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Abstract: This paper presents a developed solution based on gorilla troops optimization technique
for OPFP in EPSs. The GTOT is motivated by gorillas’ group behaviors in which several methods are
replicated, such as migration to an unfamiliar location, traveling to other gorillas, migration toward a
specific spot, accompanying the silverback, and competing for adult females. The multi-dimension
OPFP in EPSs is examined in this article with numerous optimizing objectives of fuel cost, power
losses, and harmful pollutants. The system’s power demand and transmission losses must be met
as well. The developed GTOT’s evaluation is conducted using an IEEE standard 30-bus EPS and
practical EPS from Egypt. The created GTOT is employed in numerous evaluations and statistical
analyses using many modern methods such as CST, GWT, ISHT, NBT, and SST. When compared to
other similar approaches in the literature, the simulated results demonstrate the GTOT’s solution
efficiency and robustness.

Keywords: gorilla troops optimization technique; electrical power systems; optimal power flow;
harmful pollutants; fuel costs; power losses

MSC: 90-08

1. Introduction

The optimum operational analysis is critical in determining the projected financial
return for electrical networks. The energy supply is shifting around the globe towards
sustainability, low carbon content, and high efficiency [1]. The increased load demand
acts as an urgent challenge for power system operators. The economic and environmental
prospects of power generations in modern power systems are considered the weighty
research targets and the key concern of electric utility operators. The OPFP is a non-
linear, multi-model issue in EPSs for power system control and operation. Using OPFP,
pecuniary and safe operating circumstances of EPSs can be elaborated [2]. The solution of
OPFP is currently the principal strategy for controlling and operating the modern power
grids [3]. The OPFP can optimize one or even more targets such as cost of fuel, EPS
sources pollution, and system losses. These goals may be met while maintaining load flow
balancing and keeping operating variables inside the corresponding limitations, including
voltages restrictions, transmission network limits, valve constraints, and generator output
limits [4].
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Various standard mathematic methodologies were proposed to address the OPFP, such
as semidefinite programming [5], non-linear programming [6], linear programming [7,8],
quadratic programming [9,10], fuzzy linear programming [11], sequential unconstrained min-
imization technique [12], Newton-based method [13,14] and interior point approach [15–17].
A myriad of these approaches can effectively impose inequality restrictions and possess
high convergence properties. Nevertheless, these conventional methods cannot generate
the real optimal results because they rely on the initial settings, and consequently, they
may get stuck in a local minimum. Additionally, every approach should be modeled with
particular variants for OPFP, and they cannot deal with variables of discrete and integer
natures smoothly. Hence, it is pivotal to develop metaheuristic techniques to overcome
the mentioned disadvantages. The rapid growth of computers in the last two decades has
led to a trend to solve diverse OPFP challenges using several heuristic (population-based)
techniques [18,19]. Examples of these population-based heuristics are CBOA [20], BBO [21],
PSO [22,23], HGWODE [24], GA [25], EMM [26], TLBO [27], and SAO [28].

In addition to that, recent techniques have been manifested to attain the solution of
the large-scale OPFP: QMFT [29], COA [30], CSSO [31], and WCEMFT [32]. Moreover, a
multi-group strategy was combined with the marine predators method to subdivide the
original population into numerous separate groups in order to reduce the operation costs of
power systems to maximize the economic advantages [33]. To tackle the economic dispatch
difficulties of thermal generators, the DE method based on nondominated sorting was
used to reduce pollution emissions and economic costs taking into account the dynamical
schedule of thermal power units with consideration of ramp-rate, valve-point impact, and
balance of power [34]. This method has been applied to two different systems with 13 and
40 thermal generating units.

Various augmentations of the algorithm strategies can be used to identify the best
OPFP solution. An emended moth swarm algorithm (EMSA), in [35], has been presented to
the OPFP with adjustment of quasi-opposition-based learning. Moreover, AGST, developed
in [36], has been illustrated and applied with three objectives which are the fuel cost,
emission, and losses taking into consideration different equality and inequality constraints.
Additionally, ISSO was presented to minimize fuel costs, emissions, and power losses [37]
by adjusting the movement technique of male and female spiders to acceptable ratios.
In [38], a modified JAYA has been manifested by proposing modifying the equation for
solutions that rely on the worst and best solutions, and technique has been applied to
fuel cost, emission, voltage profile, and losses functions. Furthermore, IADE has been
handled, in [39], with the self-adaptive penalty constraint technique and applied to the
OPFP. To enhance exploration capability and the solution optimality convergence, quasi-
oppositional-based learning has emerged with the Jaya technique in [40] to attain the OPFP
solution. Moreover, an improved NSGA-III has been utilized with constraint management
and decreasing selecting attempts to solve fuel costs, losses, and emission functions, as
depicted in [41]. In [42], MRFO was implemented for EPSs to decrease the costs of fuel,
losses, and pollution with/without the inclusion of voltage-source-converter stations.

