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Abstract: This paper proposes a novel neural adaptive fixed-time control approach for the attitude
stabilization and vibration suppression of flexible spacecraft. First, the neural network (NN) was
introduced to identify the lumped unknown term involving uncertain inertia, external disturbance,
torque saturation, and elastic vibrations. Then, the proposed controller was synthesized by em-
bedding the NN compensation into the fixed-time backstepping control framework. Lyapunov
analysis showed that the proposed controller guaranteed the stabilization of attitude and angular
velocity to the adjustable small neighborhoods of zero in fixed time. The proposed controller is
not only robust against uncertain inertia and external disturbance, but also insensitive to elastic
vibrations of the flexible appendages. At last, the excellent stabilization performance and good
vibration suppression capability of the proposed control approach were verified through simulations
and detailed comparisons.

Keywords: attitude stabilization; flexible spacecraft; neural adaptive control; fixed-time control;
vibration suppression; Lyapunov analysis
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1. Introduction

To accomplish long-duration and complicated space missions, modern spacecraft are
usually installed with large and lightweight flexible appendages, such as solar panels and
antennas. For instance, the Engineering Test Satellite-VIII (ETS-VIII) launched by Japan is
typically a flexible spacecraft with two large deployable reflectors measuring 17 × 19 m2

and a pair of large solar array panels measuring 19 × 2 m2 [1,2]. Generally, the attitude
maneuver of a spacecraft may induce elastic vibrations of the flexible appendages. This
can in turn cause perturbations on the attitude dynamics of the spacecraft. Moreover, the
spacecraft is inevitably influenced by uncertain inertia, external disturbance, and torque
saturation due to the harsh space environment and physical limitations. Even worse, the
inertia matrix of the spacecraft may be fully unknown in some extreme cases. For example,
when the space manipulator captures a non-cooperative target, the inertia matrix of the
combined spacecraft is difficult to be obtained accurately [3–6]. Consequently, the attitude
control of a flexible spacecraft is quite challenging due to the presence of these issues.

The study on the flexible spacecraft attitude control started in the mid-1970s [7,8]
and has continued ever since. To realize attitude control and vibration suppression si-
multaneously, an effective idea is regarding the uncertain inertia, external disturbance,
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torque saturation, and elastic vibrations as the lumped unknown term and then compen-
sating it in the feedforward loop. Generally, there are three main methods to tackle the
lumped unknown term. The first method is a robust control by utilizing the disturbance
observer to observe the lumped unknown term. In [9,10], disturbance observer-based
proportional-differential (PD) controllers were developed. In [11], a disturbance observer-
based backstepping control method was proposed. In [12], a disturbance observer was
integrated with the active disturbance rejection control design. The second method is
adaptive control by utilizing the parametric adaptation technique to estimate the lumped
unknown term. In [13,14], adaptive control and stabilization schemes were developed.
The third method is intelligent control by utilizing the neural network (NN) or fuzzy
logic system to identify the lumped unknown term. In [15,16], fuzzy sliding mode control
approaches were proposed. In [17], an intelligent PD control scheme was proposed based
on the NN identification. In [18,19], Takagi–Sugeno (T–S) fuzzy model-based optimal
controllers were constructed. There have also been some related results focused on the atti-
tude control of flexible spacecraft equipped with piezoelectric devices for active vibration
suppression [20–24].

To efficiently fulfill various space missions, the flexible spacecraft is expected to re-
alize the attitude maneuver in a specific time. However, most of the above controllers
only ensure that the overall closed-loop system is asymptotically stable or uniformly ul-
timately bounded. Alternatively, the finite-time control guarantees the stabilization of
attitude and angular velocity to zero or the small neighborhoods of zero in finite time.
In [25–28], several terminal sliding mode controllers were developed for the finite-time
attitude control of flexible spacecraft. Particularly, in [26], a disturbance observer was incor-
porated into the terminal sliding mode control design to enhance the control performance.
In [27,28], adaptive terminal sliding mode control schemes were presented. Nevertheless,
the finite-time control has the minor disadvantage that its settling time is dependent on the
initial states of the system. To solve this weakness, the concept of fixed-time control was
proposed [29–32]. The fixed-time control can be regarded as a typical class of finite-time
control, whose settling time is bounded, and the upper bound of the settling time does
not depend on the initial system conditions. In [33–36], several terminal sliding mode
controllers were designed for the fixed-time attitude control of flexible spacecraft. Specifi-
cally, in [33], a disturbance observer-based terminal sliding mode control approach was
developed. In [34–36], a parametric adaptation technique was integrated with the terminal
sliding mode control design.

