can examine that

lim
x→rm

Λ2(x, rm) = lim
x→rm

|x− rm|
i(d · rm)

∫ kF

k1

eikd·rm J1(k|x− rm|)dk.

≈ lim
x→rm

|x− rm|2
2i(d · rm)

∫ kF

k1

keikd·rm dk = 0

and hence

lim
x→rm

Ψ(x) ≈ 1
i(d · rm)

(
eikFd·rm − eik1d·rm

)
implies FMDSM(rm, F) ∝

1
|d · rm|

.

Therefore, FMDSM(x, k1, kF, F) will reach its maximum value at x = rm′ if |d · rm′ | < |d · rm|
for m = 1, 2, · · · , M, m 6= m′. That means only the location of rm′ will be identified clearly through
the map of FMDSM(x, k1, kF, F) since FMDSM(rm′ , F) > FMDSM(rm, F), m = 1, 2, · · · , M, and
m 6= m′. We refer to Figures 1 and 2 for a detailed description. This is the theoretical reason why
only a certain location rm′ is detected in the multi-frequency DSM in contrast with the single-
frequency DSM. Moreover, if there exists a single inhomogeneity, its location can be identified
through the map of FMDSM(x, k1, kF, F) for any d.

d · r1

Γ1

r1

d · r2

Γ2

r2
d

O
(a) r1 can be identified

Γ1

r1

d · r1

Γ2

r2

d · r2

d

O

(b) r2 can be identified

Figure 1. (Remark 2) Illustration of identifiable locations through the map of FMDSM(x, k1, kF, F).

Remark 3 (Identifiable locations). Notice that if two locations rm′ and rm′′ satisfy |d · rm′ | ≈
|d · rm′′ |, their locations can be identified simultaneously via the map of FMDSM(x, k1, kF, F); refer
to Figure 2a. Moreover, if a crack Γm′ is located at the origin (d · rm′ = 0 for any d), then since
J0(0) = 1, J1(0) = 0, S1(0) = 0, and S2(0) = 0,

lim
x→rm′

(
Θ(x, rm, kF)−Θ(x, rm, k1)

)
= kF − k1.
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This means that FMDSM(rm′ , F) ≈ 1 for m 6= m′; thus, the location rm′ can always be identified
through the map of FMDSM(x, k1, kF, F) for any d, as shown in Figure 2b.

d · r1

Γ1

r1
d · r2

Γ2

r2
d

O
(a) both r1 and r2 can be identified

d · r1 = 0d · r2

Γ2

r2

d

Γ1

O

(b) r1 can be identified

Figure 2. (Remark 3) Illustration of identifiable locations through the map of FMDSM(x, k1, kF, F).

Remark 4. In order to identify the location rm through the map of FMDSM(x, k1, kF, F), one must
select an incident direction that satisfies d · rm = 0. However, the identification of every location of
cracks with a single incident direction will be difficult, since we have no a priori information of rm.
This is the theoretical reason why multiple incident fields must be applied to obtain good results;
refer to [1,11,27].

Remark 5. According to [17], the indicator function of the orthogonality sampling method (OSM)
is equivalent to the that for DSM. Therefore, it can be said that based on the aforementioned
descriptions in Remarks 2–4, multi-frequency indicator function of OSM (6) did not yield a
reasonable reconstruction examined by the numerical simulation results of ([27], Section 3.3).

4. Simulation Results and Discussion

In this section, we exhibit numerical simulation results to support the theoretical
result. For this, we applied k = 2π

0.4 for single-frequency imaging and F = 20 different
wavenumbers with k1 = 2π

0.6 and kF = 2π
0.3 for multi-frequency imaging. The imaging region

Ω was set to Ω = [−1, 1]× [−1, 1], and the values of FDSM(x, 2π
0.4 ) and FMDSM(x, 2π

0.6 , 2π
0.3 , 20)

were evaluated for each x ∈ Ω. The far-field pattern data u∞(θn, d), n = 1, 2, · · · , N = 30,
was generated by solving a Fredholm integral equation of the second kind along the cracks;
refer to ([34], Chapter 4). After the generation of the far-field pattern data, a 20 dB white
Gaussian random noise was added. Throughout this section, the length of all cracks is
chosen as ` = 0.05.