Recently, a technique named gorilla troops optimization technique (GTOT) [43] pro-
posed by (Benyamin Abdollahzadeh et al.) is developed in this article for multi-dimension
OPFP in EPSs by adding valve constraint to the OPFP. GTOT is developed with five strate-
gies to enlighten the exploitation and exploration of the optimization progression. To deal
with the exploration phase, three strategies are verified: migration to a not recognized
place, movement to other gorillas, and migration to a recognized location. Nevertheless, in
the exploitation phase, two strategies are verified: follow the silverback and struggle for
adult females. The superiority of this technique is that it has few parameters to be adjusted
as well as it is simple to be implemented for engineering applications. The evaluation of
GTOT quality is illustrated by applying it to various systems: IEEE standard 30 bus and
practical WD Area. The results of the GTOT are compared with recent techniques and other
existing techniques to demonstrate its efficacy and superiority between these techniques.
The following are important contributions discussed in this work.
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• The designed GTOT is exploited to reduce different target functions for minimizing
the fuel costs, power losses, and pollutant emissions related to EPSs and applied on
the IEEE standard 30 bus and practical WD.

• Multi-dimension operations with two or three objectives are developed in this work.
• The developed GTOT outperforms a number of current approaches, including CST,

GWT, ISHT, NBT, and SST.
• Statistical analyses and stability assessments are developed in this work to demonstrate

the capability of the proposed GTOT in handling the OPFP with different sizes and
objective functions.

• The simulation results of related techniques in the literature are compared with the
developed GTOT to demonstrate the robustness and solution quality of GTOT.

• Substantial consistency is accompanied by the proposed GTOT for handling the OPFP
in EPSs.

The other portions of the whole work are as follows: Section 2 illustrates the GTOT
approach. Section 3 establishes the OPFP construction, whereas Section 4 manifests the
designed GTOT for OPFP. Furthermore, the simulated findings and discussions are denoted
in Section 5, whilst the concluding notes are provided in Section 6.

2. Gorilla Troops Optimization Technique

The gorilla troops optimization technique (GTOT) simulates five strategic options
to clarify the optimizing process’s exploitation and exploration, as manifested in the
following paragraphs.

2.1. Exploration Phase

In GTOT, every gorilla is denoted by a candidate solution, but at every optimizing oper-
ational phase, the global optimal solution is designated as a silverback. For the exploratory
stage of development, three distinct methods are used. The first one is the movement to an
unknown destination to raise GTOT exploration, while the second method is the movement
of other gorillas to enhance the consistency between exploratory and exploitation. More-
over, the third method is the gorilla’s movement in the path of a recognized destination to
raise GTOT capabilities to discover varied computation spaces. In this technique, the factor
(Pr) should be supplied in the band [0:1] prior to the optimizing process. When a factor (Pr)
is greater than a random number, the movement to an undetermined location strategy is
selected [44]. Additionally, if a random number is more than or equal to 50%, a movement
in the path of an identifiable place is decided, whereas if a random number is less than 50%,
a movement in the path of a recognized site is selected. Those three exploratory tactics can
be mathematically stated as follows:

GX(g + 1) =


LL + rd1 × (UL− LL), Pr > rand,
H × L + Xr(g)× (rd2 − C), 0.5 ≤ rand,
X(g) + (X(g)− GXr(t))× rd3 − (X(g)− GXr(g)× L2), 0.5 > rand

(1)

C = F× (1− Iter/MaxIter), (2)

F = cos(2× rd4) + 1, (3)

L = C× l (4)

H = Z× X(g) (5)

Z = [−C, C]. (6)

2.2. Exploitation Phase

In the exploitation stage of GTOT, two methods are used: following the silverback
and competing for female adults. Based on factor C and contrasting it to the variable (W)
(which can be changed), one of the two methods is selected.
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The leader of the gorillas’ group is the silverback that can make choices and directs the
others to sources of food. If the C is greater than or equal to the value of W, this approach is
chosen. Equation (7) can be used to illustrate this phenomenon.

