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Abstract: This paper considers the single machine scheduling problem with due window, delivery
time and deteriorating job, whose goal is to minimize the window location, window size, earliness
and tardiness. Common due window and slack due window are considered. The delivery time
depends on the actual processing time of past sequences. The actual processing time of the job is
an increasing function of the start time. Based on the small perturbations technique and adjacent
exchange technique, we obtain the propositions of the problems. For common and slack due window
assignment, we prove that the two objective functions are polynomial time solvable in O(nlogn)
time. We propose the corresponding algorithms to obtain the optimal sequence, window location
and window size.

Keywords: scheduling; due window; deteriorating job; delivery time; earliness; tardiness

MSC: 90B35

1. Introduction

In order to gain the competitive advantage, modern operations management advocates
that companies improve customer service. Operationally, good customer service means
fulfilling orders within a specified time period. The research on due window usually
assumes three situations. First, the jobs that are completed before the start time of the
due window have earliness costs. Second, the jobs that are completed after the end of
the due window have tardiness costs. Third, the jobs that are completed within the due
window do not incur any costs. For cost considerations, we need to take into account the
comprehensive factors, which contain earliness costs, tardiness costs, starting time of the
window and window size.

Based on the research gap found in the literature review, this paper studies scheduling
problems involving both simple linear degradation and past sequence dependent delivery
time under the common and slack due window assignment. To the best of our knowledge,
such articles are rare for the common or slack due window assignment. In this paper, the
single machine scheduling problem with delivery time and deteriorating job is considered.
The actual processing time of job is an increasing function of the start time. The delivery
time depends on the actual processing time of past sequence. The goal is to minimize
the window location, window size, earliness and tardiness. Small perturbation technique
and adjacent switching technique are effective methods to deal with scheduling problems.
Based on the small perturbations technique and adjacent exchange technique, we obtain
the propositions of the method. By the propositions, we propose the polynomial time
solvable algorithms to obtain the optimal sequence, window location and window size.
The complexity of the algorithms is O(nlogn).

2. Literature Review

In the field of production sequencing and scheduling, the scheduling problem with
due window has received a lot of attention. In 1955, Jackson first proposed the concept
of due date [1]. The scheduling problem of the optimal due date was considered by
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Seidmann [2] and Panwalkar [3]. In 2015, Li et al. studied the scheduling problem with
the slack due window, resource allocation and learning effect [4]. In 2015, Yang et al.
studied the scheduling problem with deteriorating jobs, learning effect and due window [5].
In 2016, Yin et al. studied the scheduling problem with resource allocation and slack
due window [6]. In 2017, Wang et al. studied the scheduling problem with the slack
due window and controllable processing times [7]. In 2020, Wang et al. considered the
scheduling problem with due window and position-dependent weights [8]. In 2020, Sun
et al. considered the proportional flow shop scheduling problem with due window and
position-dependent weights [9]. In 2021, Yue et al. studied a scheduling model with due
window and the processing time as a special function [10].

The processing time of deteriorating job is variable. As the jobs are processed, and
the processing times of jobs increase. The concept of deteriorating jobs was proposed
by Gupta [11]. Under the common due window assignment, Yue et al. considered the
scheduling problem with deteriorating jobs [12]. In 2018, Wang et al. studied the unrelated
parallel processors scheduling problem with a maintenance activity and deterioration
effect [13]. In 2019, Sun et al. considered the single machine scheduling problem with
machine maintenance and deteriorating jobs [14]. In 2020, Cheng et al. studied the single
machine scheduling problem whose processing time was a stage function of the start
time [15]. In 2020, Liang et al. studied the scheduling problem with resource allocation and
deteriorating jobs [16].

After a job is processed, the job should be delivered to the customer, which is called
the past sequence dependent (psd) delivery time. Koulamas and Kyparisis first proposed
the past sequence dependent delivery time [17]. In 2012, Liu et al. studied some new results
on single machine scheduling with past sequence dependent delivery times [18]. In 2014,
Zhao et al. studied single machine scheduling problems with general position-dependent
processing times and past sequence dependent delivery times [19]. In 2020, Mir et al.
studied parallel machine problem with delivery time and deterioration effect [20]. In 2021,
Toksari et al. studied some scheduling problems with learning effect and past sequence
dependent delivery times [21]. In 2021, Wang et al. studied single machine scheduling with
position-dependent weights and delivery times [22].

The problem is described in the third Section 3. The research method is given in the
forth Section 4. The summary is given in the last Section 5.

