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Abstract: In this paper, an optimum design algorithm is presented for reinforced concrete folded
plate structures. The design provisions are implemented by ACI 318-11 and ACI 318.2-14, which
are quite complex to apply. The design variables are divided into three classes. The first class refers
to the variables involving the plates, which are the number of supports, thicknesses of the plates,
configurations of longitudinal and transverse reinforcement, span length of each plate, and angle of
inclination of the inclined plates. The second class consists of the variables involving the auxiliary
members’ (beams and diaphragms) depth and breadth and the configurations of longitudinal and
shear reinforcement. The third class of variables can be the supporting columns, which involve
the dimensions of the column along each axis and the configurations of longitudinal and shear
reinforcement. The objective function is considered as the total cost of the folded plate structure,
which consists of the cost of concrete, reinforcement, and formwork that is required to construct the
building. With such formulation, the design problem becomes a discrete nonlinear programming
problem. Its solution is obtained by using three different soft computing techniques, which are
artificial bee colony, differential evolution, and enhanced beetle antennae search. The enhancement
suggested makes use of the population of beetles instead of one, as is the case in the standard
algorithm. With this novel improvement, the beetle antennae search algorithm became very efficient.
Two folded plate structures are designed by the proposed optimum design algorithm. It is observed
that the differential evolution algorithm performed better than the other two metaheuristics and
achieved the cheapest solution.

Keywords: folded plate; supporting members; minimum cost design; structural optimization; meta-
heuristic algorithms; beetle antennae search algorithm; artificial bee colony algorithm; differential
evolution algorithm

MSC: 65K10

1. Introduction

Folded plate structures are assemblies of multiple numbers of plates rigidly connected
in a folding pattern. The concept of folds also exists in nature, as can be found on various
types of tree leaves, insect wings, and seashells. This concept has been established in
many other fields, such as in solar panels, nanochips, and medical devices. Folded plate
structures carry loads without requiring supporting beams along longitudinal edges. The
reason for the effectiveness of reinforced concrete folded plate systems is that they transfer
the applied loads to the supporting members through both bending and membrane action.
The bending is resisted by both the reinforcement and concrete, while the tensile and
compressive membrane forces are resisted by reinforcement and concrete. The folded
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plate structures can provide very light structures to cover large areas without columns.
They have more inherent rigidity and high load-carrying capacity than other structures.
Therefore, they are generally preferred when there is a need for construction without
internal columns, such as exhibition halls, theater buildings, and assembly halls. It is
interesting to notice that there are books and articles on the analysis and design of folded
plate constructions [1–4], but there are not many studies on the optimum design of these
structures [5,6].

The structural weight of folded plate structures is minimized in Kostem [6]. The
azimuthal angles and the width and thickness of the individual panels are considered
design variables. The target of the study is to find the optimum geometry of the folded
plate structure starting from an arbitrary initial geometry. The flexibility method is used to
formulate the mathematical model, and the standard Lagrangian approach is used to obtain
the optimum solution. The technique determines the optimal shape of the folded plate but
does not consider any displacement and strength constraints. It is stated by Sarma and
Adeli [5] that the design of concrete structures should be based on cost rather than weight
minimization. This is because the construction of concrete structures is different from steel
structures. It involves three different materials such as concrete, steel, and formwork. In
this paper, a review of papers on cost optimization of concrete structures is carried out.
The review covers reinforced concrete beams, slabs, columns, frame structures, shear walls,
water tanks, folded plates, and tensile members. It can be noticed that the review is 24 years
old, which does not contain recent information on the subject. The literature survey carried
out on the subject has shown that there is not even a single article on the optimum design
of folded plate structures where the design code provisions are considered, and modern
optimization algorithms are employed so that practicing structural designers can utilize
the developed technique.

In this study, two optimization frameworks are developed for reinforced concrete
folded plate structures and their auxiliary and supporting members under the provisions of
ACI-318-11 [7] and ACI-318.2-14 [8]. In the development of the frameworks, the guidelines
provided in the design of reinforced concrete shells and folded plates by Varhese [3] are
followed. The first framework is used to optimize the “V-type” of folded plates and the
second one is for the “three-segment” type of folded plates. Both types are linear, with
a single angle of inclination for all the spans. The optimum design algorithm developed
makes use of two software: MATLAB [9] and CSI-SAP2000 [10]. Application programming
interface (API) is used to achieve communication between the two software. CSI-SAP2000
is used to carry out the finite element analysis. The optimum design problem and the
solution techniques are coded in MATLAB. The objective function is to minimize the total
cost of all materials used to construct the folded plate building according to the selected
sizes. For the cost estimation of reinforcement, the development lengths, overlapping, and
bar bending details for all the members are taken into consideration. The superimposed
dead load, live load, and lateral wind load are assigned in accordance with ACSE 7-5 [11]
and ACI-318.2-14. The dead loads are applied along the full length of the plates, the live
load is on the horizontal plane area, and the wind load is on the vertical plane area of the
respective elevation.

In the mathematical formulation of the optimum design problem of folded plate
structures, the number of supports, the thicknesses of plates, reinforcement configuration
along each direction, angle of inclination, length of each plate, and the sectional details of
edge beams, internal beams, diaphragms, and columns are taken as design variables. A
design pool is prepared for each design that contains values that are used in the practice.
The objective function is taken as the overall cost of the folded plate structure. When the
design provisions are implemented in accordance with ACI 318-11 and ACI 318.2-14 with
these design variables, the design optimization problem turns out to be a discrete nonlinear
programming problem. It is shown in the literature that soft computing techniques are
quite effective in attaining the solution to discrete nonlinear programming problems by
Kaveh [12]. Several soft computing techniques could be used to obtain the solution to
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the design optimization problem. Among these, artificial bee colony (ABC) by Latif and
Saka [13] and the improved form of the beetle antennae search algorithm (pbBAS) by Yousif
and Saka [14] are selected due to their efficiency in providing optimum solutions for the
real-size design optimization problems. In addition to these, differential evolution (DE) is
also used due to its successful applications in structural optimization by Wang et al. [15].

The paper is arranged as follows. In the second section, the mathematical formulation
of the design optimization problem is explained in detail for both V-shaped and three-
segment folded plate structures. This explanation covers the design variables, the objective
function, and the set of design constraints. Additionally, the soft computing techniques
selected to obtain the solution to the design optimization problem are summarized. In
the third section, the two design optimization problems are solved by each of these three
algorithms. A comparison of the results is conducted, and the best-performing technique
is identified. In the fourth section, the results are discussed, and the best performing
algorithm is used to study the effect of different span sizes on the optimum designs. Finally,
concluding remarks are stated in the last section.

2. Materials and Methods
2.1. Mathematical Modeling
2.1.1. Design Variables

The folded plate structure parameters listed in the first column of Table 1 are treated as
design variables. Some of the design variables are grouped as mentioned in the table. The
number of grouped design variables is different in the two types of folded plate structures.
The V-type folded plates (design problem 1) have 11 variables, while the three-segment
folded plates (design problem 2) have 13 variables. The two additional grouped design
variables are the thickness and length of the horizontal plates, which are absent in the V-type
folded plate structures. A plan view of a typical folded plate roofed building indicating the
members being affected by each design variable is shown in Figure 1. Additionally, sections
and elevations of the building and the members are displayed in Figures 2–6, indicating
the grouped details listed under each design variable.

Table 1. Design variable classes.

Design Variables Description List of Details Grouped in the Design Variable
Number of Variables

in Problem

1 2

V1
Number of internal
intermediate supports No grouping 1 1

V2 & V3 Plate thickness I No grouping 1 2

V4 & V5

Plate’s reinforcement
configuration in each direction
II

Two grouped details:
1. Diameter of reinforcement.
2. Center to center spacing between

reinforcement.

2 2

V6 Length of horizontal plate III No grouping 0 1

V7 Angle of plate’s inclination IV No grouping 1 1

V8 & V9 Beams sectional details V

Seven grouped details:
1. Width of beam.
2. Depth of beam.
3. Diameter of longitudinal rebars.
4. Number of longitudinal bars along beam

width.
5. Number of longitudinal bars along beam

depth.
6. Diameter of shear reinforcement.
7. Spacing between shear reinforcement.

2 2
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Table 1. Cont.

Design Variables Description List of Details Grouped in the Design Variable
Number of Variables

in Problem

1 2

V10 Diaphragm sectional details VI

Seven grouped details:
1. Thickness of the diaphragm.
2. Depth of diaphragm below lower level of

plates.
3. Diameter of horizontal rebars.
4. Number of horizontal bars along diaphragm

width.
5. Spacing between horizontal bars along

diaphragm depth.
6. Diameter of vertical reinforcement.
7. Spacing between vertical reinforcement.

1 1

V11–V13 Columns sectional details VII

Seven grouped details:
1. Size of column along x-direction.
2. Size of column along y-direction.
3. Diameter of longitudinal rebars.
4. Number of longitudinal bars along

x-direction.
5. Number of longitudinal bars along

y-direction.
6. Diameter of shear reinforcement.
7. Spacing between shear reinforcement.

3 3

Total 11 13

I: two different plate thicknesses are allowed in the model for problem (2): the first is for the inclined plate, and
the second is for the horizontal plate. II: two configurations of plate reinforcement: the first is for the longitudinal
reinforcement, and the second is for the transverse reinforcement. III: for problem (2), one length is set for all the
horizontal plates at each span. IV: one angle of inclination is set for all the inclined plates; the angle is measured in
degrees from the horizontal axis. V: two different beam sections are modeled: edge beams and internal beams.
VI: one diaphragm section is set on both sides of the building. VII: three different column sections are modeled:
x-edge columns, y-edge columns, and corner columns.
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Folded Plate Variables

The first class of design variables refers to the folded plates. The first design variable
controls the number of internal supports in each plot area, as listed in Table 2. The internal
supports are represented by edge columns and internal beams connecting them. The second
and third design variables involved are the thicknesses of the inclined and horizontal plates.
It is assumed that all the inclined plates share one thickness, and the same applies to
the horizontal plates. The fourth and fifth design variables are the configuration of the
longitudinal and transverse reinforcement, respectively. The longitudinal reinforcement
spans along the lengths of the plates are to resist membrane forces, and the transverse
reinforcement spans along the folds are to resist bending moments. Both reinforcements
are set the same along with all the plates, with overlapping occurring at plate folds or a
maximum span of 6 m. The sixth variable controls the length of the horizontal plates, and
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it only exists in the second problem. The seventh variable controls the angle of inclination
of the folded plates, which is measured from the horizontal plane. The angle is kept the
same for all inclined plates. The folded plates variables are shown in Figures 2 and 3.

Table 2. Design pools of folded plate variables.

Details Pool

Number of interior supports (Nos.) 3:1:9

Thickness (mm) 70:10:200

Longitudinal and Transverse reinforcement

Diameter (mm) {8, 10, 12, 16, 20}

Spacing (mm)

For 8 mm diameter {200, 250, 300}
For 10 mm diameter {200, 250}
For 12 mm diameter {150, 200, 250}
For 16 mm diameter {150, 200}
For 20 mm diameter {100, 150, 200}

Angle of plates inclination (for inclined plates measured from the horizontal axis in degrees) 5:1:40

Length of horizontal plates (mm) 500:500:5000

Auxiliary Members’ Variables

The auxiliary members, which stiffen, strengthen, and support the folded plates,
include the edge and internal beams and diaphragms. Each of the three members is
represented by a single grouped variable that includes all the details necessary to model and
check the member capacity. The first and second details are its dimensions (width/thickness
and depth). Details 3 to 5 represent the longitudinal (horizontal) reinforcement of the
member. The positions and diameters of each bar are set through these three details. The
sixth and seventh details represent the configuration of the shear (vertical) reinforcement
along the entire length of the member. The auxiliary members’ design variables are shown
in Figures 4 and 5.