Example 1. Figure 3 shows maps of FDSM(x, 2π
0.4 ) and FMDSM(x, 2π

0.6 , 2π
0.3 , 20) for d = (1, 0)

in the presence of three small cracks located at r1 = (0.60, 0.20), r2 = (−0.20,−0.60), and
r3 = (−0.40,−0.35). Notice that peaks of large magnitude appeared at the location of all cracks
Γm in the map of FDSM(x, 2π

0.4 ), so it is possible to identify the location of cracks. However, since
|d · r1| = 0.60, |d · r2| = 0.20, and |d · r3| = 0.40, only the location r2 can be identified through
the map of FMDSM(x, 2π

0.6 , 2π
0.3 , 20).

Example 2. Figure 4 shows maps of FDSM(x, 2π
0.4 ) and FMDSM(x, 2π

0.6 , 2π
0.3 , 20) with the same

simulation configuration of Example 1 except the lengths of the cracks are equal to 2` = 0.1. By
regarding the result, we can observe similar phenomenon so if the length of the cracks is the same, the
identification via multi-frequency DSM is dependent on the propagation direction and independent
of the crack length.

Example 3. Figure 5 shows maps of FMDSM(x, k1, kF, 20) for various k1 and kF with the same
simulation configuration of Example 1. It is interesting to examine that opposite to the simulation
result in Example 1, the location of r3 can be identified clearly when k1 = 2π

0.8 and kF = 2π
0.5 . Notice

that a peak of small magnitude appeared at the location r1 when k1 = 2π
0.8 and kF = 2π

0.5 ; however,
due to the appearance of several artifacts in the map, it will be hard to conclude the existence of any
cracks. Throughout the map of FMDSM(x, 2π

0.4 , 2π
0.2 , 20), it is very hard to identify all cracks due to
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the appearance of artifacts with large magnitude. Therefore, a theoretical exploration of the selection
of the range of wavenumbers will be a notable subject.
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Figure 3. (Example 1) Simulation results with d = (1, 0). The red-colored marks × denote the
locations of cracks.
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Figure 4. (Example 2) Simulation results with d = (1, 0). The red-colored marks × denote the
locations of cracks.
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Figure 5. (Example 3) Simulation results with d = (1, 0). The red-colored marks × denote the
locations of cracks.
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Example 4. Figure 6 shows maps of FDSM(x, 2π
0.4 ) and FMDSM(x, 2π

0.6 , 2π
0.3 , 20) with the same

configuration as in Example 1, except that the propagation direction d = (0, 1). Similar to
Example 1, it is possible to identify the location of cracks through the map of FDSM(x, 2π

0.4 ). In
contrast, only the location r1 can be identified through the map of FMDSM(x, 2π

0.6 , 2π
0.3 , 20) because

|d · r1| = 0.20 < |d · r2| = 0.60 and |d · r3| = 0.35.
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Figure 6. (Example 4) Simulation results with d = (0, 1). The red-colored marks × denote the
locations of cracks.

Example 5. Figure 7 shows maps of FDSM(x, 2π
0.4 ) and FMDSM(x, 2π

0.6 , 2π
0.3 , 20) with the same

configuration as in Example 1, except that the location r1 = (0, 0). Since |d · r1| = 0, the location
of r1 can be identified through the map of FMDSM(x, 2π

0.6 , 2π
0.3 , 20). Moreover, since |d · r2| = 0.20 <

|d · r3| = 0.40, the location of r2 can also be recognized.
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Figure 7. (Example 5) Simulation results with d = (1, 0). The red-colored marks × denote the
locations of cracks.