3. Notation and Problem Statement

There are n independent jobs S = {J1, . . . , Jn} processed at time t0 (t0 > 0) on a
machine. The actual processing time pi of Ji is

pi = biti, (1)

where bi is the deterioration rate, ti is the start time. The delivery time q[i] of J[i] is

q[i] = rw[i] = r
i−1

∑
j=0

p[j], (2)

where r is the delivery rate, p[i] is the actual possessing time of J[i] and w[i] =
i−1
∑

j=0
p[j] =

t0
i−1
∏
j=1

(1 + b[j]), p[0] = t0. The subscript [i] indicates that the job is arranged at the ith

position. The completion time C[i] of J[i] is

C[i] = w[i] + p[i] + q[i] = t0(1 + b[i] + r)
i−1

∏
j=1

(1 + b[j]). (3)
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The common due window (CONW) and slack due window (SLKW) are considered.
Let [d′i, d′′i ] be the due window of Ji, where d′i and d′′i are the start time and end time of due
window, respectively. For the common due window, all jobs have the same start time d′

and end time d′′ of due window. For the slack due window, d′i = pi + q1 and d′′i = pi + q2.
D = d′′i − d′i is the size of due window, D = q2 − q1, q1 and q2 are the decision variables. Ci
represents the completion time of Ji. Ei is the earliness of Ji, Ei = max{0, d′i − Ci}; Ti is the
tardiness of Ji, Ti = max{0, Ci − d′′i }.

The goal is to minimize the earliness, tardiness, start time of window and window
size. The objective functions are

M =
n

∑
i=1

[aE[i] + cT[i] + ed′ + f D], (4)

M =
n

∑
i=1

[aE[i] + cT[i] + eq1 + f D], (5)

where a, c, e, f represent the unit cost of earliness, the unit cost of tardiness, and the unit cost
of the start time and window size. If C[h] < d′ < C[h+1] and C[l] < d′′ < C[l+1] (CONW),
the objective function is

M =
h

∑
i=1

a(d′ − C[i]) +
n

∑
i=l+1

c(C[i] − d′′) + ned′ + n f (d′′ − d′)

= −a
h

∑
i=1

C[i] + c
n

∑
i=l+1

C[i] + [ha + n(e− f )]d′ + [n f − (n− l)c]d′′.

(6)

If d′ = C[h+1] and d′′ = C[l] (CONW), the objective function is

M =
h

∑
i=1

a(C[h+1] − C[i]) +
n

∑
i=l+1

c(C[i] − C[l]) + neC[h+1] + n f (C[l] − C[h+1])

= −a
h

∑
i=1

C[i] + c
n

∑
i=l+1

C[i] + [ha + n(e− f )]C[h+1] + [n f − (n− l)c]C[l].

(7)

The objective function of SLKW model is similar to that of CONW model.
By the three-region notation, the models can be defined as

1|CONW, pi = biti, qpsd|
n

∑
i=1

[aE[i] + cT[i] + ed′ + f D],

1|SLKW, pi = biti, qpsd|
n

∑
i=1

[aE[i] + cT[i] + eq1 + f D],

where qpsd represents the past sequence dependent delivery time.

4. Research Method

In this section, we present several properties for an optimal schedule. First, we show
the optimal common and slack due window positions by using the technique of small
perturbations. Then, the sequence of jobs within different sets is determined by the adja-
cent exchange technique. Finally, we propose the polynomial time algorithms to obtain
the optimal sequence.
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4.1. The Problem 1|CONW, pi = biti, qpsd|∑n
i=1[aE[i] + cT[i] + ed′ + f D]

4.1.1. Optimal Properties of the Problem

Lemma 1. For any job sequence, d′ of the optimal schedule is the start time of some job.

Proof. (a) When C[h] < d′ < C[h+1] and d′′ = C[l], 0 ≤ h < l ≤ n, C[0] = t0. The objective
function is

M = −a
h

∑
i=1

C[i] + c
n

∑
i=l+1

C[i] + [ha + n(e− f )]d′ + [n f − (n− l)c]C[l]. (8)

when d′ = C[h], the objective function is

M1 = −a
h−1

∑
i=1

C[i] + c
n

∑
i=l+1

C[i] + [(h− 1)a + n(e− f )]C[h] + [n f − (n− l)c]C[l]. (9)

M−M1 = [ha + n(e− f )][d′ − C[h]]. (10)

when d′ = C[h+1], the objective function is

M2 = −a
h

∑
i=1

C[i] + c
n

∑
i=l+1

C[i] + [ha + n(e− f )]C[h+1] + [n f − (n− l)c]C[l]. (11)

M−M2 = [ha + n(e− f )][d′ − C[h+1]]. (12)

when ha + n(e− f ) < 0, M > M2; otherwise, M ≥ M1.
(b) When C[h] < d′ < C[h+1] and C[l] < d′′ < C[l+1], 0 ≤ h ≤ l < n. The objective

function is

M = −a
h

∑
i=1

C[i] + c
n

∑
i=l+1

C[i] + [ha + n(e− f )]d′ + [n f − (n− l)c]d′′. (13)

when d′ = C[h], the objective function is

M3 = −a
h−1

∑
i=1

C[i] + c
n

∑
i=l+1

C[i] + [(h− 1)a + n(e− f )]C[h] + [n f − (n− l)c]d′′. (14)

M−M3 = [ha + n(e− f )][d′ − C[h]]. (15)

when d′ = C[h+1], the objective function is

M4 = −a
h

∑
i=1

C[i] + c
n

∑
i=l+1

C[i] + [ha + n(e− f )]C[h+1] + [n f − (n− l)c]d′′. (16)

M−M4 = [ha + n(e− f )][d′ − C[h+1]]. (17)

when ha + n(e− f ) < 0, M > M4; otherwise, M ≥ M3.