Supporting Columns Variables

Similar to the auxiliary members, each column type is represented by a single design
variable. In the model, there are three column sections: (1) x-edge columns, (2) y-edge
columns, and (3) corner columns. A total of seven details are grouped in each design
variable. The first and second details concern the dimensions of the column in the x and
y directions. Details 3 to 5 represent the longitudinal reinforcement of the column. The
positions and diameters of each bar are set through these three details. The sixth and
seventh details represent the configuration of the shear (vertical) reinforcement along the
entire length of the column. All the columns are detailed as ordinary moment-resisting
frames. The column design variables are shown in Figure 6.

Variable Pool

The design pool from which the value of each design variable would be selected is
listed in Tables 2–5. The values listed in the last column of the tables without brackets
show the lower bound of the design variable, the second value is the increment in (mm or
nos.), and the third value is the upper bound of that design variable. For example, values
for plate thickness start from 70 mm goes up to 200 mm with an increment of 10 mm.
The corresponding discrete values that can be taken by the variable are [70, 80, 90, 100,
. . . , 190, 200]. The numbers within the brackets indicate the possible values of the design
variable. For example, the diameter of longitudinal and transverse reinforcement can be
either 8 mm, 10 mm, 12 mm, 16 mm, or 20 mm. Considering the variable pools, the size of
design variable groups is: 7, 14, 14, 13, 13, 10, 36, 484, 484, 315, 90, 90, and 72 for V1 through
V13, respectively. The given sizes produce 2.5659× 1019 and 3.5922× 1021 possible solution
combinations for problems 1 and 2, respectively.
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Table 3. Design pools of edge and internal beam variables.

Details Pool

Size

Depth (mm) 500:100:1200

Width (mm)

For depth of 500 mm {200}
For depth of 600 mm {200, 250}
For depth of 700 mm {250, 300}
For depth of 800 mm {300, 350}
For depth of 900 mm {350}
For depth of 1000 mm {350, 400}
For depth of 1100 mm and 1200 mm {400}

Longitudinal
reinforcement

Diameter (mm)

For 200 × 500 beams {12, 16}
For 200 × 600 beams {16, 20}
For 250 × 600 beams {20}
For 250 × 700 beams {16, 20}
For 300 × 700 beams {20}
For 300 × 800 or larger beams {20, 25}

Number of bars along
(Nos.)

Minor axis
For 200 mm wide {2}
For 250 mm and 300 mm width {3}
For 350 mm and 400 mm width {4}

Major axis

For 500 mm depth {5, 6}
For 600 mm depth {5, 6, 7}
For 700 mm depth {6, 7, 8}
For 800 mm depth {7, 8, 9}
For 900 mm depth {8, 9, 10}
For 1000 mm depth {9, 10, 11}
For 1100 mm and 1200 mm depth {10, 11, 12}

Shear reinforcement

Diameter (mm) {8, 10, 12}

Spacing (mm)
For 8 mm diameter {250, 300}
For 10 mm diameter {200, 250}
For 12 mm diameter {100, 150, 200}

Table 4. Diaphragm variables design pools.

Details Pool

Size

Depth below inclined plates bottom level (mm) 500:100:1000

Thickness (mm)

For depth of 500 mm {200, 250}
For depth of 600 mm {250, 300}
For depth of 700 mm {300, 350}
For depth of 800 mm {350}
For depth of 900 mm {350, 400}
For depth of 1000 mm {400}

Horizontal (longitudinal)
reinforcement

Diameter (mm)

For 200 mm thickness {12, 16}
For 250 mm and 300 mm thickness {16, 20}
For 350 mm thickness {20, 25}
For 400 mm thickness {25}

Number of bars along minor axis (Nos.)

For 200 mm thickness {2}
For 250 mm thickness {2, 3}
For 300 mm thickness {3}
For 350 mm thickness {4}
For 400 mm thickness {5}

Spacing along Major axis (mm) {100, 150, 200}
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Table 4. Cont.

Details Pool

Vertical (transverse)
reinforcement

Diameter (mm) {10, 12, 16}

Spacing (mm)
For 10 mm diameter {250, 300}
For 12 mm diameter {200, 250}
For 16 mm diameter {100, 150, 200}

Table 5. Column variables design pools.

Details Pool

Size

x-edge columns

Along x-direction (mm) 400:100:700

Along y-direction (mm)
For 400 mm and 500 mm depths {200}
For 600 mm depths {250, 300}
For 700 mm depths {300}

y-edge columns

Along y-direction (mm) 400:100:700

Along x-direction (mm)
For 400 mm and 500 mm deep {200}
For 600 mm depths {250, 300}
For 700 mm depths {300}

Corner columns Both directions (mm) {400, 450, 500}

Longitudinal
reinforcement

Diameter (mm)
x and y-edge columns

For 200 mm widths {12, 16}
For 250 mm widths {16, 20}
For 300 mm widths {20, 25}

Corner columns {16, 20}

x and y-edge columns number of
bars along

minor axis (Nos.)
For 200 mm and 250 mm widths {2}
For 300 mm widths {3}

Major axis (Nos.)

For 400 mm depths {4}
For 500 mm depths {5}
For 600 mm depths {6}
For 700 mm depths {7}

Corner columns number of bars along both directions
(Nos.)

For 400 mm sizes {4}
For 450 mm and 500 mm sizes {4, 5}

Shear
reinforcement

Diameter (mm) {8, 10, 12}

Spacing (mm)
For 8 mm diameter {200, 250, 300}
For 10 mm diameter {150, 200, 250}
For 12 mm diameter {100, 150, 200}

2.1.2. Objective Function

The objective function considered for both optimization problems is the overall cost
of materials required to construct the structural system. The cost is obtained by summing
the costs of three materials: reinforcement, concrete, and the formwork system required
to construct each member. The formwork system cost includes the cost of scaffolding,
shoring, and plywood panels. The equations used to calculate the objective function,
penalty, overall cost, and the cost of each element are summarized in Table 6. The objective
function used in the solution techniques is the penalized one, which contains total constraint
violations. This is carried out because soft computing techniques find the optimum solution
to unconstrained optimization problems. Constrained optimization problems must be
transformed into unconstrained optimization ones by the use of the penalty function
method, as shown in Table 6.
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Table 6. Expressions used to calculate the objective function, penalty, and costs of each element.

Element Equation Terms Definition

Penalized Objective
function f (x) = Ctotal(1 + Penalty)ε

Ctotal: total cost of materials (actual objective function).
Penalty: the value of constraints violation.
ε: penalty exponent (taken as 1 for all algorithms)

Penalty Penalty = ∑nc
i=1 max(gi)

nc: total number of constraints.
gi: ith constraint violation value.

Overall cost Ctotal = Cc + Cfw + Crs

Cc: total cost of concrete.
Cfw: total cost of formwork.
Crs: total cost of reinforcing steel.

Concrete Cc = Uc
(
Vcp + Vcb + Vcd + Vcc

) Uc: unit cost of concrete.
Vcp: volume of plates concrete.
Vcb: volume of beams concrete.
Vcd: volume of diaphragms concrete.
Vcc: volume of columns concrete.

Formwork
Cfw = Ufwh

(
Afwhp + Afwb + Afwd + Afwc

)
+

Ufwi

(
Afwip

)
Ufwh: unit cost of horizontal and vertical formworks.
Ufwi: unit cost of inclined formworks.
Afwhp: area of horizontal plates formworks.
Afwip: area of inclined plates formworks.
Afwb: area of beams formworks.
Afwd: area of diaphragms formworks.
Afwc: area of columns formworks.

Reinforcement Crs = Urs
(
Wrsp + Wrsb + Wrsd + Wrsc

) Urs: unit cost of reinforcing steel.
Wrsp: total weight of reinforcement used in plates.
Wrsb: total weight of reinforcement used in beams.
Wrsd: total weight of reinforcement used in diaphragms.
Wrsc: total weight of reinforcement used in columns.

2.1.3. Design Constraints

To ensure that the proposed optimum design is safe and constructable, it should satisfy
the limitations imposed by the design codes as well as constructability constraints. This
can be achieved by introducing design constraints that cover all the design code provisions
and practical application requirements. A total of 42 design constraints are set for both
problems. The design constraints are divided into three parts; the first is for the plates,
the second for the auxiliary members (beams and diaphragms), and the third is for the
columns.

Plate Constraints

To ensure the safety and practical feasibility of the plates, their strength, service, and
detailing requirements must be satisfied. The strength requirements comprise checking the
tensile and compressive membrane strengths, bending moment capacity, and shear force
capacity. As for the service requirements, the deflections at immediate and long-term stages
shall be within the limits. Finally, for the detailing requirements, the reinforcement spacing
should be less than the maximum limit, the thickness of the slab should be sufficient
to allow the placement of all rebars, and the reinforcement area should be within the
allowable range to prevent sudden brittle failure and satisfy the shrinkage and temperature
limitations. The plate constraints are summarized in Table 7.
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Table 7. Folded plates’ constraints summary.

Const. Description Constraint Equation Term’s Definition Remarks

g1 Membrane compression fc(actual)

∅ fc(allowable)
− 1 ≤ 0

fc(actual): plates ultimate compressive stress.
fc(allowable): compression stress capacity.
Ø: compression strength reduction factor (0.65).
f cu: ultimate compressive strength of concrete.

fc(allowable) = 0.4 fcu

g2 Membrane tension ft(actual)

∅ ft(allowable)
− 1 ≤ 0

ft(actual): plates ultimate tensile stress.
ft(allowable): tension stress capacity.
Ø: tensile strength reduction factor (0.9).
fy: reinforcement yield strength.
As: area of reinforcement.

ft(allowable) = As fy

g3 Transverse bending moment Mu

∅Mn
− 1 ≤ 0

Mu: ultimate transverse bending moment.
Mn: nominal bending moment capacity.
Ø: bending moment capacity reduction factor (ranges between
0.65 to 0.9).

ACI318-11 Clause 18.7

g4 Transverse shear Vu

∅Vc
− 1 ≤ 0

Vu: ultimate transverse shear force at plates interface.
Vc: shear capacity of plate section.
Ø: shear strength reduction factor (0.75).

ACI318-11 Clause 11.11

g5 Immediate deflection δi(actual)

δi(allowable)
− 1 ≤ 0

δi(actual): actual immediate deflection.
δi(allowable): immediate deflection limiting value.
l: minimum span of plates.

δi(allowable) = l/360

g6 Long-term deflection δu(actual)

δu(allowable)
− 1 ≤ 0

δu(actual): actual long-term deflection.
δu(allowable): long-term deflection limiting value. δim(allowable) = l/240

g7 Maximum reinforcement spacing S(provided)

S(max)
− 1 ≤ 0

S(Provided): provided reinforcement spacing.
S(max): maximum allowed reinforcement spacing.