GX(g + 1) = L×M(g)× (X(g)− Xsiverback) + X(g) (7)

M(g) =

∣∣∣∣∣(1/N)
N

∑
i=1

GXi(g)

∣∣∣∣∣
2L( 1

2L )

(8)

If C is less than W, the next approach is competing for female adults, which is spe-
cialized for the evaluation stage. When adolescent gorillas reach adolescence, they engage
in a violent rivalry with other males for the selection of female adults. This behavior is
formulated as follows:

GX(g) = Xsilverback − (Xsilverback ×Q− X(g)×Q)× A, (9)

Q = 2× rd5 − 1 (10)

A = β× E (11)

E =

{
N1 rand ≥ 0.5
N2 rand < 0.5

(12)

At the end of the exploitation stage, the cost of GX(g) is compared to its counterpart
X(g), and if the cost of GX(g) is less than X(g), the GX(g) solution replaces it and becomes
the optimal option (silverback). Figure 1 depicts the major processes of the developed
GTOT for extracting characteristics from solar cell models [44].
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3. Problem Formulation

In OPFP, the dependent and independent variables are represented. To illustrate, the
generators’ real power output and the reactive power injections of switching capacitors
and reactors, voltages of the generators, tap changer settings, the number of on-load tap
changers, generators, and reactive power sources, generator reactive power outputs, load
bus voltage magnitudes, and transmission flow limits, number of transmission lines and
load buses are the main pillars of OPFP. This problem can be expressed as follows:

Min OJ = {OJ 1(x, y), OJ2(x, y) . . . ., OJm(x, y)} (13)

Subject to : F(x, y) = 0 (14)

M(x, y) ≤ 0 (15)

3.1. Objectives

The primary goal is to calculate the OJ1 in dollars per hour as follows:

OJ1 =
Ng

∑
k=1

Ck × Pgk
2 + Bk × Pgk + Ak (16)

Because of the constant change in steam valves in power plants, the valve-point load
influence generates fluctuations in the FCs. As a consequence, the FCs formula is produced
by integrating sinusoidal rectifications to the quadratic formula, and OJ2 can be represented
as follows:

OJ2 =
Ng

∑
k=1

Ck × Pgk
2 + Bk × Pgk + Ak +

∣∣∣Ek × (sin(Fk(Pgk − Pgmin
k )))

∣∣∣ (17)

The second goal is to minimize OJ3 from the power plants, which can be formulated as:

OJ3 =
Ng

∑
k=1

(γ k × Pgk
2 + βk × Pgk + αk)/100 + ζk × eλk×Pgk (18)

The third goal is to minimize the overall power loss throughout the transmission
system, which is mathematically stated as:

OJ4 =
Nb

∑
m=1

Nb

∑
n=1

Gmn × (Vm
2 + Vn

2 − 2(Vm ×Vn × cos θmn)) (19)

3.2. System Constraints

The load flow balance equations, Equations (20) and (21), manifest the equality constraints:

Pgj − PLj −Vj ×
Nb

∑
k=1

Vk × (G jk × cos θjk + Bjk × sin θjk) = 0, j = 1, . . . , Nb (20)

QLj −Vj ×
Nb

∑
k=1

Vk × (G jk × sinθjk − Bjk × cosθjk) = 0, j = 1, 2, . . . , Nb (21)

Furthermore, the operating variables and the accompanying restrictions are written
as follows:

Pgmin
k
≤ Pg

k
≤ Pgmax

k
, k = 1, 2, . . . , Ng (22)

Vgmin
k
≤ Vg

k
≤ Vgmax

k , k = 1, 2, . . . , Ng (23)

Qgmin
k
≤ Qg

k
≤ Qgmax

k
, k = 1, 2, . . . , Ng (24)
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Tapmin
Tr ≤ TapTr ≤ Tapmax

Tr , Tr = 1, 2, . . . , Nt (25)

Qcmin
VAR ≤ QcVAR ≤ Qcmax

VAR, VAR = 1, 2, . . . , Nq (26)

VLmin
j ≤ VLj ≤ VLmax

j , j = 1, 2, . . . , NPQ (27)∣∣∣Sfl

∣∣∣ ≤ Smax
fl , fl = 1, 2, . . . , Nf (28)

4. Developed Solution-Based GTOT for OPFP in EPSs

The equality and inequality constraints are indeed considered while handling the
stated OPFP problem. To satisfy the equality conditions that describe power flow balance
models, the NRA is applied. It depicts the steady-state operation of electric grids and meets
the balance constraints. Consequently, the NRA is used by MATPOWER and represents a
key framework for demonstrating three-phase systems [45].

4.1. Improvement of GTOT for Incorporating Operational Limitations of Independent Variables

The operational limitations of independent variables of Equations (22)–(26) may be
rewritten as follows:

Pgk =

{
Pgmin

k
if Pg

k
≤ Pgmin

k
Pgmax

k
if Pg

k
≥ Pgmax

k

, k = 1, 2, . . . , Ng (29)

Vg
k
=

{
Vgmin

k
if Vg

k
≤ Vgmin

k
Vgmax

k
if Vg

k
≥ Vgmax

k

, k = 1, 2, . . . , Ng (30)

Qg
k
=

{
Qgmin

k
if Qg

k
≤ Qgmin

k
Qgmax

k
if Qg

k
≥ Qgmax

k

, k = 1, 2, . . . , Ng (31)

TapTr =

{
Tapmin

Tr if TapTr ≤ Tapmin
Tr

Tapmax
Tr if TapTr ≥ Tapmax

Tr
, Tr = 1, 2, . . . , Nt (32)

QcVAR =

{
Qcmin

VAR if QcVAR ≤ Qcmin
VAR

Qcmax
VAR if QcVAR ≥ Qcmax

VAR
, VAR = 1, 2, . . . , Nq (33)

As shown, the variables continue to reach their limitations, and if one of these sur-
passes ratings, they are regenerated randomly inside the appropriate constraints.