Lemma 2. For any job sequence, d′′ of the optimal schedule is the completion time of some job.

Proof. (a) When d′ = C[h] and C[l] < d′′ < C[l+1], 0 ≤ h ≤ l < n. The objective function is

M = −a
h−1

∑
i=1

C[i] + c
n

∑
i=l+1

C[i] + [(h− 1)a + n(e− f )]C[h] + [n f − (n− l)c]d′′. (18)
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when d′′ = C[l], the objective function is

M1 = −a
h−1

∑
i=1

C[i] + c
n

∑
i=l+1

C[i] + [(h− 1)a + n(e− f )]C[h] + [n f − (n− l)c]C[l]. (19)

M−M1 = [n f − (n− l)c][d′′ − C[l]]. (20)

when d′′ = C[l+1], the objective function is

M2 = −a
h−1

∑
i=1

C[i] + c
n

∑
i=l+2

C[i] + [(h− 1)a + n(e− f )]C[h] + [n f − (n− l − 1)c]C[l+1]. (21)

M−M2 = [n f − (n− l)c][d′′ − C[l+1]]. (22)

when n f − (n− l)c < 0, M > M2; otherwise, M ≥ M1.
(b) When C[h] < d′ < C[h+1] and C[l] < d′′ < C[l+1], 0 ≤ h ≤ l < n. The objective

function is

M = −a
h

∑
i=1

C[i] + c
n

∑
i=l+1

C[i] + [ha + n(e− f )]d′ + [n f − (n− l)c]d′′. (23)

when d′′ = C[l], the objective function is

M3 = −a
h

∑
i=1

C[i] + c
n

∑
i=l+1

C[i] + [ha + n(e− f )]d′ + [n f − (n− l)c]C[l]. (24)

M−M3 = [n f − (n− l)c][d′′ − C[l]]. (25)

When d′′ = C[l+1], the objective function is

M4 = −a
h

∑
i=1

C[i] + c
n

∑
i=l+2

C[i] + [ha + n(e− f )]d′ + [n f − (n− l − 1)c]C[l+1]. (26)

M−M4 = [n f − (n− l)c][d′′ − C[l+1]]. (27)

when n f − (n− l)c < 0, M > M4; otherwise, M ≥ M3.

Lemma 3. For the optimal schedule, d′ is the completion time C[h], d′′ is the completion time C[l],

h = d n( f−e)
a e, l = d n(c− f )

c e.

Proof. when d′ = C[h] and d′′ = C[l] for the optimal schedule, the objective function is

M = −a
h−1

∑
i=1

C[i] + c
n

∑
i=l+1

C[i] + [(h− 1)a + n(e− f )]C[h] + [n f − (n− l)c]C[l]. (28)

(a) When d′ = C[h−1] and d′′ = C[l], the objective function is

M1 = −a
h−2

∑
i=1

C[i] + c
n

∑
i=l+1

C[i] + [(h− 2)a + n(e− f )]C[h−1] + [n f − (n− l)c]C[l]. (29)

M−M1 = [(h− 1)a + n(e− f )][C[h] − C[h−1]] ≤ 0. (30)

So, h ≤ 1 + n( f−e)
a .
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When d′ = C[h+1] and d′′ = C[l], the objective function is

M2 = −a
h

∑
i=1

C[i] + c
n

∑
i=l+1

C[i] + [ha + n(e− f )]C[h+1] + [n f − (n− l)c]C[l]. (31)

M−M2 = [ha + n(e− f )][C[h] − C[h+1]] ≤ 0. (32)

So n( f−e)
a ≤ h ≤ 1 + n( f−e)

a , h = d n( f−e)
a e.

(b) When d′′ = C[l−1] and d′ = C[h], the objective function is

M3 = −a
h−1

∑
i=1

C[i] + c
n

∑
i=l

C[i] + [(h− 1)a + n(e− f )]C[h] + [n f − (n− l + 1)c]C[l−1]. (33)

M−M3 = [n f − (n− l + 1)c][C[l] − C[l−1]] ≤ 0. (34)

So, l ≤ 1 + n(c− f )
c .

when d′′ = C[l+1] and d′ = C[h], the objective function is

M4 = −a
h−1

∑
i=1

C[i] + c
n

∑
i=l+2

C[i] + [(h− 1)a + n(e− f )]C[h] + [n f − (n− l − 1)c]C[l+1]. (35)

M−M4 = [n f − (n− l)c][C[l] − C[l+1]] ≤ 0. (36)

So n(c− f )
c ≤ l ≤ 1 + n(c− f )

c , l = d n(c− f )
c e.

Suppose d′ = C[h] and d′′ = C[l] for the optimal schedule. Three sets Ω1 = {Ji ∈ Ω|i ≤
h− 1}, Ω2 = {Ji ∈ Ω|i = h}, Ω3 = {Ji ∈ Ω|h + 1 ≤ i ≤ l − 1}, Ω4 = {Ji ∈ Ω|i = l},
Ω5 = {Ji ∈ Ω|l + 1 ≤ i ≤ n}, Ω is the job sequence.