If fc ≤0.3
√

fcu :
S(max) = min(5 h, 450)

Otherwise:
S(max) = min(3 h, 450)

g8 Minimum thickness h(min)

h
− 1 ≤ 0

h: actual plates thickness.
h(min): minimum allowed plate thickness.
Øt: diameter of transverse reinforcement.
Øl: diameter of longitudinal reinforcement.
Cb: bottom face cover (15 mm).
Ct: top face cover (25 mm).

h(min) = 2∅t +∅l + Cb + Ct

g9 Minimum reinforcement area As(min)

As
− 1 ≤ 0

As: provided area of reinforcement.
As(min): minimum allowable area of reinforcement.
b: width of plate strip.

As(min) = 0.0018 bh

g10 Maximum reinforcement area As

As(max)
− 1 ≤ 0 As(max): maximum allowable area of reinforcement. As(max) = 0.04 bh
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Auxiliary Members’ Constraints

The auxiliary members stiffen, strengthen, and support the plates. They comprise
edge and internal beams and diaphragms. For auxiliary members, strength and detailing
requirements must also be satisfied. Deflections are not checked for auxiliary members as
their deflections are covered with the plates. For the strength requirements, the member
should have sufficient flexural capacity to resist the combined bending moments and axial
forces; this is checked by plotting the interaction diagram shown in Figure 7. Additionally,
the shear capacity of the member should meet the applied forces along the whole length of
the member. As for the detailing requirements, the spacing of the longitudinal reinforce-
ment should be within the allowable range to prevent cracks and allow concrete to flow
between the bars. The total area of the longitudinal reinforcement should be within the
allowable range to prevent sudden brittle failure and satisfy the shrinkage and temperature
requirements. The spacing of the shear reinforcement (stirrups) should be less than the
allowable maximum limit, and the area of the provided shear reinforcement per unit length
should be more than the minimum limit. The constraints related to auxiliary members are
summarized in Table 8. Since the section of each of the three auxiliary members has its
own grouped design variable, an independent constraint number is assigned to each of
the auxiliary members. The constraints numbering is the following: through are for edge
beams, through are for internal beams, and through are for diaphragms.
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Column’s Constraints

The columns are divided into three groups: x-edge, y-edge, and corner columns. Like
auxiliary members, the column’s strength and detailing requirements must be satisfied.
For the strength requirements, the columns should have sufficient flexural capacity to
resist the combined bending moments and axial forces; this is checked by plotting the
interaction diagram shown in Figure 7 with the exclusion of the negative axial force part
(tension part), as tension is not experienced in the column members. Additionally, the shear
capacity of the column should meet the applied forces along with the whole height of the
column. As for the detailing requirements, the spacing of the longitudinal reinforcement
should be within the allowable range to prevent cracks and allow concrete to flow and
passage of supported members’ rebars between the longitudinal bars. The total area of
the longitudinal reinforcement should be within the allowable range to prevent sudden
brittle failure and reduce the creep effects. The spacing of the shear reinforcement (stirrups)
should be less than the allowable maximum limit for ordinary moment-resisting frames,
and the provided area of the shear reinforcement per unit length should be more than the
minimum limit. The columns’ constraints are summarized in Table 9. The three-column
groups are checked under one constraint number for each of the above constraints.
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Table 8. Auxiliary members’ constraints summary.

Const. Description Constraint Equation Terms Definition Remarks

g11, g19, and g27 Flexural strength

(1) Axial capacity:
Pu

∅Pn
− 1 ≤ 0

(2) Moment capacity:
Mu

∅Mn
− 1 ≤ 0

(3) Combined flexural capacity:√(
Mu

bh2

)2
+

(
Pu

bh

)2

√(
∅Mn

bh2

)2
+

(
∅Pn

bh

)2
− 1 ≤ 0

Pu: ultimate axial load acting on the section.
Mu: ultimate bending moment acting on the section.
Pn: axial force capacity of the section under the given ultimate
loads.
Mn: bending moment capacity of the section under the given
ultimate loads.
Ø: capacity reduction factor (ranges between 0.65 to 0.9).
b: perpendicular section dimension to the bending moment.
h: parallel section dimension to the bending moment.

According to the interaction diagram
shown in Figure 7.

g12, g20, and g28 Shear strength Vu

∅Vc
− 1 ≤ 0

Vu: ultimate shear force acting on the section.
Vc: shear capacity of the section.
Ø: shear strength reduction factor (0.75).

ACI318-11 Clause 11.11

g13, g21, and g29
Minimum reinforcement
spacing

S(min)

S(provided)
− 1 ≤ 0

S(provided): provided reinforcement spacing.
S(min): minimum allowed reinforcement spacing for the section.

S(min)= 40 mm

g14, g22, and g30
Maximum reinforcement
spacing

S(provided)

S(max)
− 1 ≤ 0 S(max): maximum allowed reinforcement spacing for the section. S(max)= 300 mm

g15, g23, and g31
Minimum reinforcement
area

As(min)

As
− 1 ≤ 0

As: provided reinforcement area in the section.
As(min): minimum allowed reinforcement area for the section.
dt: effective depth of furthest layer of reinforcement in tensile
face.

As(min) =
max

(
0.25

√
fcu, 1.4

)
fy

bdt

g16, g24, and g32
Maximum reinforcement
area

As

As(max)
− 1 ≤ 0 As(max): maximum allowed reinforcement area for the section. As(max) = 0.04 bh

g17, g25, and g33
Maximum shear
reinforcement spacing

Sv

Sv(max)
− 1 ≤ 0

Sv: provided shear reinforcement spacing along the member
length.
Sv(max): maximum allowed shear reinforcement spacing for the
section.
Vs: required shear reinforcement capacity to safely allow the
section capacity to reach the ultimate shear force.

If ØVs ≤0.33
√

fcubd :
Sv(max) = min(dt/2, 600)

Otherwise:
Sv(max) = min(dt/4, 300)

g18, g26, and g34
Minimum shear
reinforcement area

Av(min)

Av
− 1 ≤ 0

Av: provided shear reinforcement area per unit length.
Av(min): minimum allowed shear reinforcement area for the
section.

Av(min) =
max

(
0.062

√
fcu, 0.35

)
fy

h



Mathematics 2022, 10, 1668 14 of 41

Table 9. Column’s constraints summary.

Const. Description Constraint Equation Terms Definition Remarks

g35 Flexural strength

(1) Axial capacity:
Pu
∅Pn
− 1 ≤ 0

(2) Moment capacity:
Mu

∅Mn
− 1 ≤ 0

(3) Combined flexural capacity:√(
Mu

bh2

)2
+

(
Pu

bh

)2

√(
∅Mn

bh2

)2
+

(
∅Pn

bh

)2
− 1 ≤ 0

Pu: ultimate axial load acting on the column.
Mu: ultimate bending moment acting on the column.
Pn: axial force capacity of the column under the given ultimate loads.
Mn: bending moment capacity of the column under the given
ultimate loads.
Ø: capacity reduction factor (ranges between 0.65 to 0.9).
b: perpendicular section dimension to the bending moment.
h: parallel section dimension to the bending moment.

According to the interaction diagram
shown in Figure 7 with the exclusion
of the tension part (the part below the

x-axis).

g36 Shear strength Vu

∅Vc
− 1 ≤ 0

Vu: ultimate shear force acting on the column.
Vc: shear capacity of the column section.
Ø: shear strength reduction factor (0.75).

ACI318-11 Clause 11.11

g37
Minimum reinforcement
spacing

S(min)

S(provided)
− 1 ≤ 0

S(provided): provided reinforcement spacing.
S(min): minimum allowed reinforcement spacing for the column
section.

S(min)= 50 mm

g38
Maximum reinforcement
spacing

S(provided)

S(max)
− 1 ≤ 0

S(max): maximum allowed reinforcement spacing for the column
section. S(max)= 300 mm

g39
Minimum reinforcement
area

As(min)

As
− 1 ≤ 0

As: provided reinforcement area in the column section.
As(min): minimum allowed reinforcement area for the column section. As(max) = 0.01 bh

g40
Maximum reinforcement
area

As

As(max)
− 1 ≤ 0

As(max): maximum allowed reinforcement area for the column
section. As(max) = 0.08 bh

g41
Maximum shear
reinforcement spacing

Sv

Sv(max)
− 1 ≤ 0

Sv: provided shear reinforcement spacing along the column length.
Sv(max): maximum allowed shear reinforcement spacing for the
column section.
Øl: diameter of longitudinal reinforcement.
Øv: diameter of shear reinforcement.

Sv(max) = min(b, 16∅l , 48∅v)

g42
Minimum shear
reinforcement area

Av(min)

Av
− 1 ≤ 0

Av: provided shear reinforcement area per unit length.
Av(min): minimum allowed shear reinforcement area for the column
section.

Av(min) =
max

(
0.062

√
fcu, 0.35

)
fy

h
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2.2. Soft Computing Techniques

The design optimization problem of V-type and three-segment folded plate struc-
tures has 11 and 13 design variables, respectively, which take discrete values, defined in
Tables 2–5. The objective function of the design problem is given in Table 6, while the
constraints are summarized in Tables 7–9. In order to attain the optimum solution to this
design problem, it is necessary to select the appropriate values of design variables defined
in Tables 2–5 such that the objective function becomes the minimum while all 42 constraints
described in Tables 7–9 are satisfied. This is a problem of combinatorial optimization
with discrete design variables. Certainly, it is possible to produce a very large number of
combinations of possible solutions randomly or otherwise where the design constraints are
satisfied. However, this does not guarantee that among these solutions, the one which gives
the objective function its minimum value may exist. Therefore, it is not an easy task to find
the optimum solution to such optimum design problems. Using gradient-based mathemat-
ical programming techniques to determine the optimum solution is not an option due to
the fact that the design variables are non-continuous, and constraints are non-differentiable
to Saka and Geem [16]. The use of the branch and bound method or other techniques
of integer programming is impractical and computationally quite cumbersome to apply
to determine the solution of this class of problems presented by Saka [17]. On the other
hand, there are other techniques in mathematical programming that do not require gradient
information of the objective function and design constraints. These are called direct search
methods. The success of these techniques depends very much on the number of design
variables in the combinatorial optimum design problem as well as the size of discrete pools
from which the values of design variables are required to be selected in Saka et al. [18].

Soft computing techniques (metaheuristic algorithms) do not suffer from the above-
mentioned limitations. These techniques are suitable for achieving global optimum or
near-global optimum solutions [19,20]. These techniques are non-traditional stochastic
search and optimization methods without the need to use gradient information of the
objective function and constraints. They find the optimum solution by moving within a
design domain randomly utilizing intelligent heuristics to guide the random search. The
strategies that direct the search process are inspired by natural phenomena, social culture,
biology, or laws of physics. There are several review papers and books available in the
literature that comprehensively explain the use of metaheuristic algorithms in structural
optimization [16–20]. An improved form of the recently developed technique, the beetle
antennae search (BAS) algorithm [21,22], is used in this study to determine the optimum
solution to the design problem of two folded plate structures. Two other well-established
algorithms, the artificial bee colony (ABC) algorithm [23–26] and the differential evolution
(DE) algorithm by Storn and Price [27], are widely applied in structural optimization. The
standard forms of both algorithms have also been used to find the optimum solution to
the design problems. A summary of the working steps of both the standard forms of
the three algorithms and the modified form of the beetle antennae search algorithm is in
the following.