It should be pointed out that the above finite-time and fixed-time controllers were
mainly designed based on the terminal sliding mode control technique. Unfortunately,
the terminal sliding mode control exhibits the disadvantages of undesired chattering phe-
nomenon and singularity problem. These disadvantages restrict the practical implementa-
tion of the terminal sliding mode control to some extent. Moreover, artificial intelligence
has been rarely employed for the finite-time and fixed-time attitude control of flexible
spacecraft. When involving the NN or fuzzy logic system into the closed-loop control
design, the finite-time or fixed-time stability is difficult to be proved theoretically. Actually,
the fixed-time attitude control and vibration suppression of flexible spacecraft is still an
open problem which needs to be further investigated.

The above discussions motivated our research. In this paper, a novel neural adaptive
fixed-time control approach is presented for the attitude stabilization of flexible spacecraft.
The NN was introduced to identify the lumped unknown item involving uncertain iner-
tia, external disturbance, torque saturation, and elastic vibrations. Then, the proposed
controller was synthesized by embedding the NN compensation into the fixed-time back-
stepping control framework. Lyapunov analysis showed that the proposed controller
guaranteed the stabilization of attitude and angular velocity to the adjustable small neigh-
borhoods of zero in fixed time. In comparisons with the above finite-time and fixed-time
controllers, the main contributions of this research lie in the following two aspects.
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• Rather than the terminal sliding mode control technique, the proposed controller
was developed under the fixed-time backstepping control framework. In this way,
the proposed controller does not have the chattering phenomenon and singularity
problem existing in the terminal sliding mode control.

• The NN was integrated with the proposed controller to compensate the lumped
unknown item. Benefiting from the NN compensation, the proposed controller is not
only robust against uncertain inertia and external disturbance, but also insensitive to
elastic vibrations of the flexible appendages.

The rest of this paper is arranged as follows. Section 2 describes the problem and
provides some preliminaries. Section 3 provides the control design and Lyapunov analysis.
Section 4 presents the simulations and detailed comparisons. Lastly, Section 5 summarizes
this research.

2. Problem Description and Preliminaries
2.1. Problem Description

Suppose a flexible spacecraft composed of a rigid hub and flexible appendages. By
employing the modified Rodrigues parameters (MRPs), the attitude kinematics of the
flexible spacecraft can be expressed as

.
σ = G(σ)ω, (1)

where G(σ) = 1
2

(
1−σTσ

2 I3 + σ× + σσT
)
∈ R3×3, σ = [σ1, σ2, σ3]

T ∈ R3

and ω = [ω1, ω2, ω3]
T ∈ R3 denote the attitude and angular velocity of the spacecraft, and

Rn and Rn×m stand for the sets of n× 1 real vectors and n× n real matrices, respectively.
The notation ω× stands for the skew-symmetric matrix of ω, denoted as

ω× =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

. (2)

Referring to [20,21], the attitude dynamics of the flexible spacecraft can be expressed as

J
.

ω + ω×
(
Jω + δ

.
η
)
+ δ

..
η = sat(u) + d, (3)

..
η+ C

.
η+ Kη = −δTω, (4)

where J ∈ R3×3 denotes the inertia matrix which may be fully unknown in some extreme
cases, u ∈ R3 is the control torques generated by actuators, d ∈ R3 denotes the external
disturbance, η ∈ RL denotes the modal variables, L is the number of elastic modes con-
sidered in the control design, δ ∈ R3×L is the coupling matrix between the rigid hub and
the flexible appendages, C = diag[2ξ1ωn1, 2ξ2ωn2, . . . , 2ξNωnL] ∈ RL×L is the damping
matrix, K = diag