4.2. Improvement of GTOT for Incorporating Operational Limitations of Dependent Variables

Moreover, the target cost objective expands and penalizes the second category’s
limitations. Therefore, if the gorilla’s location exceeds any of the appropriate constraints,
it would be discarded in the next round. Such concepts may be used to construct the
contemplated objective (OJ), as shown in Equation (34).

OJ = OJj + Pen1 ∑
NPQ

∆V2
LL + Pen2∑

Nq
∆Q2

GG + Pen3∑
N f

∆S2
FF, j = 1, . . . .m (34)

where ∆VLL, ∆QGG, and ∆SFF are presented as:

∆VLL =

{
Vmin

L −VL if VL < Vmin
L

Vmax
L −VL if VL > Vmax

L
(35)

∆QGG =

{
Qmin

G −QG if QG < Qmin
G

Qmax
G −QG if QG > Qmax

G
(36)

∆SFF = Smax
F − SF if SF > Smax

F (37)

Figure 2 displays the stages of the designed GTOT for OPFP in EPSs.
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On the other side, in order to handle the model of multi-objectives, the different
objective functions can be augmented using the weighted sum approach as follows:

OJ = w1
OJ1

OJ1max
+ w2

OJ2

OJ2max
+ w3

OJ3

OJ3max
+ w4

OJ4

OJ4max
(38)

where
4

∑
i=1

wi = 1 (39)

5. Simulation Results

The developed GTOT is implemented on the standard IEEE 30-bus EPS, a prac-
tical Egyptian EPS called West Delta-EPS (WD-EPS). Thirty simulation runs are con-
ducted based on the developed GTOT with peak iterations of 300 and gorillas’ group
of 25 members. The first EPS is depicted in Figure 3, which consists of 41 transmission
lines, 30 buses, 4 tap changers, 6 generators, and 9 reactive power devices. The complete
data of this EPS are extracted from [46]. The highest and minimum generator voltages are
1.1 and 0.95 p.u., respectively. The second EPS is described in Figure 4, which consists of
52 buses. The highest and lowest generator voltages are 1.06 and 0.94 p.u., respectively. The
developed GTOT and various other innovative techniques were presented to minimize the
fuel generation costs such as CST [47], SST, NBT [48], and ISHT. MatlabR2017b is utilized
to carry out the simulations using CPU (2.5 GHz) Intel(R)-Core (TM) i7-7200U and 8 GB
of RAM.
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5.1. Results of the First EPS

For this EPS, six scenarios are examined:

• Scenario 1: OJ1 minimization of FGCs described in Equation (16);
• Scenario 2: OJ2 minimization of FGCSs described in Equation (17);
• Scenario 3: OJ3 minimization of PE described in Equation (18);
• Scenario 4: OJ4 minimization of OPL described in Equation (19);
• Scenario 5: Merging OJ1 and OJ3 as a multi-objective function;
• Scenario 6: Merging OJ1, OJ3, and OJ4 as a multi-objective function.

5.1.1. Scenario 1

For this scenario, the proposed GTOT is implemented, and the results are shown in
Table 1. In this table, the values of the voltages of the six generators (Vg 1, Vg 2, Vg 5, Vg 8,
Vg 11, and Vg 13) started at 1.05, 1.04, 1.01, 1.01, 1.05, and 1.05, respectively, and ended at
1.1, 1.088, 1.0619, 1.0696, 1.1, and 1.0, respectively. In addition to this, the values of four
tap changer settings (Tap 6–9, Tap 6–10, Tap 4–12, and Tap 28–27) started at 1.0780, 1.0690,
1.0320, and 1.0680, respectively, and ended at 1.0551, 0.90, 0.99, and 0.9669, respectively.
Additionally, the values of all nine reactive power devices (Qc 10, Qc 12, Qc 15, Qc 17,
Qc 20, Qc 21, Qc 23, Qc 24, and Qc 29) started at 0 and ended at 5.0, 5.0, 5.0, 5, 4.4549, 4.978,
2.7861, and 5.0, respectively. Furthermore, the values of all six generators’ real power
output (Pg 1, Pg 2, Pg 5, Pg 8, Pg 11, and Pg 13) started at 99.24, 80.0, 50.0, 20.0, 20.0, and 20.0,
respectively, and ended at 177.0191, 48.7234, 21.2921, 21.0921, 11.8996, and 12.0, respectively.
As demonstrated in this table, the proposed GTOT reduces FGCs from 901.96 USD/h to
799.0831 USD/h compared to the initial case. This decrease is a proportion of 11.406%.
In addition, Figure 5 depicts the convergent characteristic of the proposed GTOT, where
it obtains the optimal solution in a short time with the effectiveness and robustness of
the solution.
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Table 1. Simulation outcomes based on the designed GTOT for the first scenario.