2.2.1. Artificial Bee Colony (ABC) Algorithm

The artificial bee colony algorithm originated by Karaboga [23]. Its steps are based on
the foraging behavior of a honeybee colony. In the working steps of the algorithm, the bees
in the colony are expected to carry out three different types of tasks, and they are named
according to these tasks. The bees that locate the food source, evaluate its amount of nectar,
and keep its location in their memory are called employed bees. These bees fly back to the
hive after finding a new food source and share this information with other bees by dancing
in the dancing area. This dance is called the waggle dance. It consists of two loops, one on
the left and one on the right. The line which separates these two loops shows the direction
of the food source. The dancing time represents the amount of nectar in the food source.
The other group that observes the waggle dance and makes a decision as to whether it is
worthwhile to fly to that food source or not are called onlooker bees. It is apparent that if the
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dancing time is long, this means the food source is rich, which is expected to attract more
onlooker bees. The third group is called scout bees which explore new food sources near
the hive randomly. Therefore, the task of scout bees is to carry out the exploration, and the
task of the other group of bees is exploitation. In the implementation of the above tasks into
a numerical optimization algorithm, each food source represents a possible solution for the
optimization problem. The nectar amount of a food source is considered as the quality of
the solution, which is identified by its fitness value. There are four stages in the application
of the artificial bee colony algorithm. These stages are defined as the initialization phase,
employed bees’ phase, onlooker bees’ phase, and scout bees’ phase by Karaboga [23].

1. Initialization phase: In this phase, the population of food sources is initialized, (xp,
p = 1, . . . ., np) by using (1) where np is the population size (total number of artificial bees).
Each food source consists of n variables (xpi, i = 1, . . . ., n) which is a potential solution to
the optimization problem.

xpi = x`i + rand(0, 1)(xui − x`i) (1)

where x`i and xui are lower and upper bound on xi. rand(0, 1) is a random number between
0 and 1.

2. Employed bees’ phase: In this phase, new food sources are searched by employed
bees by using (2).

vpi = xpi + φpi
(

xpi − xki
)

(2)

where k 6= i is a randomly selected food source, and φpi is a random number within range
[–1, 1]. After producing the new food source, its fitness is calculated. If the fitness is better
than xpi, the new food source replaces the previous one. The fitness value of the food
sources is calculated according to (3)

f itness
(
xp
)
=

{
and 1

1+ f (xp)
i f f

(
xp
)
≥ 0

and 1 + abs
(

f
(
xp
))

i f f
(
xp
)
< 0

(3)

3. Onlooker bees’ phase: There are two groups of unemployed bees which are onlooker
bees and scouts. Employed bees share their food source information with onlooker bees.
Onlooker bees choose their food source with the probability value Pp which is calculated
using the fitness values of each food source in the population as shown in (4).

Pp =
f itness

(
xp
)

∑
np
p=1 f itness

(
xp
) (4)

When an onlooker bee selects a food source xpi probabilistically, a neighborhood
source is determined by using Equation (2), and its fitness value is computed using (3).

4. Scout bees’ phase: Scout bees choose their food sources randomly. Employed
bees become scout bees when their food sources cannot be improved anymore after a
predetermined number of trials. This causes abandonment of these solutions. These scouts’
bees start to search for new solutions.

5. Phases 2–4 are repeated until termination criteria is satisfied.

2.2.2. Differential Evolution (DE) Algorithm

One other metaheuristic algorithm which is widely applied in structural optimization
is the differential evolution technique, developed by Storn and Price [27]. This technique
belongs to the evolutionary optimization algorithms group, which is also population based.
The differential evolution algorithm initiates the search for an optimum solution by first
setting up an initial population. The initial population consists of randomly generated
m individuals that are expected to cover the entire design space. Uniform probability
distribution is used for all random decisions. An individual in a population represents
a candidate solution to the optimization problem. This is the same as the chromosomes
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or genomes of a genetic algorithm. However, the differential evolution algorithm does
not use binary representation for the design variables, but it makes use of real numbered
representation. The individual is called an agent, and the objective function is called a fitness
function. New solution vectors are generated by adding the weighted difference between
two population vectors to a third vector. This operation is called a mutation. The mutated
vectors are then mixed with the parameters of another predetermined vector, the target
vector, to yield the trial vector. This is referred to as crossover. If the trial vector produces a
lower cost function value than the target vector, the trial vector replaces the target vector in
the next generation. This operation is called selection. Each population vector has to serve
once as a target vector so that N competition takes place in one generation. Generations are
continued until a predetermined maximum number of generations is reached. The steps of
the algorithm are summarized in the following as given by Storn and Price [27].

1. Initial population is generated randomly in the search space which consists of m
number of agents x, each of which comprises n design variables.

2. For each agent xj where j = 1, . . . , n the following is carried out:

• Three agents xa, xb, and xc which are distinctly different from each other and that
of xj are selected randomly from the population.

• Index k, which is between 1 to n is selected randomly.
• The agent’s trial vector xt is computed by iterating over each i ∈ {1, . . . , m} as

follows:
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mutated vectors are then mixed with the parameters of another predetermined vector, the 
target vector, to yield the trial vector. This is referred to as crossover. If the trial vector 
produces a lower cost function value than the target vector, the trial vector replaces the 
target vector in the next generation. This operation is called selection. Each population 
vector has to serve once as a target vector so that N competition takes place in one gener-
ation. Generations are continued until a predetermined maximum number of generations 
is reached. The steps of the algorithm are summarized in the following as given by Storn 
and Price [27]. 
1. Initial population is generated randomly in the search space which consists of m 

number of agents x, each of which comprises n design variables. 
2. For each agent xj where j = 1,…, n the following is carried out: 

• Three agents xa, xb, and xc which are distinctly different from each other and that 
of xj are selected randomly from the population.  

• Index k, which is between 1 to n is selected randomly. 
• The agent’s trial vector xt is computed by iterating over each 𝑖 ∈ 1, … , 𝑚  as 

follows: 
 Select a random number ri ~ 𝑈(0,1). 
 Compute the trial vector as 𝒙𝒕 = 𝒙𝒂 + 𝐹(𝒙𝒃 − 𝒙𝒄) if 𝑖 = 𝑘 or 𝑟 ≤ 𝐶𝑅 oth-

erwise 𝒙𝒕 = 𝒙𝒋  where CR is the crossover rate and F is the scaling 
(weighting) factor defined by users. 

• The trial vector is updated considering the lower and upper bound vectors as 𝒙𝒕 = 𝒙𝑳 if 𝒙𝒕 < 𝒙𝑳, 𝒙𝒕 = 𝒙𝒖 if 𝒙𝒕 > 𝒙𝒖. If 𝑊(𝒙𝒕) < 𝑊 𝒙𝒋  then xt is replaced by 
the agent xj. 

Compute the trial vector as xt = xa + F(xb − xc) if i = k or ri ≤ CR otherwise
xt = xj where CR is the crossover rate and F is the scaling (weighting) factor
defined by users.

• The trial vector is updated considering the lower and upper bound vectors as
xt = xL if xt < xL, xt = xu if xt > xu. If W(xt) < W

(
xj
)

then xt is replaced by the
agent xj.

3. The agent xo from the population having the lowest fitness W(xo) is the best-found
solution within this generation.

4. Continue the generation until stopping criteria is satisfied.

It is reported in the literature that control variables m, F, and CR of the differential
evolution algorithm are not difficult to choose in order to obtain good results. It is suggested
that the selection of the total value of the initial population between 5 and 10 times the
number of parameters in the optimization problem is reasonable for a good performance of
the algorithm. It is advised by Storn and Price [27] to select the initial values for F and CR
as 0.5 and 0.1, respectively, to attain stable convergence.

2.2.3. Beetle Antennae Search (BAS) Algorithm

The beetle antennae search algorithm originated by Jiang [21]. Longhorn beetles have
very long antennas. These antennas, in some case even longer than the beetle’s length, have
receptor cells that serve to receive odors of prey or any other pheromones. Beetles move
each antenna waveringly from side to side to receive an odor when it searches for food or
mates. When the antenna on one side detects a higher concentration of an odor, the beetle
moves in that direction; otherwise, it would move in the other direction. It means the beetle
explores nearby areas randomly using both antennas. The beetle antennae search algorithm
imitates this searching behavior. The steps of the algorithm can be collected in five stages:
initialization of beetle position, randomization of movement direction, estimation of right-
hand and left-hand side movements, movement in the best direction, and update of sensing
length and step size.

1. Initialization of beetle position: the beetle position x = {x1, x2, . . . , xn} where n is the
total number of variables is initialized. The value of the objective function f (x) is computed
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for this initial position. The parameters d0 and δ0 are initialized. The initial position of the
beetle is estimated using the below equation:

xi = xli + rand(0, 1)× (xui − xli) (5)

where xli and xui are the lower and upper bounds for variable i, respectively.
2. Randomization of movement direction: the value of movement direction b is

randomly determined through the equation below:

bi =
randsi

||rands(n, 1)|| (6)

where randsi is a random number ranging from −1 to 1 for variable i, and ||rands(n, 1)|| is
the norm of the randomized values of all the variables.

3. Estimation of right-and left-hand side movements: the right- and left-hand sides
movement, x(right) and x(left) are estimated for a given sensing antennas length (d). The
right- and left-hand side positions are determined from Equations (7) and (8). These are
used to evaluate the objective function value in order to determine the best movement
direction.

xi(right) = xi + dt × bi (7)

xi(left) = xi − dt × bi (8)

where dt is the sensing length of antenna at tth iteration.
4. Movement in the best direction: after evaluating the left- and right-hand side move-

ments, the one with better objective function value is set to be the direction of movement
for the beetle. The beetle makes use of the given step size (δ) to move in the better direction.
Furthermore, the objective value is also determined for the new position regardless of
whether its value is better or worse than the current solution.

xt+1
i = xt

i − δt × bi × sign
(

f
(

x(right)

)
− f

(
x(left)

))
(9)

where δt is the step size at tth iteration.
5. Update of sensing length and step size: when the beetle position is updated, the

sensing length d and step size δ are also updated. (Jiang 2017) recommended the following
update rules.

dt+1 = 0.95dt + 0.01 (10)

δt+1 = 0.95δt (11)

where dt+1 and δt+1 are the sensing length and step size for the next iteration.
6. Steps 2 to 5 are repeated until the termination criterion is satisfied.

2.2.4. Population Based Beetle Antenna Search (pbBAS) Algorithm

Yousif and Saka [22] have suggested that the performance of the original BAS algo-
rithm can be developed by performing greedy selection along with introducing a population
of beetles instead of a single beetle. This enhancement in the algorithm provides a better
capability of avoiding being stuck at the local optimal solutions. Furthermore, the proce-
dure of updating the beetle position has also been modified in this study. The algorithm
parameters are listed in Table 10. The flowchart of pbBAS algorithm is shown in Figure 8.

Table 10. pbBAS algorithm parameters description.

Parameters Description

Number of Working Beetles The working population size of beetles

Maximum Number of Evaluations The maximum number of objective function evaluations

P Probability value for beetle parameter changes (ranges between zero and one)
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1. Initialization of beetles’ positions: After deciding the population size, the number
of beetle groups is introduced in such a way that the selection covers the design domain.
The number of beetle groups is taken as the number of design variables in the optimization
problem times the selected population size. The initial position of each beetle in the group
is randomly estimated through the equation below:

xji = xl + rand(1, n)× (xu − xl) (12)

where xji is the ith beetle position of the jth group, xl and xu are the row values of the lower
and upper bounds for the variables, respectively, and n is the number of design variables.