[
ω2

n1, ω2
n2, . . . , ω2

nL
]
∈ RL×L is the stiffness matrix, and ωni and ξi denote

the natural frequencies and damping ratios of the ith mode, respectively. Moreover, the
saturated control torques can be expressed as sat(u) = [sat(u1), sat(u2), sat(u3)]

T, whose
elements are presented as

sat(ui) =

{
ui, |ui| ≤ um,
sgn(ui)um, |ui| > um,

i = 1, 2, 3, (5)

where um stands for the maximum acceptable input value. Then, the saturated control
torques can be rewritten as

sat(u) = u + u∆, (6)
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where u∆ denotes the input deviations caused by torque saturation. Subsequently, the
attitude kinematics and dynamics of the flexible spacecraft can be rearranged as

M(σ)
..
σ + C

(
σ,

.
σ
) .
σ = G−T(σ)u + χ, (7)

where M(σ) = G−T(σ)JG−1(σ), C
(
σ,

.
σ
)

= −G−T(σ)JG−1(σ)
.

G(σ)G−1(σ)

− G−T(σ)(Jω)×G−1(σ), and χ = G−T(σ)
(
−ω×δ

.
η− δ

..
η+ d + u∆

)
. According to [37],

system (7) has the following fundamental properties.

Property 1. The matrix M(σ) is symmetric and positive definite.

Property 2. The matrix
.

M(σ)− 2C
(
σ,

.
σ
)

is skew symmetric.

Property 3. The matrices M(σ) and C
(
σ,

.
σ
)

are bounded with mI3 ≤ M(σ) ≤ mI3 and
‖C
(
σ,

.
σ
)
‖ ≤ c‖ .

σ‖, where m, m, and c are positive constants.

The purpose of this research was to develop an appropriate controller to realize the
fixed-time attitude stabilization of flexible spacecraft even under uncertain inertia, external
disturbance, and torque saturation.

2.2. Preliminaries

The following lemmas are provided, which will be used to obtain the main results of
this research.

Lemma 1 ([32]). Consider the nonlinear system:

.
x = f(x), f(0) = 0, x ∈ Rn, (8)

where f(x) is a continuous nonlinear function. If there exists a positive definite function V(x)
satisfying

.
V(x) ≤ −κ1Vp(x)− κ2Vq(x) + ζ, where κ1 > 0, κ2 > 0, 0 < p < 1, q > 1, and

ζ > 0, then system (8) is practically fixed-time stable, and V(x) will converge to the following
compact set in fixed time:

Ω =

{
V(x) ∈ R

∣∣∣∣∣V(x) ≤ min

{(
ζ

κ1(1− ι)

) 1
p
,
(

ζ

κ2(1− ι)

) 1
q
}}

, (9)

where 0 < ι < 1, and the fixed settling time is bounded as T ≤ 1
κ1ι(1−p) +

1
κ2ι(q−1) .

Lemma 2 ([38]). For a continuous nonlinear function f (Z), Z ∈ Rn, it can be identified by a
radial basis function NN (RBFNN) as

f (Z) = W∗TΦ(Z) + ε(Z), (10)

where W∗ ∈ RN is the ideal RBFNN weight, Φ(Z) = [ϕ1(Z), ϕ2(Z), . . . , ϕN(Z)]
T is the basis

function vector, ε(Z) is the identification error satisfying |ε(Z)| ≤ ε, ε is a positive constant, and
N is the number of RBFNN nodes. The ideal RBFNN weight W∗ is defined as

W∗ = arg min
W∈RN

{
sup

Z∈Rn

∣∣∣ f (Z)−W∗TΦ(Z)
∣∣∣}. (11)

In addition, ϕi(Z) is commonly chosen as the Gaussian function:

ϕi(Z) = exp
(
−‖Z− ci‖2/w2

i

)
, i = 1, 2, . . . , N, (12)
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where ci = [ci1, ci2, . . . , cin]
T ∈ Rn and wi are the center and width of the Gaussian function, re-

spectively.