Variables Initial First Scenario

Voltage setting of the generators (p.u)

Gen 1 1.0500 1.1000

Gen 2 1.0400 1.0880

Gen 5 1.0100 1.0619

Gen 8 1.0100 1.0696

Gen 11 1.0500 1.1000

Gen 13 1.0500 1.1000

Output powers of the generators (MW)

Gen 1 99.2400 177.0191

Gen 2 80.0000 48.7234

Gen 5 50.0000 21.2921

Gen 8 20.0000 21.0921

Gen 11 20.0000 11.8995

Gen 13 20.0000 12.0000

Tap setting of the transformers (p.u)

Tr 6–9 1.0780 1.0551

Tr 6–10 1.0690 0.9000

Tr 4–12 1.0320 0.9900

Tr 28–27 1.0680 0.9668

Output reactive powers of the VAR
sources ar buses (MVAr)

Bus 10 0.0000 5.0000

Bus 12 0.0000 5.0000

Bus 15 0.0000 5.0000

Bus 17 0.0000 5.0000

Bus 20 0.0000 4.4549

Bus 21 0.0000 4.9780

Bus 23 0.0000 2.7861

Bus 24 0.0000 5.0000

Bus 29 0.0000 2.6571

Cost_Pg 901.9600 799.0831

Losses 5.8324 8.6263

For this Scenario, Table 2 includes the comparison of reducing FGCs with a variety of
other approaches. As shown, the developed GTOT obtains the minimum FGCs of 799.0831
USD/h, among other techniques.

Table 2. Comparison for Scenario 1.

Technique FGCs (USD/h) Technique FGCs (USD/h)

Developed GTOT 799.0831 IMFT [52] 800.3848

GWT [53] 800.4330 SOST [54] 801.5733

TLT [27] 800.4212 ICT) [55] 801.843

GT [56] 800.9728 DHST [57] 802.2966

MCST [58] 799.3332 GA [41] 802.1962

BHBT [57] 799.9217 AGT [56] 800.0212

MST [59] 800.5099 CST [47] 799.8266

IEOT [60] 799.688 EMRFT [42] 798.9888

NBT [61] 799.7516 JFST [62] 799.1065
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5.1.2. Scenario 2

Taking into account the valve point impact, the developed GTOT is used to reduce
FGCSs. For this scenario, the regarding results are shown in Table 3. In this table, the values
of the voltages of the six generators (Vg 1, Vg 2, Vg 5, Vg 8, Vg 11, and Vg 13) started at 1.050,
1.040, 1.010, 1.010, 1.050, and 1.050, respectively, and ended at 1.1000, 1.0809, 1.0550, 1.0653,
1.0999, and 1.1000, respectively. In addition to this, the values of four tap changer settings
(Tap 6–9, Tap 6–10, Tap 4–12, and Tap 28–27) started at 1.0780, 1.0690, 1.0320, and 1.0680,
respectively, and ended at 1.1000, 0.9203, 1.0595, and 0.9936, respectively. Additionally,
the values of all nine reactive power devices (Qc 10, Qc 12, Qc 15, Qc 17, Qc 20, Qc 21,
Qc 23, Qc 24, and Qc 29) started at 0 and ended at 5.0000, 4.994, 4.8523, 5.0000, 5.0000, 5.0000,
3.7342, 4.5993, and 2.8053, respectively. Furthermore, the values of all six generators’ real
power output (Pg 1, Pg 2, Pg 5, Pg 8, Pg 11, and Pg 13) started at 99.2400, 80.0000, 50.0000,
20.0000, 20.0000, and 20.0000, respectively, and ended at 194.7610, 47.7489, 19.0111, 10,
10.0000, and 12.0014, respectively. As shown, the developed GTOT reduces the FGCSs from
901.9600 USD/h in the initial scenario to 832.7696 USD/h in the final scenario. This
reduction in cost represents a percentage of 7.6700%. Additionally, Figure 6 displays the
convergent characteristic of the proposed GTOT, where it obtains the optimal solution in a
short time with the effectiveness and robustness of the solution.

Table 3. Simulation outcomes based on the designed GTOT for the second scenario.