The standard deviation value is calculated for each variable in each group after
calculating the position of each beetle in all the groups randomly. The initial population
is then set to be a combination of the largest deviated variables within the randomized
groups. Once the population is established, the objective function value for each beetle
is computed.

2. Iteration: this stage consists of two phases; the beetle sensing phase and the beetle
movement phase. The two phases are conducted for each beetle in a row before proceeding
to the next beetle.

(a) Beetle sensing phase:
At this phase, two random beetles distinct from each other are selected, xa and xb. It is

possible that one of the beetles is the same as the beetle being considered for the update xi.
A new beetle position S is computed using the equation below:

S = xi + β(xa − xb) (13)

where β is a random number ranging between −1 to 1.
After generating the new beetle position, it is set to crossover with the considered

beetle’s position depending on the probability (p) value. The crossover is carried out for the
variables that satisfy: j = jo or rand ≤ P. Where j is the variable number, jo is a randomly
selected variable, rand is a random number generated for each variable which ranges from
0 to 1, and p is the probability of variable changes parameter.
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The proposed position is then evaluated using the objective function. If its fitness
value is larger than the considered beetle’s position, the beetle position is updated.

(b) Beetle movement phase:
There are two possible outcome scenarios depending on the result of the previous

phase:
(b-1) Sensing phase succeeds at finding a better solution: proceed with another

crossover using the same procedure discussed in the beetle sensing phase.
(b-2) Sensing phase fails at finding a better solution: move the beetle in the opposite

direction. The new beetle position is calculated using the following equation:

S = xi − β(xa − xb) (14)

It should be noted that if the second condition applies, the values of β, xa, and xb are
set as the exact same values as in the previous phase. Moreover, both jo and rand that are
used to select the variables to be crossed over are the same as in the previous phase.

The proposed new position is then evaluated using the objective function regardless
of the scenario outcome. If its fitness value is larger than the considered beetle position, the
beetle position is updated.

3. Results

Two folded plate structures are designed by using three optimum design algorithms
developed. The first design example is a building of 60 m by 25 m dimensions with a
V-type folded plate roof that has a single angle of inclination for all the spans. The second
design example is a three-segment folded plate roof building. Both gravity and lateral
loads are considered in the design problems. The gravity loads acting on the roof structure
are dead loads (DL), including the superimposed loads and live loads (LL), which act on
the planer area of the building. Only the wind loads (WL) acting on the elevation projection
area are considered lateral loads. Using these loads, 77 load combinations are generated in
accordance with ACI-318-11; 2 of which are service load combinations, and the remaining
75 are all ultimate load combinations. The load combinations used to design each member
are summarized in Table 11. The values mentioned in the table represent the weights
assigned to each load case under each load combination. Because wind loads can act in
any direction, they are represented by 12 load cases in accordance with ASCE 7-05. The
long-term deflection load combination considers 25% of the live loads as sustained loads.

Table 11. Load combinations summary.

Load Combination
DL LL WL Members Checked against Combination

Type Name

U
lt

im
at

e

1 1.4 - - All members
2 1.2 0.5 - All members
3 1.2 1.6 - All members

4~27 1.2 1.6 ±0.5 Columns only
28~51 1.2 0.5 ±1.0 Columns only
52~75 0.9 - ±1.0 Columns only

Service
Immediate deflection - 1.0 - Plates only
Long-term deflection 1.835 1.20875 - Plates only

Because the metaheuristic algorithms generate random results, each algorithm is run
10 times using 10 different seed values in each design problem. The results achieved by
each algorithm are used to conduct a statistical study. For the statistical analysis number of
runs was selected as 10. This number is large enough to form a population for conducting a
statistical study and, in the meantime, small enough for an affordable computational time.
The random seed values were selected from zero to nine in sequential order.
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The optimum design framework was developed based on two software: MATLAB
version R2014a which is a product from MathWorks located in Galway, Ireland and CSI-
SAP2000 version 20 produced by Computers & Structures, inc. in Berkeley, CA, USA. The
metaheuristic algorithms are coded in a MATLAB environment. These codes generate
and update solutions and evaluate the fitness of each solution by estimating its cost and
calculating constraints’ violations, if there are any, to penalize the cost. It is apparent that
structural analysis is needed to identify the values of constraints’ violations. The structural
analysis is carried out in CSI-SAP200 by the finite element method, and the response of the
structure is transferred to the MATLAB environment by utilizing the API coding language.
A flow chart representing each of the two involved MATLAB codes is shown in Figures 9
and 10.
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3.1. V-Type Folded Plate Roof Problem

The first design problem is for a V-type folded plate roof building with a size of
60 m × 25 m. The internal supports may vary from three to nine with an increment of one.
Figure 11 shows the building with three internal supports. The total number of ungrouped
design variables in this problem is 49, which are grouped into 11 design variables. The
11 design variables are internal supports, plate thickness, longitudinal and transverse
reinforcement configurations, angle of inclination of plates, edge beam sectional details,
internal beam sectional details, diaphragm sectional details, x-edge columns sectional
details, y-edge columns sectional details, and corner columns sectional details. Input
details of this design problem and the selected controlling parameter setting of each
optimization algorithm are summarized in Tables 12 and 13, respectively. The maximum
number of permissible structural analyses is set to be 9000 for each of the three algorithms.
The optimum results obtained by the 10 runs, their minimum (best), first quartile, second
quartile (median), third quartile, average, and maximum (worst), are listed in Table 14. In
Figures 12–14, the design histories of each algorithm are plotted for the best, average, and
worst optimum results achieved, respectively. Additionally, the box plots of the algorithm
results are plotted in Figure 15. The best overall optimum solution corresponding to the
cost of $224,177 was achieved by the DE algorithm. As opposed to the solution obtained by
traditional design, the best overall optimum solution produces a cost savings of 21%, as
shown in Table 14.
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Table 12. Input data for the V-type folded plate roof building.

Detail Value Unit

Material Properties

Concrete ultimate cylindrical strength 30 MPa

Reinforcement
Yield stress 420 (Grade 60) MPa

Modulus of elasticity 200 GPa

Model

Building overall dimensions Along x-direction 25,000 mm

Along y-direction 60,000 mm

Meshing size
Along x-direction 1000 mm

Along y-direction 500 mm

Number of column lines
Along x-direction 2 + V1 (variable) Nos.

Along y-direction 6 Nos.

Total number of columns 12 + 2V1 (variable) Nos.

Transverse span of plates (l) 60, 000/(1 + V1) mm

Longitudinal span of plates 25,000 mm

Building height
To the bottom level of inclined plates 8000 mm

To the top level of inclined plates 8000 + tan(V5)× l/2 mm
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Table 12. Cont.

Detail Value Unit

Load Assignments

Plates superimposed dead load 1.5 kPa

Plates live load (acting on the planer area) 0.75 kPa

Wind load

Basic gust wind speed 160 kmh

Exposure Category “C” -

Importance factor 1 -

Topography factor 1 -

Directional factor 0.85 -

Gust factor 0.85 -

Pressure coefficient
Windward face +0.8 -

Leeward face −0.5 -

Unit Cost *

Concrete 125 $/m3

Reinforcement 0.95 $/kg

Formwork
Vertical and horizontal 40 $/m2

Inclined 50 $/m2

*: all unit cost rates are obtained from the material suppliers in Bahrain local market.

Table 13. Adopted internal parameter values for each metaheuristic algorithm in the V-type folded
plate roof building.

Algorithm Parameter Value

ABC

Number of bees (colony size) 30

Number of food sources 15

Maximum number of iterations 300

Trial limit 300

DE

Population size 20

Crossover probability 0.2

Maximum number of iterations 450

Scaling factor
Lower bound 0

Upper bound 1

pbBAS

Number of beetles 10

Probability of beetle movement 0.1

Maximum number of iterations 450

Table 14. Optimum results achieved in the V-type folded plate roof building by each metaheuristic
algorithm.

Metaheuristic Algorithms Traditional
Design ($)ABC ($) pbBAS ($) DE ($)

The optimum results in
ascending order

1 225,826.80 227,366.24 224,177.14

283,817.05

2 227,186.97 228,635.54 224,196.82

3 227,980.34 228,706.35 224,462.70

4 228,697.83 228,756.96 224,556.83

5 229,019.23 229,861.84 225,736.41

6 229,376.60 230,242.71 226,510.54

7 229,552.96 232,715.97 226,538.59

8 229,653.36 233,123.04 226,690.03

9 230,138.80 233,725.44 228,018.30

10 231,598.06 234,348.75 229,249.29
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Table 14. Cont.

Metaheuristic Algorithms Traditional
Design ($)ABC ($) pbBAS ($) DE ($)

Minimum 225,826.80 227,366.24 224,177.14

Q1 227,980.34 228,706.35 224,462.70

Q2 (Median) 229,197.91 230,052.27 226,123.48

Average 228,903.09 230,748.28 226,013.66

Q3 229,653.36 233,123.04 226,690.03

Maximum 231,598.06 234,348.75 229,249.29

Standard dev. 1609.5193 2503.6906 1723.8909

Mathematics 2022, 10, x FOR PEER REVIEW 24 of 40 
 

 

Maximum 231,598.06 234,348.75 229,249.29  
Standard dev. 1609.5193 2503.6906 1723.8909  

 
Figure 12. Design history of the best run achieved by each metaheuristic algorithm for the V-type 
folded plate roof problem. 

 
Figure 13. Design history of the sample average of the 10 runs achieved by each metaheuristic algo-
rithm for the V-type folded plate roof problem. 

Figure 12. Design history of the best run achieved by each metaheuristic algorithm for the V-type
folded plate roof problem.



Mathematics 2022, 10, 1668 25 of 41

Mathematics 2022, 10, x FOR PEER REVIEW 24 of 40 
 

 

Maximum 231,598.06 234,348.75 229,249.29  
Standard dev. 1609.5193 2503.6906 1723.8909  

 
Figure 12. Design history of the best run achieved by each metaheuristic algorithm for the V-type 
folded plate roof problem. 

 
Figure 13. Design history of the sample average of the 10 runs achieved by each metaheuristic algo-
rithm for the V-type folded plate roof problem. 
Figure 13. Design history of the sample average of the 10 runs achieved by each metaheuristic
algorithm for the V-type folded plate roof problem.

Mathematics 2022, 10, x FOR PEER REVIEW 25 of 40 
 

 

 
Figure 14. Design history of the worst run achieved by each metaheuristic algorithm for the V-type 
folded plate roof problem. 

 
Figure 15. Box plot of the results achieved by each metaheuristic algorithm after 10 runs for the V-
type folded plate roof problem. 

The details of the best optimum result achieved by each algorithm are summarized 
in Tables 15–17. Additionally, the maximum values of demand to capacity ratios for that 
design are listed in Tables 18–20. The cost consumption by each material of each member 
for the overall best optimum design is summarized in Table 21 and plotted as percentile 
contribution in Figure 16. 

  

Figure 14. Design history of the worst run achieved by each metaheuristic algorithm for the V-type
folded plate roof problem.