Lemma 3 ([39]). For xi ∈ R, i = 1, 2, . . . , n, 0 < p ≤ 1, and q > 1, the following inequalities hold:

(
n

∑
i=1
|xi|
)p

≤
n

∑
i=1
|xi|p,

(
n

∑
i=1
|xi|
)q

≤ nq−1
n

∑
i=1
|xi|q. (13)

Lemma 4 ([39]). For x1 ∈ R, x2 ∈ R, p > 0, q > 0, and ξ > 0, the following inequality holds:

|x1|p|x2|q ≤
p

p + q
ξ|x1|p+q +

q
p + q

ξ
− p

q |x2|p+q. (14)

3. Control Design and Lyapunov Analysis

In this section, the main results of this research are presented. First, the proposed
neural adaptive fixed-time controller is synthesized by embedding the NN compensation
into the fixed-time backstepping control framework. Then, the practical fixed-time stability
of the overall closed-loop system is theoretically achieved through Lyapunov analysis.

3.1. Control Design

Under the fixed-time backstepping control framework, define the following error
signals:

x1 = σ, x2 =
.
σ − µ, (15)

where µ ∈ R3 is the virtual control signal designed in the sequel. The whole control design
procedure involves three steps. In Step 1, the virtual control signal is designed, in Step 2, the
actual control signal is designed, and in Step 3, the NN weight adaptation law is designed.

Step 1: Virtual control signal design. Construct the Lyapunov function:

V1 =
1
2

xT
1 x1. (16)

The time differentiation of (16) can be evaluated as

.
V1 = xT

1
.
x1

= xT
1 (x2 + µ).

(17)

Then, the virtual control signal is designed as

µ = −k11sigp(x1)− k12sigq(x1), (18)

where k11 > 0, k12 > 0, 0 < p < 1, q > 1, and the notation sigp(·) is defined as
sigp(x1) =

[
|x11|psgn(x11), |x12|psgn(x12), |x13|psgn(x13)

]T. Substituting the virtual con-
trol signal (18) into (17) and by the aid of Lemma 3, we have

.
V1 = xT

1 (x2 − k11sigp(x1)− k12sigq(x1))

≤ xT
1 x2 − κ11V

p+1
2

1 − κ12V
q+1

2
1 ,

(19)

where κ11 = 2
p+1

2 k11, and κ12 = 3
1−q

2 2
q+1

2 k12.
Step 2: Actual control signal design. Construct the Lyapunov function:

V2 =
1
2

xT
2 M(σ)x2. (20)
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By the aid of Property 2, the time differentiation of (20) can be evaluated as

.
V2 = xT

2 M(σ)
.
x2 +

1
2 xT

2

.
M(σ)x2

= xT
2

(
−M(σ)

..
σd − C

(
σ,

.
σ
) .
σ + G−T(σ)u + χ−M(σ)

.
µ
)
+ xT

2 C
(
σ,

.
σ
)
x2

= xT
2

(
−M(σ)

..
σd − C

(
σ,

.
σ
) .
σd −M(σ)

.
µ− C

(
q,

.
q
)
µ + G−T(σ)u + χ

)
= xT

2

(
G−T(σ)u + L

)
,

(21)

where L is the lumped unknown term involving uncertain inertia, external disturbance,
torque saturation, and elastic vibrations, denoted as

L = −M(σ)
..
σd − C

(
σ,

.
σ
) .
σd −M(σ)

.
µ− C

(
q,

.
q
)
µ + χ. (22)

Define the input variable Z =
[
xT

1 , xT
2 , uT]T. The RBFNN is introduced to identify the

lumped unknown term. By Lemma 2, the lumped unknown term can be expressed as

L = W∗TΦ(Z) + ε(Z), (23)

where W∗ ∈ RN×3 is the ideal RBFNN weight, Φ(Z) ∈ RN is the basis function vector,
and ε(Z) ∈ R3 is the identification error satisfying ‖ε(Z)‖ ≤ ε. Subsequently, the lumped
unknown term can be identified by the RBFNN as

L̂ = ŴT
Φ(Z), (24)

where Ŵ ∈ RN×3 is the estimation of the ideal RBFNN weight. Then, the actual control
signal is designed as

u = GT(σ)

(
−x1 −

1
2

x2 − k21sigp(x2)− k22sigq(x2)− ŴT
Φ(Z)