Lemma 4. In the optimal schedule, the jobs in Ω1 can be processed in descending order of bj.

Proof. Jg is at the uth position and Jk is at the (u + 1)th position in Ω1. π1 = {J1, . . . , Jg,
Jk, . . . , Jn}, 1 ≤ u < u + 1 ≤ h− 1. The objective function of π1 is M1. Swap Jg and Jk to
get sequence π2 = {J1, . . . , Jk, Jg, . . . , Jn}. The objective function of π2 is M2.

M1 −M2 = at0(bk − bg)(1 + r)
u−1

∏
i=1

(1 + b[i]). (37)

If bg > bk, M1 < M2.

Lemma 5. The deterioration rate of the job in Ω2 is less than the deterioration rate of any job in Ω1.

Proof. Jg is at the (h− 1)th position, and Jk is at the hth position. π1 = {J1, . . . , Jg, Jk, . . . ,
Jn}. The objective function of π1 is M1. Swap Jg and Jk to get sequence π2 = {J1, . . . , Jk,
Jg, . . . , Jn}. The objective function of π2 is M2.

M1 −M2 = {[(h− 1)a + n(e− f )]r− a}t0(bg − bk)
h−2

∏
i=1

(1 + b[i]). (38)

If bk < bg, M1 < M2.

Lemma 6. In the optimal schedule, the jobs in Ω3 can be processed in any order of bj.
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Proof. Jg is at the uth position and Jk which is at the (u + 1)th position in Ω3, π1 =
{J1, . . . , Jg, Jk, . . . , Jn}, h + 1 ≤ u < u + 1 ≤ l − 1. The objective function of π1 is M1. Swap
Jg and Jk to get sequence π2 = {J1, . . . , Jk, Jg, . . . , Jn}. The objective function of π2 is M2.

M1 = M2. (39)

Lemma 7. The deterioration rate of any job in Ω3 is less than the deterioration rate of the job in Ω4.

Proof. Jg is at the uth position, h + 1 ≤ u ≤ l − 1. Jk is at the lth position. π1 =
{J1, . . . , Jg, . . . , Jk, . . . , Jn}. The objective function of π1 is M1. Swap Jg and Jk to get se-
quence π2 = {J1, . . . , Jk, . . . , Jg, . . . , Jn}. The objective function of π2 is M2.

M1 −M2 = [n f − (n− l)c]t0r(bg − bk)
l−1

∏
i=1,i 6=u

(1 + b[i]). (40)

If bg < bk, M1 < M2.

Lemma 8. In the optimal schedule, the jobs in Ω5 can be processed in ascending order of bj.

Proof. Jg is at the uth position and Jk is at the (u + 1)th position in Ω5, π1 = {J1, . . . , Jg, Jk,
. . . , Jn}, l + 1 ≤ u < u + 1 ≤ n. The objective function of π1 is M1. Swap Jg and Jk to get
sequence π2 = {J1, . . . , Jk, Jg, . . . , Jn}. The objective function of π2 is M2.

M1 −M2 = ct0(1 + r)(bg − bk)
u−1

∏
i=1

(1 + b[i]). (41)

If bg < bk, M1 < M2.

Lemma 9. The deterioration rate of the job in Ω4 is less than the deterioration rate of any job in Ω5.

Proof. Jg is at the lth position, and Jk is at the (l + 1)th position. π1 = {J1, . . . , Jg, Jk, . . . ,
Jn}. The objective function of π1 is M1. Swap Jg and Jk to get sequence π2 = {J1, . . . , Jk, Jg,
. . . , Jn}. The objective function of π2 is M2.

M1 −M2 = {cr + [n f − (n− l)c]}t0(bg − bk)
l−1

∏
i=1

(1 + b[i]). (42)

If bg < bk, M1 < M2.

Suppose Jg is at the uth position and Jk is at the vth position in the sequence π1 =
{J1, . . . , Jg, . . . , Jk, . . . , Jn}, 1 ≤ u ≤ h, l ≤ v ≤ n. The objective function of π1 is M1. Swap
Jg and Jk to get sequence π2 = {J1, . . . , Jk, . . . , Jg, . . . , Jn}. The objective function of π2
is M2.

M1 −M2 =t0(bg − bk)
u−1

∏
i=1

(1 + b[i]){−a− a
h

∑
i=u+1

(1 + r + b[i])
i−1

∏
m=u+1

(1 + b[m])

+ c
v−1

∑
i=l

(1 + r + b[i])
i−1

∏
m=u+1

(1 + b[m]) + cr
v−1

∏
i=u+1

(1 + b[i])

+ [ha + n(e− f )](1 + r + b[h])
h−1

∏
i=u+1

(1 + b[i])

+ [n f − (n− l + 1)c](1 + r + b[l])
l−1

∏
i=u+1

(1 + b[i])}.