Mathematics 2022, 10, 1668 26 of 41

Mathematics 2022, 10, x FOR PEER REVIEW 25 of 40 
 

 

 
Figure 14. Design history of the worst run achieved by each metaheuristic algorithm for the V-type 
folded plate roof problem. 

 
Figure 15. Box plot of the results achieved by each metaheuristic algorithm after 10 runs for the V-
type folded plate roof problem. 

The details of the best optimum result achieved by each algorithm are summarized 
in Tables 15–17. Additionally, the maximum values of demand to capacity ratios for that 
design are listed in Tables 18–20. The cost consumption by each material of each member 
for the overall best optimum design is summarized in Table 21 and plotted as percentile 
contribution in Figure 16. 

  

Figure 15. Box plot of the results achieved by each metaheuristic algorithm after 10 runs for the
V-type folded plate roof problem.

The details of the best optimum result achieved by each algorithm are summarized
in Tables 15–17. Additionally, the maximum values of demand to capacity ratios for that
design are listed in Tables 18–20. The cost consumption by each material of each member
for the overall best optimum design is summarized in Table 21 and plotted as percentile
contribution in Figure 16.

Table 15. The optimum values of folded plates variables obtained by each metaheuristic algorithm
for the V-type folded plate roof building.

Design
Variable Detail

Best Optimum Designs
Traditional Design

ABC pbBAS DE

V1 Number of interior supports 6 Nos. (l = 8.571 m) 6 Nos. (l = 8.571 m) 6 Nos. (l = 8.571 m) 4 Nos. (l = 12 m)

V2 Thickness of inclined plates 90 mm 80 mm 80 mm 110 mm

V4 Longitudinal reinforcement configuration T12@250 mm T10@200 mm T10@250 mm T12@200 mm

V5 Transverse reinforcement configuration T12@250 mm T12@200 mm T12@250 mm T12@150 mm

V7 Angle of inclination 30◦ 30◦ 29◦ 40◦

Table 16. The optimum values of auxiliary members variables obtained by each metaheuristic
algorithm for the V-type folded plate roof building.

Design
Variable Member Detail

Best Optimum Designs Traditional
Design

ABC pbBAS DE

V8 Edge beams

Width 300 mm 350 mm 350 mm 300 mm

Depth 800 mm 900 mm 900 mm 700 mm

Diameter of longitudinal reinforcement 20 mm 20 mm 20 mm 20 mm

Number of longitudinal rebars along minor axis 3 Nos. 4 Nos. 4 Nos. 3 Nos.

Number of longitudinal rebars along major axis 7 Nos. 8 Nos. 8 Nos. 6 Nos.

Shear reinforcement configuration T8@300 mm T10@250 mm T8@250 mm T10@250 mm
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Table 16. Cont.

Design
Variable Member Detail

Best Optimum Designs Traditional
Design

ABC pbBAS DE

V9
Interior
beams

Width 350 mm 350 mm 400 mm 400 mm

Depth 1000 mm 1000 mm 1100 mm 1200 mm

Diameter of longitudinal reinforcement 25 mm 25 mm 25 mm 20 mm

Number of longitudinal rebars along minor axis 4 Nos. 4 Nos. 4 Nos. 4 Nos.

Number of longitudinal rebars along major axis 11 Nos. 11 Nos. 11 Nos. 10 Nos.

Shear reinforcement configuration T10@200 mm T10@250 mm T10@250 mm T10@250 mm

V10 Diaphragms

Thickness 250 mm 250 mm 250 mm 350 mm

Depth of diaphragm below lower level of plates 500 mm 500 mm 500 mm 800 mm

Diameter of horizontal reinforcement 16 mm 16 mm 16 mm 20 mm

Number of horizontal rebars along minor axis 3 Nos. 3 Nos. 3 Nos. 4 Nos.

Spacing between horizontal rebars along major axis 200 mm 200 mm 200 mm 200 mm

Vertical reinforcement configuration T16@200 mm T16@200 mm T16@200 mm T16@150 mm

Table 17. Optimum values of column’s variables obtained by each metaheuristic algorithm for the
V-type folded plate roof building.

Design
Variable Member Detail

Best Optimum Designs Traditional
Design

ABC pbBAS DE

V11
x-edge

columns

Size in x-direction 400 mm 400 mm 400 mm 400 mm

Size in y-direction 200 mm 200 mm 200 mm 200 mm

Diameter of longitudinal reinforcement 12 mm 16 mm 16 mm 16 mm

Number of longitudinal rebars along x-direction 4 Nos. 4 Nos. 4 Nos. 4 Nos.

Number of longitudinal rebars along y-direction 2 Nos. 2 Nos. 2 Nos. 2 Nos.

Shear reinforcement configuration T10@150 mm T10@150 mm T8@200 mm T10@200 mm

V12
y-edge

columns

Size in x-direction 250 mm 250 mm 250 mm 300 mm

Size in y-direction 600 mm 600 mm 600 mm 700 mm

Diameter of longitudinal reinforcement 16 mm 16 mm 16 mm 20 mm

Number of longitudinal rebars along x-direction 2 Nos. 2 Nos. 2 Nos. 3 Nos.

Number of longitudinal rebars along y-direction 6 Nos. 6 Nos. 6 Nos. 7 Nos.

Shear reinforcement configuration T8@200 mm T8@200 mm T8@200 mm T10@250 mm

V13
Corner

columns

Size in x-direction 450 mm 400 mm 450 mm 450 mm

Size in y-direction 450 mm 400 mm 450 mm 450 mm

Diameter of longitudinal reinforcement 16 mm 20 mm 16 mm 16 mm

Number of longitudinal rebars along x-direction 5 Nos. 4 Nos. 5 Nos. 5 Nos.

Number of longitudinal rebars along y-direction 5 Nos. 4 Nos. 5 Nos. 5 Nos.

Shear reinforcement configuration T8@250 mm T8@200 mm T8@250 mm T12@150 mm
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Table 18. Folded plates constraints the maximum demand capacity ratios in the optimum designs
achieved by each metaheuristic algorithm for the V-type folded plate roof building.

Const.
No.

Description
Best Optimum Designs Traditional

DesignABC pbBAS DE

R1 Membrane compression 0.788 0.822 0.808 0.437

R2 Membrane tension 0.971 0.917 0.942 0.916

R3 Transverse bending moment 0.964 0.804 0.988 0.929

R4 Transverse shear force 0.860 0.940 0.942 0.923

R5 Immediate deflection 0.084 0.099 0.095 0.083

R6 Long-term deflection 0.748 0.825 0.805 0.843

R7 Maximum reinforcement spacing 0.926 0.833 0.625 0.606

R8 Minimum plates thickness 0.844 0.925 0.925 0.691

R9 Minimum reinforcement area 0.358 0.367 0.458 0.350

R10 Maximum reinforcement area 0.126 0.123 0.098 0.129

Table 19. Auxiliary members’ constraints the maximum demand capacity ratio in the optimum
designs achieved by each metaheuristic algorithm for the V-type folded plate roof building.

Member Const. No. Description
Best Optimum Designs Traditional

DesignABC pbBAS DE

Edge beams

R11 Flexural strength 0.685 0.446 0.430 0.850

R12 Shear strength 0.336 0.190 0.255 0.362

R13 Minimum longitudinal reinforcement spacing 0.556 0.706 0.690 0.571

R14 Maximum longitudinal reinforcement spacing 0.313 0.305 0.307 0.320

R15 Minimum longitudinal reinforcement area 0.148 0.156 0.156 0.146

R16 Maximum longitudinal reinforcement area 0.524 0.499 0.499 0.524

R17 Maximum shear reinforcement spacing 0.809 0.595 0.594 0.781

R18 Minimum shear reinforcement area 0.995 0.597 0.933 0.464

Interior beams

R19 Flexural strength 0.970 0.969 0.972 0.968

R20 Shear strength 0.623 0.704 0.601 0.519

R21 Minimum longitudinal reinforcement spacing 0.800 0.800 0.600 0.545

R22 Maximum longitudinal reinforcement spacing 0.208 0.208 0.242 0.333

R23 Minimum longitudinal reinforcement area 0.086 0.086 0.108 0.202

R24 Maximum longitudinal reinforcement area 0.912 0.912 0.725 0.393

R25 Maximum shear reinforcement spacing 0.427 0.533 0.482 0.439

R26 Minimum shear reinforcement area 0.531 0.663 0.729 0.796

Diaph-ragms

R27 Flexural strength 0.995 0.977 0.991 0.790

R28 Shear strength 0.330 0.321 0.321 0.266

R29 Minimum horizontal reinforcement spacing 0.889 0.889 0.889 0.759

R30 Maximum horizontal reinforcement spacing 0.603 0.603 0.575 0.589

R31 Minimum horizontal reinforcement area 0.335 0.335 0.343 0.327

R32 Maximum vertical reinforcement area 0.402 0.402 0.402 0.393

R33 Maximum vertical reinforcement spacing 0.917 0.917 0.917 0.409

R34 Minimum shear reinforcement area 0.616 0.616 0.596 0.907
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Table 20. Column’s constraints the maximum demand capacity ratio in the optimum designs achieved
by each metaheuristic algorithm for the V-type folded plate roof building.

Const. No. Description
Best Optimum Designs Traditional

DesignABC pbBAS DE

R35 Flexural strength 0.999 0.999 0.991 0.886

R36 Shear strength 0.421 0.434 0.424 0.388

R37 Minimum longitudinal reinforcement spacing 0.730 0.735 0.730 0.752

R38 Maximum longitudinal reinforcement spacing 0.407 0.407 0.407 0.262

R39 Minimum longitudinal reinforcement area 0.884 0.622 0.629 0.629

R40 Maximum longitudinal reinforcement area 0.201 0.295 0.251 0.299

R41 Maximum shear reinforcement spacing 0.977 0.800 1.000 1.000

R42 Minimum shear reinforcement area 0.995 0.995 0.995 0.928

Table 21. Distribution of the optimum cost values among different materials and structural parts for
the V-type folded plate roof building.

Material Sum

Member Concrete Formwork Reinforcement Amount Percentage

Plates 17,151.45 86,356.35 17,645.97 121,153.77 54%

Beams 9688.88 18,858.80 22,141.53 50,689.20 23%

Diaphragms 6254.99 17,164.85 10,108.75 33,528.59 15%

Columns 3250.00 11,380.00 4175.58 18,805.58 8%

Sum
Amount 36,345.32 133,760.00 54,071.83 224,177.14 100%

Percentage 16% 60% 24% 100%
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3.2. Three-Segment Type Folded Plate Roof Problem

The three-segment type folded plate roof design problem is sized as 60 m × 25 m. The
internal supports may vary from three to nine with an increment of one. Figure 17 shows
the building with three internal supports. The total number of ungrouped design variables
to be considered in this problem is 51, which are grouped into 13 design variables. The
13 design variables are several internal supports, inclined plates thickness, horizontal plates
thickness, longitudinal and transverse reinforcement configurations, lengths of horizontal
plates at each span, angle of inclination of plates, edge beam sectional details, internal beam
sectional details, diaphragm sectional details, x-edge columns sectional details, y-edge
columns sectional details, and corner columns sectional details. Input details of this design
problem are summarized in Table 22. The selected values of controlling parameter settings
of the optimization algorithms are the same as the first problem, summarized in Table 13.
The maximum number of permissible structural analyses is set to be 9000 for each of the
three algorithms. The optimum results obtained by the 10 runs, their minimum (best), first
quartile, second quartile (median), third quartile, average, and maximum (worst), are listed
in Table 23. In Figures 18–20, the design histories of each algorithm are plotted for the
best, average, and worst optimum results achieved, respectively. Additionally, the box
plots of the algorithm results are plotted in Figure 21. The best overall optimum solution
corresponding to the cost of $207,220 was achieved by the DE algorithm. As opposed to
the solution obtained by traditional means of design, the best overall optimum solution
produces a cost saving of 18.5%, as shown in Table 23.