)
, (25)

where k11 > 0, and k12 > 0. Substituting the actual control signal (25) into (21), we have

.
V2 = xT

2

(
−x1 − 1

2 x2 − k21sigp(x2)− k22sigq(x2)− ŴT
Φ(Z) + W∗TΦ(Z) + ε(Z)

)
= xT

2

(
−x1 − 1

2 x2 − k21sigp(x2)− k22sigq(x2)− W̃
T

Φ(Z) + ε(Z)
)

,
(26)

where W̃ = Ŵ−W∗ is the estimation error of the RBFNN weight. Consider the inequality
xT

2 ε(Z) ≤ 1
2 xT

2 x2 +
1
2 ε2. Substituting it into (26) and by the aid of Lemma 3, we further have

.
V2 ≤ − 1

2 xT
2 x1 + xT

2 (−k21sigp(x2)− k22sigq(x2))− xT
2 W̃

T
Φ(Z) + 1

2 ε2

≤ − 1
2 xT

2 x1 − κ21V
p+1

2
2 − κ22V

q+1
2

2 − xT
2 W̃

T
Φ(Z) + 1

2 ε2,
(27)

where κ21 = 2
p+1

2 k21

λ
p+1

2
max (M(σ))

, κ22 = 3
1−q

2 2
q+1

2 k22

λ
q+1

2
max (M(σ))

, and the notations λmin(·) and λmax(·) represent

the minimum and maximum eigenvalues of a matrix, respectively.
Step 3: NN weight adaptation law design. The NN weight adaptation law is given as

.
Ŵi = ΓiΦi(Zi)x2i − γiΓiŴi, i = 1, 2, 3, (28)

where Γi ∈ RN×N are positive definite matrices, and γi are small positive constants. Con-
struct the Lyapunov function:

V3 =
1
2

3

∑
i=1

W̃
T
i Γ−1

i W̃i. (29)
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The time differentiation of (29) can be evaluated as

.
V3 =

3
∑

i=1
W̃

T
i Γ−1

i

.
Ŵi

=
3
∑

i=1
W̃

T
i Φi(Zi)x2i −

3
∑

i=1
γiW̃

T
i Ŵi.

(30)

Consider the inequality −W̃
T
i Ŵi = −‖W̃i‖

2 − W̃
T
i W∗i ≤ −

1
2‖W̃i‖

2
+ 1

2‖W
∗
i ‖

2. Substi-
tuting it into (30), we have

.
V3 =

3
∑

i=1
W̃

T
i Φi(Zi)x2i −

3
∑

i=1

γi
2 ‖W̃i‖

2
+

3
∑

i=1

γi
2 ‖W

∗
i ‖

2

=
3
∑

i=1
W̃

T
i Φi(Zi)x2i −

3
∑

i=1

(
γi
4 ‖W̃i‖

2
) p+1

2 −
3
∑

i=1

(
γi
4 ‖W̃i‖

2
) q+1

2
+ ζ1,

(31)

where ζ1 is defined as

ζ1 =
3

∑
i=1

(γi
4
‖W̃i‖

2
) p+1

2
+

3

∑
i=1

(γi
4
‖W̃i‖

2
) q+1

2 −
3

∑
i=1

γi
2
‖W̃i‖

2
+

3

∑
i=1

γi
2
‖W∗i ‖

2. (32)

Then, the following two cases are discussed. For the case of γi
4 ‖W̃i‖

2 ≥ 1, we have

(γi
4
‖W̃i‖

2
) p+1

2
+
(γi

4
‖W̃i‖

2
) q+1

2 − γi
2
‖W̃i‖

2 ≤
(γi

4
‖W̃i‖

2
) q+1

2 − γi
4
‖W̃i‖

2
. (33)