Variables Initial Second Scenario

Voltage setting of the generators (p.u)

Gen 1 1.0500 1.1000

Gen 2 1.0400 1.0809

Gen 5 1.0100 1.0550

Gen 8 1.0100 1.0653

Gen 11 1.0500 1.0999

Gen 13 1.0500 1.1000
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Table 3. Cont.

Variables Initial Second Scenario

Output powers of the generators (MW)

Gen 1 99.2400 194.7610

Gen 2 80.0000 47.7489

Gen 5 50.0000 19.0111

Gen 8 20.0000 10.0000

Gen 11 20.0000 10.0000

Gen 13 20.0000 12.0014

Tap setting of the transformers (p.u)

Tr 6–9 1.0780 1.1000

Tr 6–10 1.0690 0.9203

Tr 4–12 1.0320 1.0595

Tr 28–27 1.0680 0.9936

Output reactive powers of the VAR
sources ar buses (MVAr)

Bus 10 0.0 5.0000

Bus 12 0.0 4.9949

Bus 15 0.0 4.8523

Bus 17 0.0 5.0000

Bus 20 0.0 5.0000

Bus 21 0.0 5.0000

Bus 23 0.0 3.7342

Bus 24 0.0 4.5993

Bus 29 0.0 2.8053

Cost_Pg 901.9600 832.7696

Losses 5.8324 10.1201
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5.1.3. Scenario 3

As demonstrated in Table 4, the designed GTOT minimizes the PEs in the third sce-
nario. In this table, the values of the voltages of the six generators (Vg 1, Vg 2, Vg 5,
Vg 8, Vg 11, and Vg 13) started at 1.0500, 1.0400, 1.0100, 1.0100, 1.0500, and 1.0500, re-
spectively, and ended at 1.1000, 1.0961, 1.0784, 1.0859, 1.1000 and 1.1000, respectively.

Table 4. Simulation outcomes based on the designed GTOT for the third scenario.

Variables Initial Third Scenario

Voltage setting of the generators (p.u)

Gen 1 1.0500 1.1000

Gen 2 1.0400 1.0961

Gen 5 1.0100 1.0784

Gen 8 1.0100 1.0859

Gen 11 1.0500 1.1000

Gen 13 1.0500 1.1000

Output powers of the generators (MW)

Gen 1 99.2400 63.9480

Gen 2 80.0000 67.4323

Gen 5 50.0000 50.0000

Gen 8 20.0000 35.0000

Gen 11 20.0000 30.0000

Gen 13 20.0000 40.0000

Tap setting of the transformers (p.u)

Tr 6–9 1.0780 1.0696

Tr 6–10 1.0690 0.9001

Tr 4–12 1.0320 0.9864

Tr 28–27 1.0680 0.9731

Output reactive powers of the VAR
sources ar buses (MVAr)

Bus 10 0.0000 4.9999

Bus 12 0.0000 4.9999

Bus 15 0.0000 5.0000

Bus 17 0.0000 5.0000

Bus 20 0.0000 4.3098

Bus 21 0.0000 4.9999

Bus 23 0.0000 2.3956

Bus 24 0.0000 5.0000

Bus 29 0.0000 2.3154

Cost_Pg 901.9600 943.5287

Losses 5.8324 2.9803

Emissions 0.2390 0.2046

In addition to this, the values of four tap changer settings (Tap 6–9, Tap 6–10,
Tap 4–12, and Tap 28–27) started at 1.0780, 1.0690, 1.0320, and 1.0680, respectively, and
ended at 1.0696, 0.9001, 0.9864, and 0.9731, respectively. Additionally, the values of all
nine reactive power devices (Qc 10, Qc 12, Qc 15, Qc 17, Qc 20, Qc 21, Qc 23, Qc 24, and
Qc 29) started at zero and ended at 4.9999, 4.9999, 5.0000, 5, 4.3098, 4.9999, 2.3956, and
5.0000, respectively. Furthermore, the values of all six generators’ real power output (Pg 1,
Pg 2, Pg 5, Pg 8, Pg 11, and Pg 13) started at 99.2400, 80.0000, 50.0000, 20.0000, 20.0000, and
20.0000, respectively, and ended at 63.9480, 67.4323, 50.0000, 35.0000, 30.0000, and 40.0000,
respectively. It is illustrated from this table that the obtained PE value is 0.2046 ton/h.
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In addition to this, Figure 7 depicts the convergence properties of the generated GTOT
for Scenario 3, where it obtains the optimal solution in a short time with the effectiveness
and robustness of the solution. Table 5 compares it to other metaheuristics optimization
techniques. It is illustrated from the table the developed GTOT attains the minimum PE
objective of 0.2046 ton/h. It outperforms the other metaheuristics that are shown in the
mentioned table.
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Table 5. Comparison for Scenario 3.