Mathematics 2022, 10, x FOR PEER REVIEW 29 of 40 
 

 

3.2. Three-Segment Type Folded Plate Roof Problem 
The three-segment type folded plate roof design problem is sized as 60 m × 25 m. The 

internal supports may vary from three to nine with an increment of one. Figure 17 shows 
the building with three internal supports. The total number of ungrouped design varia-
bles to be considered in this problem is 51, which are grouped into 13 design variables. 
The 13 design variables are several internal supports, inclined plates thickness, horizontal 
plates thickness, longitudinal and transverse reinforcement configurations, lengths of hor-
izontal plates at each span, angle of inclination of plates, edge beam sectional details, in-
ternal beam sectional details, diaphragm sectional details, x-edge columns sectional de-
tails, y-edge columns sectional details, and corner columns sectional details. Input details 
of this design problem are summarized in Table 22. The selected values of controlling 
parameter settings of the optimization algorithms are the same as the first problem, sum-
marized in Table 13. The maximum number of permissible structural analyses is set to be 
9000 for each of the three algorithms. The optimum results obtained by the 10 runs, their 
minimum (best), first quartile, second quartile (median), third quartile, average, and max-
imum (worst), are listed in Table 23. In Figures 18–20, the design histories of each algo-
rithm are plotted for the best, average, and worst optimum results achieved, respectively. 
Additionally, the box plots of the algorithm results are plotted in Figure 21. The best over-
all optimum solution corresponding to the cost of $207,220 was achieved by the DE algo-
rithm. As opposed to the solution obtained by traditional means of design, the best overall 
optimum solution produces a cost saving of 18.5%, as shown in Table 23. 

 
Figure 17. Three-segment type folded plate roof problem: (A) 3D view; (B) Plan view; (C) South 
elevation view; (D) East elevation view. 

Table 22. Input data for the three-segment type folded plate roof building. 

Details Value Unit 

Material Properties 
Concrete ultimate cylindrical strength 30 MPa 

Reinforcement 
Yield stress 420 (Grade 60) MPa 
Modulus of elasticity 200 GPa 

Model 

Building overall
dimensions 

Along x-direction 25,000 mm 
Along y-direction 60,000 mm 

Meshing size 
Along x-direction 1000 mm 
Along y-direction 500 mm 

Number of supporting
columns 

Along x-direction 2 + V1 (variable) Nos. 
Along y-direction 6  Nos. 

Figure 17. Three-segment type folded plate roof problem: (A) 3D view; (B) Plan view; (C) South
elevation view; (D) East elevation view.



Mathematics 2022, 10, 1668 31 of 41

Table 22. Input data for the three-segment type folded plate roof building.

Details Value Unit

Material Properties

Concrete ultimate cylindrical strength 30 MPa

Reinforcement
Yield stress 420 (Grade 60) MPa

Modulus of elasticity 200 GPa

Model

Building overall dimensions
Along x-direction 25,000 mm

Along y-direction 60,000 mm

Meshing size
Along x-direction 1000 mm

Along y-direction 500 mm

Number of supporting columns
Along x-direction 2 + V1 (variable) Nos.

Along y-direction 6 Nos.

Total number of columns 12 + 2V1 (variable) Nos.

Transverse span of plates (l) 60, 000/(1 + V1) mm

Longitudinal span of plates 25,000 mm

Length of inclined plates (linc) (l − V5)/2 mm

Building height
To the bottom level of inclined plates 8000 mm

To the top level of inclined plates 8000 + tan(V6)× linc/2 mm

Load Assignments

Plates superimposed dead load 1.5 kPa

Plates live load (acting on the planer area) 0.75 kPa

Wind load

Basic gust wind speed 160 kmh

Exposure Category “C” -

Importance factor 1 -

Topography factor 1 -

Directional factor 0.85 -

Gust factor 0.85 -

Pressure coefficient
Windward face +0.8 -

Leeward face -0.5 -

Unit Cost *

Concrete 125 $/m3

Reinforcement 0.95 $/kg

Formwork
Vertical and horizontal 40 $/m2

Inclined 50 $/m2

*: all unit cost rates are obtained from the material suppliers in Bahrain local market.

Table 23. Optimum results achieved in the three-segment type folded plate roof building by each
metaheuristic algorithm.

Metaheuristic Algorithms Traditional
Design ($)ABC ($) pbBAS ($) DE ($)

The optimum results
in ascending order

1 210,656.56 208,478.29 207,220.00

283,817.05

2 210,707.69 209,755.98 207,622.50

3 210,872.94 211,992.57 207,751.13

4 214,388.27 212,312.85 208,035.78

5 214,733.15 212,497.28 208,800.37

6 215,135.04 212,676.13 209,294.18

7 215,235.31 213,042.65 209,564.31

8 215,235.71 214,883.12 210,200.58

9 216,562.97 215,122.33 210,463.83

10 217,985.42 217,211.59 213,178.85
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Table 23. Cont.

Metaheuristic Algorithms Traditional
Design ($)ABC ($) pbBAS ($) DE ($)

Minimum 210,656.56 208,478.29 207,220.00

Q1 210,872.94 211,992.57 207,751.13

Q2 (Median) 214,934.09 212,586.71 209,047.28

Average 214,151.31 212,797.28 209,213.15

Q3 215,235.71 214,883.12 210,200.58

Maximum 217,985.42 217,211.59 213,178.85

Standard dev. 2561.4537 2542.8093 1782.4083
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Figure 21. Box plot of the results achieved by each metaheuristic algorithm after 10 runs for the
three-segment type folded plate roof problem.

The details of the best optimum result achieved by each algorithm are illustrated
in Tables 24–26. The maximum values of demand to capacity ratios for that design are
also listed in Tables 27–29. The cost values of each member for the overall best optimum
design are summarized in Table 30 and plotted according to their percentile contribution in
Figure 22.

Table 24. The best optimum values of folded plate variables obtained by each metaheuristic algorithm
for the three-segment type folded plate roof building.

Design
Variable Detail

Optimum Designs Traditional
DesignABC pbBAS DE

V1 Number of interior supports 5 Nos.
(l = 10 m)

5 Nos.
(l = 10 m)

5 Nos.
(l = 10 m)

4 Nos.
(l = 12.5 m)

V2 Thickness of inclined plates 70 mm 70 mm 70 mm 100 mm

V3 Thickness of horizontal plates 70 mm 70 mm 70 mm 160 mm

V4 Longitudinal reinforcement configuration T10@200 mm T8@200 mm T8@200 mm T16@200 mm

V5 Transverse reinforcement configuration T10@200 mm T10@250 mm T10@250 mm T12@200 mm

V6 Length of horizontal plates 3500 mm 3500 mm 3500 mm 1500 mm

V7 Angle of inclination 31◦ 31◦ 31◦ 37◦

Table 25. The best optimum values of auxiliary members variables obtained by each metaheuristic
algorithm for the three-segment type folded plate roof building.

Design
Variable Member Detail

Best Optimum Designs Traditional
DesignABC pbBAS DE

V8 Edge beams

Width 300 mm 400 mm 400 mm 300 mm

Depth 800 mm 1000 mm 1000 mm 700 mm

Diameter of longitudinal reinforcement 20 mm 20 mm 20 mm 20 mm

Number of longitudinal rebars along minor axis 3 Nos. 4 Nos. 4 Nos. 3 Nos.

Number of longitudinal rebars along major axis 8 Nos. 9 Nos. 9 Nos. 6 Nos.

Shear reinforcement configuration T8@300 mm T12@200 mm T10@200 mm T8@300 mm
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Table 25. Cont.

Design
Variable Member Detail

Best Optimum Designs Traditional
DesignABC pbBAS DE

V9
Interior
beams

Width 400 mm 400 mm 400 mm 250 mm

Depth 1200 mm 1200 mm 1200 mm 700 mm

Diameter of longitudinal reinforcement 25 mm 25 mm 25 mm 20 mm

Number of longitudinal rebars along minor axis 4 Nos. 4 Nos. 4 Nos. 3 Nos.

Number of longitudinal rebars along major axis 11 Nos. 12 Nos. 11 Nos. 8 Nos.

Shear reinforcement configuration T10@200 mm T10@200 mm T10@250 mm T10@200 mm

V10 Diaphragms

Thickness 250 mm 250 mm 250 mm 350 mm

Depth of diaphragm below lower level of plates 600 mm 500 mm 600 mm 700 mm

Diameter of horizontal reinforcement 20 mm 16 mm 20 mm 20 mm

Number of horizontal rebars along minor axis 2 Nos. 3 Nos. 2 Nos. 4 Nos.

Spacing between horizontal rebars along major axis 200 mm 100 mm 200 mm 150 mm

Vertical reinforcement configuration T12@200 mm T12@200 mm T12@250 mm T16@200 mm

Table 26. The best optimum values of columns variables obtained by each metaheuristic algorithm
for the three-segment type folded plate roof building.

Design
Variable Member Detail

Best Optimum Designs Traditional
Design

ABC pbBAS DE

V11
x-edge

columns

Size in x-direction 600 mm 400 mm 400 mm 400 mm

Size in y-direction 250 mm 200 mm 200 mm 200 mm

Diameter of longitudinal reinforcement 16 mm 16 mm 16 mm 16 mm

Number of longitudinal rebars along x-direction 6 Nos. 4 Nos. 4 Nos. 4 Nos.

Number of longitudinal rebars along y-direction 2 Nos. 2 Nos. 2 Nos. 2 Nos.

Shear reinforcement configuration T8@200 mm T8@200 mm T8@200 mm T10@200 mm

V12
y-edge

columns

Size in x-direction 250 mm 250 mm 250 mm 300 mm

Size in y-direction 600 mm 600 mm 600 mm 600 mm

Diameter of longitudinal reinforcement 16 mm 20 mm 20 mm 20 mm

Number of longitudinal rebars along x-direction 2 Nos. 2 Nos. 2 Nos. 3 Nos.

Number of longitudinal rebars along y-direction 6 Nos. 6 Nos. 6 Nos. 6 Nos.

Shear reinforcement configuration T10@250 mm T10@200 mm T8@200 mm T10@250 mm

V13
Corner

columns

Size in x-direction 450 mm 400 mm 400 mm 450 mm

Size in y-direction 450 mm 400 mm 400 mm 450 mm

Diameter of longitudinal reinforcement 16 mm 16 mm 20 mm 16 mm

Number of longitudinal rebars along x-direction 5 Nos. 4 Nos. 4 Nos. 5 Nos.

Number of longitudinal rebars along y-direction 5 Nos. 4 Nos. 4 Nos. 5 Nos.

Shear reinforcement configuration T8@250 mm T8@250 mm T8@300 mm T10@250 mm
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Table 27. The values of maximum demand capacity ratios of folded plate constraints in the opti-
mum design achieved by each metaheuristic algorithm for the three-segment type folded plate roof
building.