(43)
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Define

πuv =− a− a
h

∑
i=u+1

(1 + r + b[i])
i−1

∏
m=u+1

(1 + b[m]) + c
v−1

∑
i=l

(1 + r + b[i])
i−1

∏
m=u+1

(1 + b[m])

+ cr
v−1

∏
i=u+1

(1 + b[i]) + [ha + n(e− f )](1 + r + b[h])
h−1

∏
i=u+1

(1 + b[i])

+ [n f − (n− l + 1)c](1 + r + b[l])
l−1

∏
i=u+1

(1 + b[i]).

(44)
If πuv > 0, Jg should be at the uth position; otherwise, Jg should be at the vth position.

4.1.2. Optimal Algorithm

The Algorithm 1 is summarized as follows:

Algorithm 1 1|CONW, pj = bjtj, qpsd|∑n
i=1[aE[i] + cT[i] + ed′ + f D]

Input: t0, a, c, e, f , bj, r
Output: The optimal sequence, d′, d′′

1: First step : Sorted by b[1] ≤ · · · ≤ b[n].

2: Second step: Determine h = d n( f−e)
a e, l = d n(c− f )

c e, d′ = C[h], d′′ = C[l].
3: Third step: Determine set Ω3 that contains l − h− 1 jobs, i.e., b[1], . . . , b[l−h−1].
4: Last step: Determine the jobs of sets Ω1 ∪Ω2 and Ω4 ∪Ω5 by πuv.

Theorem 1. For the problem 1|CONW, pi = biti, qpsd|∑n
i=1[aE[i] + cT[i] + ed′ + f D], the com-

plexity of the algorithm is O(nlogn).

Proof. The first step requires O(nlogn) time. The second and third steps are completed
in constant time. The last step requires O(n) time. So the complexity of the algorithm is
O(nlogn).

Example 1. There are 4 jobs processed in sequence on a single machine. t0 = 1, r = 0.1, b1 = 2,
b2 = 0.3, b3 = 1, b4 = 0.7, a = 4, c = 5, e = 1, f = 2.
Step 1. Because b2 ≤ b4 ≤ b3 ≤ b1, J2 → J4 → J3 → J1.
Step 2. Calculate the values h = d n( f−e)

a e = 1, l = d n(c− f )
c e = 3, d′ = C[1], d′′ = C[3].

Step 3. J2 is contained in set Ω3 which is at the second position.
Step 4. (a) When u = 1 and v = 3, π[1][3] = −3.61 < 0, J4 is determined at the third position;
(b) When u = 1 and v = 4, π[1][4] = 4.125 > 0, J3 is determined at the first position.

Therefore, the optimal sequence is J3 → J2 → J4 → J1.

4.2. The Problem 1|SLKW, pi = biti, qpsd|∑n
i=1[aE[i] + cT[i] + eq1 + f D]

4.2.1. Optimal Properties of the Problem

Lemma 10. For any job sequence, q1 of the optimal schedule is the (1 + r) times the sum of actual
processing time for some jobs or t0.

Proof. (a) When (1 + r)
h−1
∑

i=0
p[i] < q1 < (1 + r)

h
∑

i=0
p[i] and q2 = (1 + r)

l−1
∑

i=0
p[i], 1 ≤ h < l ≤

n. The objective function is

M = −a(1 + r)
h

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+1

w[i] + [ha + n(e− f )]q1 + [n f − (n− l)c](1 + r)
l−1

∑
i=0

p[i]. (45)
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when q1 = (1 + r)
h−1
∑

i=0
p[i], the objective function is

M1 =− a(1 + r)
h−1

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+1

w[i] + [(h− 1)a + n(e− f )](1 + r)
h−1

∑
i=0

p[i]

+ [n f − (n− l)c](1 + r)
l−1

∑
i=0

p[i].

(46)

M−M1 = [ha + n(e− f )][q1 − (1 + r)
h−1

∑
i=0

p[i]]. (47)

when q1 = (1 + r)
h
∑

i=0
p[i], the objective function is

M2 =− a(1 + r)
h+1

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+1

w[i] + [(h + 1)a + n(e− f )](1 + r)
h

∑
i=0

p[i]

+ [n f − (n− l)c](1 + r)
l−1

∑
i=0

p[i].

(48)

M−M2 = [ha + n(e− f )][q1 − (1 + r)
h

∑
i=0

p[i]]. (49)

when ha + n(e− f ) < 0, M > M2; otherwise, M ≥ M1.

(b) When (1+ r)
h−1
∑

i=0
p[i] < q1 < (1+ r)

h
∑

i=0
p[i] and (1+ r)

l−1
∑

i=0
p[i] < q2 < (1+ r)

l
∑

i=0
p[i],

1 ≤ h ≤ l ≤ n. The objective function is

M = −a(1 + r)
h

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+1

w[i] + [ha + n(e− f )]q1 + [n f − (n− l)c]q2. (50)

when q1 = (1 + r)
h−1
∑

i=0
p[i], the objective function is

M3 =− a(1 + r)
h−1

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+1

w[i] + [(h− 1)a + n(e− f )](1 + r)
h−1

∑
i=0

p[i]

+ [n f − (n− l)c]q2.