For the case of γi
4 ‖W̃i‖

2
< 1, by the aid of Lemma 4, we have

(
γi
4 ‖W̃i‖

2
) p+1

2
+
(

γi
4 ‖W̃i‖

2
) q+1

2 − γi
2 ‖W̃i‖

2 ≤
(

γi
4 ‖W̃i‖

2
) p+1

2 − γi
4 ‖W̃i‖

2

≤ (1− p)p
p

1−p ,
(34)

where p = p+1
2 . Introduce a compact set Θ such that

Θ =
{

W̃ ∈ RN×3
∣∣∣‖W̃i‖ ≤ βi, i = 1, 2, 3

}
, where βi are positive constants. Combining

(33) and (34), it follows that

(γi
4
‖W̃i‖

2
) p+1

2
+
(γi

4
‖W̃i‖

2
) q+1

2 − γi
2
‖W̃i‖

2 ≤ αi, (35)

where αi is defined as

αi =

 (1− p)p
p

1−p , βi <
2√
γi

,( γi
4 β2

i
) q+1

2 − γi
4 β2

i , βi ≥ 2√
γi

.
(36)

Substituting (35) into (31) and by the aid of Lemma 3, we further have

.
V3 ≤

3

∑
i=1

W̃
T
i Φi(Zi)x2i − κ31V

p+1
2

3 − κ32V
q+1

2
3 + ζ2, (37)

where κ31 =
γ

p+1
2

i

2
p+1

2 λ
p+1

2
max (Γ−1

i )
, κ32 =

3
1−q

2 γ
q+1

2
i

2
q+1

2 λ
q+1

2
max (Γ−1

i )
, and ζ2 =

3
∑

i=1

(
αi +

γi
2 ‖W

∗
i ‖

2
)

.
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3.2. Lyapunov Analysis

After the above preparations, the main theorem of this research can be obtained
as follows.

Theorem 1. Suppose the flexible spacecraft modeled as (1), (3), and (4), then the overall closed-loop
system is practically fixed-time stable under the virtual control signal (18), the actual control signal
(25), and the NN weight adaptation law (28). Specifically, the closed-loop error signals x1, x2, and
W̃ will converge to the following compact sets in fixed time:

Ωx1 =
{

x1 ∈ R3
∣∣∣‖x1‖ ≤

√
ψ
}

, (38)

Ωx2 =

{
x2 ∈ R3

∣∣∣∣∣‖x2‖ ≤
√

ψ

λmin(M(σ))

}
, (39)

ΩW̃ =

W̃ ∈ RN×3

∣∣∣∣∣∣∣‖W̃i‖ ≤
√√√√ ψ

λmin

(
Γ−1

i

) , i = 1, 2, 3

, (40)

where ψ > 0 is defined in the sequel.

Proof. Construct the Lyapunov function:

V = V1 + V2 + V3, (41)

where V1, V2, and V3 are defined as (15), (19), and (28), respectively. Combining (19), (27),
and (37) and by the aid of Lemma 3, the time differentiation of (41) can be evaluated as

.
V =

.
V1 +

.
V2 +

.
V3

≤ −κ11V
p+1

2
1 − κ12V

q+1
2

1 − κ21V
p+1

2
2 − κ22V

q+1
2

2 + 1
2 ε2 − κ31V

p+1
2

3 − κ32V
q+1

2
3 + ζ2

≤ −κ1V
p+1

2 − κ2
.

V
q+1

2
+ ζ3,

(42)

where κ1 = min{κ11, κ21, κ31}, κ2 = 3
1−q

2 min{κ12, κ22, κ32}, and ζ3 = ζ2 +
1
2 ε2. By Lemma

1, the overall closed-loop system is practically fixed-time stable, and V will converge to the
following compact set in fixed time:

Ω =

{
V ∈ R

∣∣∣∣∣V ≤ min

{(
ζ3

κ1(1− ι)

) 2
p+1

,
(

ζ3

κ2(1− ι)

) 2
q+1
}}

, (43)

where 0 < ι < 1. Moreover, the fixed settling time is bounded as T ≤ 2
κ1ι(1−p) +

2
κ2ς(ι−1) .