Const.
No.

Description
Best Optimum Designs Traditional

DesignABC pbBAS DE

R1 Membrane compression 0.618 0.612 0.611 0.584

R2 Membrane tension 0.921 0.998 0.998 0.860

R3 Transverse bending moment 0.833 0.948 0.944 0.995

R4 Transverse shear force 0.801 0.801 0.801 0.861

R5 Immediate deflection 0.098 0.096 0.096 0.087

R6 Long-term deflection 0.718 0.712 0.710 0.800

R7 Maximum reinforcement spacing 0.952 0.714 0.714 0.667

R8 Minimum plates thickness 1.000 0.971 0.971 0.800

R9 Minimum reinforcement area 0.321 0.501 0.501 0.509

R10 Maximum reinforcement area 0.140 0.090 0.090 0.141

Table 28. The maximum demand capacity ratio of auxiliary members’ constraints in the optimum de-
sign achieved by each metaheuristic algorithm for the three-segment type folded plate roof building.

Member Const. No. Description
Best Optimum Designs Traditional

DesignABC pbBAS DE

Edge beams

R11 Flexural strength 0.705 0.412 0.411 0.827

R12 Shear strength 0.346 0.125 0.160 0.541

R13 Minimum longitudinal reinforcement spacing 0.556 0.556 0.545 0.556

R14 Maximum longitudinal reinforcement spacing 0.259 0.298 0.300 0.323

R15 Minimum longitudinal reinforcement area 0.131 0.181 0.181 0.146

R16 Maximum longitudinal reinforcement area 0.589 0.432 0.432 0.524

R17 Maximum shear reinforcement spacing 0.809 0.426 0.426 0.935

R18 Minimum shear reinforcement area 0.995 0.368 0.531 0.870

Interior beams

R19 Flexural strength 0.994 0.934 0.992 0.982

R20 Shear strength 0.484 0.485 0.551 0.882

R21 Minimum longitudinal reinforcement spacing 0.600 0.600 0.600 0.889

R22 Maximum longitudinal reinforcement spacing 0.275 0.242 0.275 0.210

R23 Minimum longitudinal reinforcement area 0.119 0.110 0.119 0.094

R24 Maximum longitudinal reinforcement area 0.665 0.716 0.665 0.808

R25 Maximum shear reinforcement spacing 0.352 0.352 0.440 0.625

R26 Minimum shear reinforcement area 0.637 0.637 0.796 0.371

Diaph-ragms

R27 Flexural strength 0.903 1.000 0.937 0.818

R28 Shear strength 0.388 0.496 0.395 0.397

R29 Minimum horizontal reinforcement spacing 0.377 0.816 0.377 0.759

R30 Maximum horizontal reinforcement spacing 0.547 0.270 0.547 0.426

R31 Minimum horizontal reinforcement area 0.231 0.186 0.231 0.248

R32 Maximum vertical reinforcement area 0.419 0.563 0.419 0.513

R33 Maximum vertical reinforcement spacing 0.743 0.909 0.743 0.631

R34 Minimum shear reinforcement area 0.940 0.904 0.940 0.965
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Table 29. The maximum demand capacity ratios of columns constraints in the optimum design
achieved by each metaheuristic algorithm for the three-segment type folded plate roof building.

Const. No. Description
Best Optimum Designs

Traditional Design
ABC pbBAS DE

R35 Flexural strength 1.000 0.970 0.965 0.941

R36 Shear strength 0.428 0.383 0.464 0.370

R37 Minimum longitudinal reinforcement spacing 0.730 0.694 0.694 0.741

R38 Maximum longitudinal reinforcement spacing 0.407 0.367 0.380 0.262

R39 Minimum longitudinal reinforcement area 0.629 0.663 0.497 0.629

R40 Maximum longitudinal reinforcement area 0.201 0.314 0.314 0.305

R41 Maximum shear reinforcement spacing 0.977 1.000 1.000 1.000

R42 Minimum shear reinforcement area 0.995 0.829 0.995 0.796

Table 30. Distribution of the optimum cost values among different materials and structural parts for
the three-segment type folded plate roof building.

Material Sum

Member Concrete Formwork Reinforcement Amount Percentage

Plates 14,546.59 78,385.77 12,370.22 105,302.59 50.8%

Beams 9480.00 17,820.80 19,669.39 46,970.19 22.7%

Diaphragms 7116.14 19,376.32 10,770.65 37,263.12 18.0%

Columns 2780.00 9976.00 4928.10 17,684.10 8.5%

Sum
Amount 33,922.73 125,558.90 47,738.37 207,220.00 100.0%

Percentage 16.4% 60.6% 23.0% 100.0%
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4. Discussion
4.1. V-Type Folded Plate Roof Problem

Table 14 reveals the fact that the DE algorithm had the best performance in its 10 trial
runs, achieving the best statistical minimum, first quartile, average, median, and maximum
solution. The second-best performed algorithm is ABC; it was slightly behind the DE
algorithm with the smallest interquartile range and standard deviation. This indicates
the consistency of the results achieved by each trial run of the ABC algorithm. As for the
pbBAS algorithm, its performance was the worst among the algorithms in this problem
mainly due to the difficulty of finding solutions that satisfy the set of constraints which
impacts the algorithm’s searching technique. As shown in Table 15, the best optimum
solution achieved by all the algorithms had a span of 8.571 m (6 internal supports). Table 21
and Figure 16 show that in the best overall optimum solution found, more than half the
material cost is generated from the plates, about one quarter is from the beams, and less
than one quarter is distributed between the diaphragms and columns with a ratio of 2:1,
respectively.

After finding that the DE algorithm performed the best among the three metaheuristic
algorithms, it is used to find the optimum design of the V folded roof type under different
transverse span values. This is achieved by fixing the number of internal supports in the
building at each run. Dividing the overall building length into equal transverse spans
and selecting nine through three internal supports produces transverse span values of
6 m, 6.667 m, 7.5 m, 8.571 m, 10 m, 12 m, and 15 m, respectively. It is apparent that in
this optimum design problem, the number of design variables is reduced to 10 as the
total number of internal supports is no longer a design variable. The internal controlling
parameter values of the DE algorithm are shown in Table 13. The amounts representing the
cost of each element for the optimum solution at each transverse span are represented in
Figure 23.
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As shown in Figure 23, the transverse span that generates the optimum solution for the
V-type folded plate roofs is 8.571 m (a building having 6 internal supports). The solution is
slightly better than the optimum solutions achieved for the 7.5 m and 10 m transverse spans
generated when having seven and five internal supports, respectively. The cost of plates
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remains approximately the same when the transverse span is 6 m to 10 m but changes
dramatically when the transverse span starts to increase to 12 m and 15 m. This shows that
it is not economical to have V-type folded plate roof buildings with a transverse span longer
than 10 m. The cost of beams and diaphragms are inversely related; for shorter transverse
spans, the cost of beams dominates and takes more than three times the cost of diaphragms
representing a large portion of the entire cost, while in longer spans the opposite is true.
This is further supported by the concept of load transfer in buildings; when the transverse
span is shorter, the plates start to work in one direction, transferring almost the entire load
to the internal and external beams, thus requiring them to have more capacities. Finally,
the cost of the supporting columns is relatively fixed for all the spans, and it represents a
small portion of the entire cost.

4.2. Three-Segment Type Folded Plate Roof Problem

Table 23 illustrates that the DE algorithm also had the best performance in its 10 trial
runs, achieving the best statistical minimum, first quartile, average, median, and maximum
solution. The second-best performed algorithm is pbBAS; it achieved slightly better results
than the ABC algorithm with approximately the same standard deviation value. This
large standard deviation value of both the pbBAS and the ABC algorithms indicates the
inconsistency of the results achieved. The standard deviation value of all the algorithms is
higher in this problem because of having a larger number of design variables compared
to the first problem. However, the objective values of the results are lower. This shows
that the three-segment type folded plates roofed buildings are less expensive than V-type
folded plates roofed buildings but are more difficult to optimize. As shown in Table 24,
the optimum solution achieved by all the algorithms had a span of 10 m (5 internal
supports) and a horizontal plate’s length of 3.5 m. Table 30 and Figure 22 show that the
cost contribution of each member is approximately the same as the first problem, with the
plates consuming almost half the cost of the materials.

After finding that the DE algorithm performed the best among the three metaheuristic
algorithms, it is used to find the optimum design of the three-segment folded plate roof
type under different transverse span settings. As done in with the V-type folded plate
roof, the overall building length is divided into equal transverse spans of 6 m, 6.667 m,
7.5 m, 8.571 m, 10 m, 12 m, and 15 m for buildings with nine through three internal
supports, respectively. The number of grouped design variables then becomes 12 for the
three-segment type folded plate roof building. The internal controlling parameter values
of the DE algorithm are presented in Table 13. The amounts representing the cost of each
element for the optimum solution at each transverse span are represented in Figure 24.

As shown in Figure 24, the transverse span that generates the optimum solution for
the three-segment type folded plate roofs is 10 m (a building having five internal supports).
The optimum solution is close to the best solution found by the DE algorithm in its 10 trial
runs, as discussed in Section 4.2. Unlike the V-type folded plate roofs, the cost of plates
remained approximately the same for the entirety of the transverse spans studied. This
shows that this type of folded plate is suitable even for 15 m long transverse spans. Like the
V-type folded plates, the cost of beams and diaphragms are inversely related; for shorter
transverse spans, the cost of beams dominates and takes more than three times the cost
of diaphragms representing a large portion of the entire cost, while in longer spans the
opposite is true. Finally, the cost of the supporting columns in this type of roof is also
relatively fixed for all the spans, and it represents a small portion of the entire cost.
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5. Conclusions

It is shown that the optimum design of reinforced concrete V- and three-segment
types of folded plate structures with their auxiliary and supporting members in accordance
with ACI 318-11 can be achieved using different metaheuristic algorithms. The design
problems consider the strength, serviceability, and applicability requirements set by the
code. Additionally, all the detailing provisions, such as development and hook lengths
of both longitudinal and transverse reinforcements, are considered while estimating the
overall cost of reinforcement. In both roof types, the DE algorithm achieved the best
optimization results proving its suitability for the optimization of such structures. Studying
the effects of changing the transverse span while maintaining the overall dimensions
of the building gave an indication of how the optimum cost varies with the percentages
represented by each member. For the V-type folded plate roofs, the best optimum transverse
span is 8.571 m. While for the three-segment type folded plate roofs, the best optimum
transverse span is 10 m. These spans indicate that it is preferable to have transverse to
longitudinal span ratios of 1:3 and 1:2.5 for V- and three-segment types of folded plate
roofs, respectively. The cost that each member represents of the overall cost of building
differs depending on the span being considered; for shorter transverse spans, it is mainly
consumed by the plates and beams, while for the longer transverse spans, it is consumed
by the plates and diaphragms. The cost of supporting columns remains almost the same
for all transverse spans. It is found that the cost of formwork constitutes almost two-thirds
of the overall material cost of the building, while the concrete and reinforcements together
represent only one-third. This makes folded plate structures, compared to other types of
structures, economical and environment-friendly construction. It should be noticed that the
formwork can be removed and reused once the members develop their required strengths.
This indicates the profitability of folded plate structures. Furthermore, it also implies less
emission to the atmosphere due to the production of less amount of construction materials.
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