Technique PEs (tonne/h) Technique PEs (ton/h)

Developed GTOT 0.2046 AGT [56] 0.2048

Stud KHT [63] 0.2048 GT [56] 0.2049

ARBT [21] 0.2048 Modified TLT [64] 0.2049

KHT [63] 0.2049 EMRFT [42] 0.2048

CST [58] 0.2051 NBT [58] 0.2052

JFST [62] 0.2047 MCST [58] 0.2049

5.1.4. Scenario 4

The proposed GTOT achieves the minimizing of the OPLs in the fourth scenario,
as shown in Table 6. In this table, the values of the voltages of the six generators (Vg 1,
Vg 2, Vg 5, Vg 8, Vg 11, and Vg 13) started at 1.0500, 1.0400, 1.0100, 1.0100, 1.0500, and 1.0500,
respectively, and ended at 1.1000, 1.0975, 1.0797, 1.0868, 1.1000, and 1.1000, respectively.
In addition to this, the values of four tap changer settings (Tap 6–9, Tap 6–10, Tap 4–12, and
Tap 28–27) started at 1.0780, 1.0690, 1.0320, and 1.0680, respectively, and ended at 1.0675,
0.9000, 0.9872, and 0.9728, respectively. Additionally, the values of all nine reactive power
devices (Qc 10, Qc 12, Qc 15, Qc 17, Qc 20, Qc 21, Qc 23, Qc 24, and Qc 29) started at 0 and
ended at 5.0000, 5.0000, 5.0000, 5.0000, 4.999, 5, 1.4887, 5.0000, and 2.2640, respectively.
Furthermore, the values of all six generators’ real power output (Pg 1, Pg 2, Pg 5, Pg 8,
Pg 11, and Pg 13) started at 99.2400, 80.0000, 50.0000, 20.0000, 20.0000, and 20.0000, respec-
tively, and ended at 51.2525, 80.0000, 50.0000, 35.0000, 30.0000, and 40.0000, respectively. It
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is illustrated from the table the acquired value of OPLs is 2.8525 MW, whereas the value of
OPLs is 5.8324 MW in the initial scenario. This reduction in cost represents a percentage of
51.09%. Additionally, Figure 8 depicts the convergent characteristic of the designed GTOT
for Scenario 4, where it obtains the optimal solution in a short time with the effectiveness
and robustness of the solution.
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Table 6. Simulation outcomes based on the designed GTOT for the fourth scenario.

Variables Initial Fourth Scenario

Voltage setting of the generators (p.u)

Gen 1 1.0500 1.1000

Gen 2 1.0400 1.0975

Gen 5 1.0100 1.0797

Gen 8 1.0100 1.0868

Gen 11 1.0500 1.1000

Gen 13 1.0500 1.1000

Output powers of the generators (MW)

Gen 1 99.2400 51.2525

Gen 2 80.0000 80.0000

Gen 5 50.0000 50.000

Gen 8 20.0000 35.0000

Gen 11 20.0000 30.0000

Gen 13 20.0000 40.0000

Tap setting of the transformers (p.u)

Tr 6–9 1.0780 1.0675

Tr 6–10 1.0690 0.9000

Tr 4–12 1.0320 0.9872

Tr 28–27 1.0680 0.9728
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Table 6. Cont.

Variables Initial Fourth Scenario

Output reactive powers of the VAR
sources ar buses (MVAr)

Bus 10 0.0000 5.0000

Bus 12 0.0000 5.0000

Bus 15 0.0000 5.0000

Bus 17 0.0000 5.0000

Bus 20 0.0000 4.9999

Bus 21 0.0000 5.0000

Bus 23 0.0000 1.4887

Bus 24 0.0000 5.0000

Bus 29 0.0000 2.2640

Cost_Pg 901.9600 967.0722

Losses 5.8324 2.8525

5.1.5. Stability Assessment of the Developed GTOT for the First EPS

To make a detailed evaluation of the stability of the developed GTOT for the first
EPS, the obtained objectives of the thirty runs are recorded. For each scenario, the related
average objective is calculated, and a graph is plotted to describe the percentage of every
objective value to IndOJk, so the closeness of every run compared to the mean can be
described. Figure 9 describes the obtained indicators of the related objective percentages
via the developed GTOT.

IndOJk =
OJk

1
30

30
∑

k=1
OJk

, k = 1, 2, . . . m (40)

As it can be observed from the figure, the developed GTOT always has the ability to
find a close percentage to 100% where its mean is near to its minimum value. The highest
percentage of the index is 100.085% in the first scenario, while it reached 101.1680% in
the second scenario. For the third scenario, the maximum index percentage is 101.0400,
while it reached 100.05% in the fourth scenario. This demonstrates the high stability of
the developed GTOT for all scenarios. Additionally, Table 7 indicates the statistical data
for the four scenarios. As manifested in this table, the best, mean, and worst values
obtained by the developed GTOT are very close, which illustrates the robustness of the
developed GTOT.