(51)

M−M3 = [ha + n(e− f )][q1 − (1 + r)
h−1

∑
i=0

p[i]]. (52)

when q1 = (1 + r)
h
∑

i=0
p[i], the objective function is

M4 =− a(1 + r)
h

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+1

w[i] + [ha + n(e− f )](1 + r)
h

∑
i=0

p[i]

+ [n f − (n− l)c]q2.

(53)

M−M4 = [ha + n(e− f )][q1 − (1 + r)
h

∑
i=0

p[i]]. (54)

when ha + n(e− f ) < 0, M > M4; otherwise, M ≥ M3.
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Lemma 11. For any job sequence, q2 of the optimal schedule is (1 + r) times sum of actual
processing time for some jobs or t0.

Proof. (a) When q1 = (1 + r)
h−1
∑

i=0
p[i] and (1 + r)

l−1
∑

i=0
p[i] < q2 < (1 + r)

l
∑

i=0
p[i], 1 ≤ h ≤ l ≤

n. The objective function is

M =− a(1 + r)
h−1

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+1

w[i] + [(h− 1)a + n(e− f )](1 + r)
h−1

∑
i=0

p[i]

+ [n f − (n− l)c]q2.

(55)

when q2 = (1 + r)
l−1
∑

i=0
p[i], the objective function is

M1 =− a(1 + r)
h−1

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+1

w[i] + [(h− 1)a + n(e− f )](1 + r)
h−1

∑
i=0

p[i]

+ [n f − (n− l)c](1 + r)
l−1

∑
i=0

p[i].

(56)

M−M1 = [n f − (n− l)c][q2 − (1 + r)
l−1

∑
i=0

p[i]]. (57)

when q2 = (1 + r)
l

∑
i=0

p[i], the objective function is

M2 =− a(1 + r)
h−1

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+2

w[i] + [(h− 1)a + n(e− f )](1 + r)
h−1

∑
i=0

p[i]

+ [n f − (n− l − 1)c](1 + r)
l

∑
i=0

p[i].

(58)

M−M2 = [n f − (n− l)c][q2 − (1 + r)
l

∑
i=0

p[i]]. (59)

when n f − (n− l)c < 0, M > M2; otherwise, M ≥ M1.

(b) When (1+ r)
h−1
∑

i=0
p[i] < q1 < (1+ r)

h
∑

i=0
p[i] and (1+ r)

l−1
∑

i=0
p[i] < q2 < (1+ r)

l
∑

i=0
p[i],

1 ≤ h ≤ l ≤ n. The objective function is

M = −a(1 + r)
h

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+1

w[i] + [ha + n(e− f )]q1 + [n f − (n− l)c]q2. (60)

when q2 = (1 + r)
l−1
∑

i=0
p[i], the objective function is

M3 =− a(1 + r)
h

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+1

w[i] + [ha + n(e− f )]q1

+ [n f − (n− l)c](1 + r)
l−1

∑
i=0

p[i].

(61)

M−M3 = [n f − (n− l)c][q2 − (1 + r)
l−1

∑
i=0

p[i]]. (62)
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when q2 = (1 + r)
l

∑
i=0

p[i], the objective function is

M4 =− a(1 + r)
h

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+2

w[i] + [ha + n(e− f )]q1

+ [n f − (n− l − 1)c](1 + r)
l

∑
i=0

p[i].

(63)

M−M4 = [n f − (n− l)c][q2 − (1 + r)
l

∑
i=0

p[i]]. (64)

when n f − (n− l)c < 0, M > M4; otherwise, M ≥ M3.

Lemma 12. For the optimal schedule, q1 is (1 + r)
h−1
∑

i=0
p[i], q2 is (1 + r)

l−1
∑

i=0
p[i], h = d n( f−e)

a e,

l = d n(c− f )
c e.

Proof. When q1 = (1 + r)
h−1
∑

i=0
p[i] and q2 = (1 + r)

l−1
∑

i=0
p[i] for the optimal schedule, the

objective function is

M =− a(1 + r)
h−1

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+1

w[i] + [(h− 1)a + n(e− f )](1 + r)
h−1

∑
i=0

p[i]

+ [n f − (n− l)c](1 + r)
l−1

∑
i=0

p[i].

(65)

(a) When q1 = (1 + r)
h−2
∑

i=0
p[i] and q2 = (1 + r)

l−1
∑

i=0
p[i], the objective function is

M1 =− a(1 + r)
h−2

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+1

w[i] + [(h− 2)a + n(e− f )](1 + r)
h−2

∑
i=0

p[i]

+ [n f − (n− l)c](1 + r)
l−1

∑
i=0

p[i].

(66)

M−M1 = [(h− 1)a + n(e− f )](1 + r)p[h−1] ≤ 0. (67)

So h ≤ 1 + n( f−e)
a .

when q1 = (1 + r)
h
∑

i=0
p[i] and q2 = (1 + r)

l−1
∑

i=0
p[i], the objective function is

M2 =− a(1 + r)
h

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+1

w[i] + [ha + n(e− f )](1 + r)
h

∑
i=0

p[i]

+ [n f − (n− l)c](1 + r)
l−1

∑
i=0

p[i].