Example 6. Figure 8 shows maps of FDSM(x, 2π
0.4 ) and FMDSM(x, 2π

0.6 , 2π
0.3 , 20) with the same

configuration as in Example 5, except that the propagation direction is now d = (0, 1). Similarly
with Example 5, the location of r1 can be identified through the map of FMDSM(x, 2π

0.6 , 2π
0.3 , 20)

because |d · r1| = 0. In contrast to Example 5, although |d · r2| = 0.60 > |d · r3| = 0.35, it is
difficult to recognize the location of r3 due to the appearance of several artifacts in the neighborhood
of r3. Notice that although several artifacts are included, three location of cracks can be identified
through the map of FDSM(x, 2π

0.4 ) for any selection of d.
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Figure 8. (Example 6) Simulation results with d = (0, 1). The red-colored marks × denote the
locations of cracks.

Example 7. Figure 9 shows maps of FDSM(x, 2π
0.4 ) and FMDSM(x, 2π

0.6 , 2π
0.3 , 20) for d = (0, 1) in

the presence of three small cracks located at r1 = (0, 0), r2 = (−0.20,−0.60), and r3 = (0.60, 0).
Since |d · r1| = 0 and |d · r3| = 0, the location of both r1 and r3 can be identified through the
map of FMDSM(x, 2π

0.6 , 2π
0.3 , 20). However, since |d · r2| = 0.60 � |d · r1|, |d · r3|, it is very hard

to recognize the location of r2. Similarly with Example 6, since |d · r1| = 0 and |d · r2| = 0.20 <
|d · r3| = 0.60, both r1 and r2 can be identified through the map of FMDSM(x, 2π

0.6 , 2π
0.3 , 20) with

d = (1, 0); refer to the bottom line of Figure 9.

-1 -0.5 0 0.5 1

x-axis

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
-a

x
is

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Map of FDSM(x, 2π
0.4 )

-1 -0.5 0 0.5 1

x-axis

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
-a

x
is

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Map of FMDSM(x, 2π
0.6 , 2π

0.3 , 20)

-1 -0.5 0 0.5 1

x-axis

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
-a

x
is

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Map of FDSM(x, 2π
0.4 )

-1 -0.5 0 0.5 1

x-axis

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
-a

x
is

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Map of FMDSM(x, 2π
0.6 , 2π

0.3 , 20)

Figure 9. (Example 7) Simulation results with d = (0, 1) (top line) and d = (1, 0) (bottom line). The
red-colored marks × denote the location of cracks.
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Example 8. Figure 10 shows maps of FDSM(x, 2π
0.4 ) and FMDSM(x, 2π

0.6 , 2π
0.3 , 20) for d = (0, 1) in

the presence of two small cracks located at r1 = (0.60, 0.20) and r2 = (−0.40, 0.20). Notice that
since |d · r1| = |d · r2| = 0, although the x-axis positions are different, the location of two cracks
can be identified through the map of FMDSM(x, 2π

0.6 , 2π
0.3 , 20). However, if one selects the propagation

direction d = (1, 0), it is very hard to identify r1 through the map of FMDSM(x, 2π
0.6 , 2π

0.3 , 20), but it
is possible through the map of FDSM(x, 2π

0.4 ); refer to the bottom line of Figure 10.
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Figure 10. (Example 8) Simulation results with d = (1, 0). The red-colored marks × denote the
locations of cracks.

5. Conclusions

In this study, we considered multi-frequency DSM for a fast recognition of linear
perfectly conducting cracks with small length from measured far-field pattern data. To
account for the non-improvement of the multi-frequency DSM against the single-frequency
one, the mathematical structure of indicator function of multi-frequency DSM were ana-
lyzed by establishing a relationship between Bessel and Struve functions and the incident
plane-wave.

In this paper, we considered the crack with Dirichlet boundary condition. Application
and analysis to the crack with Neumann boundary condition will be the forthcoming work.
In the limited-aperture inverse scattering problem, similar phenomena can be examined.
Extension to the limited-aperture problem will be the subject of a forthcoming work. Finally,
extending the application and analysis to the 3D inverse scattering problem or real-world
microwave imaging will be an interesting and remarkable research subject.
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