Then, define a variable as

ψ = 2min

{(
ζ3

κ1(1− ι)

) 2
p+1

,
(

ζ3

κ2(1− ι)

) 2
q+1
}

. (44)

Together with the definition of V, it follows that

xT
1 x1 ≤ ψ, (45)

xT
2 M(σ)x2 ≤ ψ, (46)

W̃
T
i Γ−1

i W̃i ≤ ψ, i = 1, 2, 3. (47)
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Thus, the closed-loop error signals x1, x2, and W̃ will converge to the compact sets Ωx1 ,
Ωx2 , and ΩW̃ in fixed time, respectively. This further implies that the proposed controller
guarantees the stabilization of attitude σ and angular velocity ω to the small neighborhoods
of zero in fixed time. Moreover, from (43), the small neighborhoods of zero are adjustable.
If we set the parameters k11, k12, k21, and k22 as large as desired, the small neighborhoods
can be made sufficiently small. This finishes the proof. �

Remark 1. To make the proposed controller more friendly to the users, a control parameter selection
strategy was carried out. The strategy contained three steps. In Step 1, we determined the control
parameters k11, k12, k21, and k22. Large k11, k12, k21, k22 can realize a relatively fast convergence
rate; however, they may also lead to relatively large control torques at the same time. In Step 2,
we determined the control parameters Γi and ηi. Large Γi and small ηi can lead to a relatively
fast convergence rate; however, they may in turn result in a relatively poor transient response of
the controller. In Step 3, we determined the number of RBFNN nodes N. A large N can achieve
a relatively high approximation accuracy; however, it may also cause a relatively heavy onboard
computational burden. Therefore, the control parameters of the proposed controller needed to be
carefully tuned by trial and error for better implementations.

Remark 2. The RBFNN was introduced to identify the lumped unknown term involving uncertain
inertia, external disturbance, torque saturation, and elastic vibrations. Benefiting from this design,
the proposed controller appeared to be not only robust against uncertain inertia and external
disturbance, but also insensitive to elastic vibrations of the flexible appendages. It should be noticed
that the RBFNN utilized in this paper can also be replaced by some other approximation tools, such
as wavelet NN, recurrent NN, fuzzy NN, and fuzzy logic system.

Remark 3. The proposed controller was synthesized by embedding the NN compensation into the
fixed-time backstepping control framework. To facilitate the readers’ understanding of the whole
control design procedure, the structure of the proposed control approach is depicted in Figure 1.
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4. Simulations and Comparisons

Simulations were conducted on a flexible spacecraft with two solar panels to validate
the proposed control approach. Referring to [34], the inertia matrix of the flexible spacecraft
was chosen as

J =

 486.7 14.9 −1.2
14.9 177.4 −7.3
−1.2 −7.3 404.3

 kg ·m2. (48)

The inertia matrix was fully unknown for the control design. Moreover, the first
three elastic modes were considered for the flexible spacecraft. The coupling matrix was

δ =

 1 0.1 0.1
0.5 0.1 0.01
−1 0.3 0.01

 kg1/2 ·m/s2. (49)
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The natural frequencies were chosen as ωn1 = 1.8912, ωn2 = 2.884, and ωn3 = 3.4181.
The damping ratios were chosen as ξ1 = 0.01, ξ2 = 0.01, and ξ3 = 0.01. The external
disturbance was

d =

 0.2 cos(0.2πt)− 0.1 sin(0.4πt)− 0.1
0.3 sin(0.2πt)− 0.1 cos(0.4πt) + 0.2
0.2 sin(0.2πt)− 0.2 sin(0.4πt)− 0.3

Nm. (50)

The initial states of the flexible spacecraft were set as σ(0) = [0.04,−0.06, 0.08]T,
ω(0) = [0, 0, 0]T rad/s, η(0) = [0, 0, 0]T, and

.
η(0) = [0, 0, 0]T. The maximum acceptable

input value was um = 10 Nm.
Besides the proposed neural adaptive fixed-time controller (25), the finite-time PD-

like controller in [40] was also implemented for performance comparisons. Based on the
homogeneous method, the compared finite-time PD-like controller was designed as

u = GT(σ)
(
−kpsigα1(σe)− kdsigα2

( .
σe
))

, (51)

where kp > 0, kd > 0, 0 < α1 < 1, and α2 = 2α1/(1 + α1).
The parameters of the proposed neural adaptive fixed-time controller (25) were

k11 = 0.1, k12 = 0.1, k21 = 800, k22 = 800, p = 2/3, q = 4/3, Γi = 100I7, and ηi = 0.1.
Seven nodes were selected for the hidden layer of the RBFNN. The parameters of the
RBFNN were selected as ci = [−3,−2,−1, 0, 1, 2, 3]T and wi = 6. The initial values of the
NN weight estimations were Ŵi = 07. On the other hand, the parameters of the compared
finite-time PD-like controller (51) were kp = 150, kd = 300, α1 = 1/2, and α2 = 2/3.