(68)

M−M2 = −[ha + n(e− f )](1 + r)p[h] ≤ 0. (69)

So, n( f−e)
a ≤ h ≤ 1 + n( f−e)

a , h = d n( f−e)
a e.
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(b) When q2 = (1 + r)
l−2
∑

i=0
p[i] and q1 = (1 + r)

h−1
∑

i=0
p[i], the objective function is

M3 =− a(1 + r)
h−1

∑
i=1

w[i] + c(1 + r)
n

∑
i=l

w[i] + [(h− 1)a + n(e− f )](1 + r)
h−1

∑
i=0

p[i]

+ [n f − (n− l + 1)c](1 + r)
l−2

∑
i=0

p[i].

(70)

M−M3 = [n f − (n− l + 1)c](1 + r)p[l−1] ≤ 0. (71)

So, l ≤ 1 + n(c− f )
c .

When q2 = (1 + r)
l

∑
i=0

p[i] and q1 = (1 + r)
h−1
∑

i=0
p[i], the objective function is

M4 =− a(1 + r)
h−1

∑
i=1

w[i] + c(1 + r)
n

∑
i=l+2

w[i] + [(h− 1)a + n(e− f )](1 + r)
h−1

∑
i=0

p[i]

+ [n f − (n− l − 1)c](1 + r)
l

∑
i=0

p[i].

(72)

M−M4 = −[n f − (n− l)c](1 + r)p[l] ≤ 0. (73)

So n(c− f )
c ≤ l ≤ 1 + n(c− f )

c , l = d n(c− f )
c e.

Suppose q1 = (1 + r)
h−1
∑

i=0
p[i] and q2 = (1 + r)

l−1
∑

i=0
p[j] for the optimal schedule. Three

sets Ω1 = {Ji ∈ Ω|i ≤ h− 1}, Ω2 = {Ji ∈ Ω|h ≤ i ≤ l − 1}, Ω3 = {Ji ∈ Ω|l ≤ i ≤ n}, Ω is
the job sequence.

Lemma 13. In the optimal schedule, the jobs in Ω1 can be processed in descending order of bj.

Proof. Jg is at the uth position and Jk is at the (u + 1)th position in Ω1, π1 = {J1, . . . , Jg,
Jk, . . . , Jn}, 1 ≤ u < u + 1 ≤ h− 1. The objective function of π1 is M1. Swap Jg and Jk to
get sequence π2 = {J1, . . . , Jk, Jg, . . . , Jn}. The objective function of π2 is M2.

M1 −M2 = −a(1 + r)t0(bg − bk)
u−1

∏
i=1

(1 + b[i]). (74)

If bg > bk, M1 < M2.

Lemma 14. In the optimal schedule, the jobs in Ω2 can be processed in any order of bj.

Proof. Jg is at the uth position and Jk is at the (u + 1)th position in Ω2, π1 = {J1, . . . , Jg,
Jk, . . . , Jn}, h ≤ u < u + 1 ≤ l − 1. The objective function of π1 is M1. Swap Jg and Jk to get
sequence π2 = {J1, . . . , Jk, Jg, . . . , Jn}. The objective function of π2 is M2.

M1 = M2. (75)

Lemma 15. In the optimal schedule, the jobs in Ω3 can be processed in ascending order of bj.
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Proof. Jg is at the uth position and Jk is at the (u + 1)th position in Ω3, π1 = {J1, . . . , Jg,
Jk, . . . , Jn}, l ≤ v < v + 1 ≤ n. The objective function of π1 is M1. Swap Jg and Jk to get
sequence π2 = {J1, . . . , Jk, Jg, . . . , Jn}. The objective function of π2 is M2.

M1 −M2 = c(1 + r)t0(bg − bk)
u−1

∏
i=1

(1 + b[i]). (76)

If bg < bk, M1 < M2.

Lemma 16. The deterioration rate of any job in Ω2 is less than the deterioration rate of any job
in Ω1.

Proof. Jg is at the (h− 1)th position, and Jk is at the hth position. π1 = {J1, . . . , Jg, Jk, . . . ,
Jn}. The objective function of π1 is M1. Swap Jg and Jk to get sequence π2 = {J1, . . . , Jk,
Jg, . . . , Jn}. The objective function of π2 is M2.

M1 −M2 = [(h− 1)a + n(e− f )](1 + r)t0(bg − bk)
h−2

∏
i=1

(1 + b[i]). (77)

If bk < bg, M1 < M2.

Lemma 17. The deterioration rate of any job in Ω2 is less than the deterioration rate of any job
in Ω3.

Proof. Jg is at the (l − 1)th position and Jk is at the lth position. π1 = {J1, . . . , Jg, Jk, . . . ,
Jn}. The objective function of π1 is M1. Swap Jg and Jk to get sequence π2 = {J1, . . . , Jk,
Jg, . . . , Jn}. The objective function of π2 is M2.

M1 −M2 = [n f − (n− l)c](1 + r)t0(bg − bk)
l−2

∏
i=1

(1 + b[i]). (78)

If bg < bk, M1 < M2.

Suppose Jg is at the uth position and Jk is at the vth position in the sequence π1 =
{J1, . . . , Jg, . . . , Jk, . . . , Jn}, 1 ≤ u ≤ h− 1, l ≤ v ≤ n. The objective function of π1 is M1.
Swap Jg and Jk to get sequence π2 = {J1, . . . , Jk, . . . , Jg, . . . , Jn}. The objective function of
π2 is M2.

M1 −M2 =t0(1 + r)(bg − bk)
u−1

∏
i=1

(1 + b[i]){−a− a
h−2

∑
i=u+1

i

∏
m=u+1

(1 + b[m])

+ c
v−1

∑
i=l

i

∏
m=u+1

(1 + b[m]) + [n f − (n− l)c]
l−1

∏
i=u+1

(1 + b[i])

+ [(h− 1)a + n(e− f )]
h−1

∏
i=u+1

(1 + b[i])}.

(79)

Define

πuv =− a− a
h−2

∑
i=u+1

i

∏
m=u+1

(1 + b[m]) + [(h− 1)a + n(e− f )]
h−1

∏
i=u+1

(1 + b[i])

+ c
v−1

∑
i=l

i

∏
m=u+1

(1 + b[m]) + [n f − (n− l)c]
l−1

∏
i=u+1

(1 + b[i]).

(80)

If πuv > 0, Jg should be at the uth position; otherwise, Jg should be at the vth position.
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4.2.2. Optimal Algorithm

The Algorithm 2 is summarized as follows:

Algorithm 2 1|SLKW, pi = biti, qpsd|∑n
i=1[aE[i] + cT[i] + eq1 + f D]

Input: t0, a, c, e, f , bj, r
Output: The optimal sequence, q1, q2

1: First step : Sorted by b[1] ≤ · · · ≤ b[n].
2: Second step: When c ≤ f ≤ e, q1 = q2 = t0, Ω1 ∪Ω2 = φ, Ω3 = {J[1], . . . , J[n]}.
3: Third step: When c > f and f ≤ e, q1 = t0, q2 = (1+ r)∑l−1

i=0 p[i], l = d n(c− f )
c e. Ω1 = φ,

Ω2 = {J[1], . . . , J[l]}, Ω3 = {J[l+1], . . . , J[n]}.
4: Forth step: Determine h = d n( f−e)

a e, l = d n(c− f )
c e, q1 = (1 + r)∑h−1

i=0 p[i], q2 = (1 +

r)∑l−1
i=0 p[i].

5: Last step: Ω2 = {J[1], . . . , J[l−h]}. Determine the jobs of sets Ω1 and Ω3 by πuv.

Theorem 2. For the problem 1|SLKW, pi = biti, qpsd|∑n
i=1[aE[i] + cT[i] + eq1 + f D], the com-

plexity of the algorithm is O(nlogn).

Proof. The first step requires O(nlogn) time. The second, third and forth steps are com-
pleted in constant time. The last step requires O(n) time. So the complexity of the algorithm
is O(nlogn).

Example 2. There are 4 jobs processed in sequence on a single machine. t0 = 1, r = 0.1, b1 = 2,
b2 = 0.3, b3 = 1, b4 = 0.7, a = 4, c = 5, e = 1, f = 2.
Step 1. Because b2 ≤ b4 ≤ b3 ≤ b1, J2 → J4 → J3 → J1.
Step 2. Calculate the values h = d n( f−e)

a e = 1, l = d n(c− f )
c e = 3, q1 = (1 + r)t0, q2 =

(1 + r)w[3].
Step 3. J2 and J4 are contained in set Ω2 which are at the first and second position.
Step 4. J3 and J1 are contained in set Ω3, which are at the third and forth positions, Ω1 = φ.

Therefore, the optimal sequence is J2 → J4 → J3 → J1.

4.3. Discussion

This paper studies scheduling problems involving both simple linear degradation
and past sequence dependent delivery time under the common and slack due window
assignment. To the best of our knowledge, such articles are rare for the common or slack
due window assignment. Small perturbation technique and adjacent switching technique
are effective methods to deal with scheduling problems. Based on the small perturbations
technique and adjacent exchange technique, we obtain the propositions of the method.
By the propositions, the polynomial time algorithms are proposed to obtain the optimal
sequence. However, not all scheduling problems can be solved by these techniques. Specific
problems need to be analyzed in detail. In the future research, it is worth investigating
multi-machine scheduling problems.

5. Conclusions

The single machine scheduling problem with deteriorating jobs and delivery time is
considered under due window assignment. The goal is to minimize the window location,
window size, earliness and tardiness. Based on the small perturbations technique and
adjacent exchange technique, we obtain the propositions of the problems. However, not
all scheduling problems can be solved by these techniques. Specific problems need to be
analyzed in detail. For common and slack due window assignment, we prove that the
two objective functions are polynomial time solvable in O(nlogn) time. We propose the
corresponding algorithms to obtain the optimal sequence, window location and window
size. In the future, the multi-machine environment can be considered to expand the research,
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i.e., parallel machines and flow shop setting. The more general deterioration processing
time is also considered for a single machine scheduling or the multi-machine scheduling.
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