The simulation results for the proposed controller are provided in Figures 2–6. Specifi-
cally, Figures 2 and 3 show the time profiles of the attitude σ and the angular velocity ω.
The time profile of the modal variables η is presented in Figure 4. Figure 5 shows the
time profile of the saturated control torques u. The norms of the NN weight estimations
‖Ŵi‖ are presented in Figure 6. Moreover, the simulation results for the compared PD-like
controller are provided in Figures 7–10.

As shown in Figures 2 and 3, the proposed controller guaranteed the stabilization
of attitude and angular velocity to the small neighborhoods of zero rapidly and exactly.
Nevertheless, Figures 7 and 8 shiw that the stabilization performance of the compared
PD-like controller was relatively poor due to the presence of a lumped unknown term
involving uncertain inertia, external disturbance, torque saturation, and elastic vibrations.
Quantitatively, the steady-state attitude accuracy and the steady-state angular velocity
accuracy under the proposed controller were |σi| < 1× 10−4 and |ωi| < 3× 10−4 rad/s,
respectively. By contrast, the steady-state attitude accuracy and the steady-state angu-
lar velocity accuracy under the compared PD-like controller were |σi| < 3× 10−4 and
|ωi| < 8 × 10−4 rad/s, respectively. It was clearly seen that the proposed controller
achieved a much higher control accuracy than the compared PD-like controller. In Figure 4,
the elastic vibrations of the flexible appendages were damped nearly to zero within 80 s
under the proposed controller. However, Figure 9 shows obvious residual vibrations of the
flexible appendages under the compared PD-like controller. Figures 5 and 10 show that the
control torques under both controllers always remained within the predefined saturation
constraints. Moreover, in Figure 6, the NN weight estimations of the proposed controller
changed with time smoothly.
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Furthermore, some comparisons between the proposed controller and the compared
PD-like controller are provided in detail in Figures 11–14. Figures 11 and 12 present the
norms of the attitude σ and angular velocity ω under both controllers. Moreover, the
vibration energy under both controllers are shown in Figure 13, where the vibration energy
index is defined as Eη = 1

2 ηTη. Figure 14 shows the control energy consumption under both
controllers, where the control energy consumption index is defined as Eu = 1

2

∫ t
0 ‖u(τ)‖dτ.

In Figures 11–14, it is not difficult to find that the proposed controller realized attitude
stabilization with higher accuracy than the compared PD-like controller, with less elastic
vibration remaining and less control energy consumption. Additionally, it is obvious that
the angular velocity tracking under the compared PD-like controller had a relatively large
overshoot, which is unexpected in practical implementations.
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Consequently, from the simulations and detailed comparisons, the proposed controller
appeared able to achieve a superior stabilization performance and better vibration suppres-
sion than the compared PD-like controller. This was mainly due to the NN compensation
for the lumped unknown term. On the one hand, the robustness of the proposed controller
against uncertain inertia and external disturbance was further enhanced. On the other
hand, the elastic vibrations of the flexible appendages were significantly suppressed at the
same time.

5. Conclusions

In this paper, a novel neural adaptive fixed-time control approach is proposed for
the attitude stabilization and vibration suppression of flexible spacecraft. The NN was
introduced to identify the lumped unknown term involving uncertain inertia, external
disturbance, torque saturation, and elastic vibrations. After that, the proposed controller
was developed by integrating with the NN compensation under the fixed-time backstep-
ping control framework. The proposed controller guaranteed the stabilization of attitude
and angular velocity to the adjustable small neighborhoods of zero in fixed time through
Lyapunov analysis. It should be pointed out that the proposed controller is not only robust
against uncertain inertia and external disturbance, but also insensitive to elastic vibrations
of the flexible appendages. At last, the simulation results indicated that the proposed
control approach was able to achieve an excellent stabilization performance and good
vibration suppression.
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