Table 7. Statistical data based on the designed GTOT for the 4 scenarios.

Statistical Indices Scenario 1 Scenario 2 Scenario 3 Scenario 4

Best 799.0831 832.8144 0.2046 2.8525

Mean 799.2081 833.4394 0.2050 2.9128

Worst 799.8904 843.1896 0.2072 3.1655

Standard deviation 0.2140 1.8636 0.0008 0.0824

Standard error 0.0390 0.3402 0.0001 0.0150

|Best-Worst| 0.1010% 1.2458% 1.2350% 10.9711%

|Mean-Worst| 0.0853% 1.1698% 1.0667% 8.6738%

|Best-Mean| 0.0156% 0.0750% 0.1665% 2.1139%
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Moreover, other statistical indices are conducted on the four scenarios, which are
standard deviation, standard error, |Best-Worst|, |Mean-Worst|, and |Best-Mean|. The
standard deviations for the four scenarios are 0.214, 1.8636, 0.0001, and 0.0150, while the
standard errors are 0.0390, 0.3402, 0.0001, and 0.0150. Additionally, another important
index, which is |Best-Mean|, represents the difference between the best and mean values
obtained by the proposed GTOT. The values of |Best-Mean| are 0.0156%, 0.0750%, 0.1665%,
and 2.1139%. These statistical indices illustrate the effectiveness and robustness of the
developed GTOT.

5.1.6. Scenario 5 and Scenario 6

In the fifth scenario, two different objective functions are considered for the minimiza-
tion of both the FGCs and PE. In the sixth scenario, three different objective functions are
considered for the minimization of FGCs, PE, and OPL. For both cases, the proposed GTOT
is applied, and the optimal settings of the control variables and the regarding objectives
are shown in Table 8. In this table, the values of FGCs and PE in the fifth scenario started
at 901.9600 and 0.2390, respectively, and ended at 890.1029 and 0.2127, respectively, when
applying the GTOT on this system. In addition to this, the values of FGCs, PE, and OPL
in the sixth scenario started at 901.9600, 0.2390, and 5.8324, respectively, and ended at
895.4292, 0.2123, and 4.6529, respectively.

Table 8. Simulation outcomes based on the designed GTOT for the fifth and sixth scenario.

Variables Initial Fifth Scenario Sixth Scenario

Voltage setting of the
generators (p.u)

Gen 1 1.0500 1.1000 1.0057

Gen 2 1.0400 1.0960 1.0045

Gen 5 1.0100 1.0771 1.0003

Gen 8 1.0100 1.0881 1.0111

Gen 11 1.0500 1.1000 1.0007

Gen 13 1.0500 1.0546 1.0018

Output powers of the
generators (MW)

Gen 1 99.2400 1.0553 1.0137

Gen 2 80.0000 1.1000 0.9097

Gen 5 50.0000 1.1000 0.9814

Gen 8 20.0000 1.1000 0.9741

Gen 11 20.0000 6.243 × 10−9 5.0000

Gen 13 20.0000 0.0000 5.0000

Tap setting of the
transformers (p.u)

Tr 6–9 1.0780 5.0000 5.0000

Tr 6–10 1.0690 4.6221 5.0000

Tr 4–12 1.0320 0.0000 5.0000

Tr 28–27 1.0680 5.0000 5.0000

Output reactive powers of
the VAR sources ar

buses (MVAr)

Bus 10 0.0000 5.0000 5.0000

Bus 12 0.0000 5.0000 5.0000

Bus 15 0.0000 5.0000 4.9517

Bus 17 0.0000 82.1327 81.8371

Bus 20 0.0000 62.7968 62.4782

Bus 21 0.0000 37.4611 38.7375

Bus 23 0.0000 35.0000 35.0000

Bus 24 0.0000 30.0000 30.0000

Bus 29 0.0000 40.0000 40.0000
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Table 8. Cont.

Variables Initial Fifth Scenario Sixth Scenario

Cost_Pg 901.9600 890.1029 895.4292

Losses 5.8324 3.9906 4.6529

Emissions 0.2390 0.2127 0.2123

Fitness 1.0000 0.7705 0.6691

Additionally, Table 9 indicates the statistical data for the fifth and sixth scenarios. As
manifested in this table, the best, mean, and worst values obtained by the developed GTOT
are very close, which illustrates the robustness of the developed GTOT. Moreover, other sta-
tistical indices are conducted on the four scenarios, which are standard deviation, standard
error, |Best-Worst|, |Mean-Worst|, and |Best-Mean|, that illustrate the effectiveness and
robustness of the developed GTOT.

Table 9. Simulation outcomes of the designed GTOT for the fifth and sixth scenario.

Statistical Indices Scenario 5 Scenario 6

Best 0.7705 0.6691

Mean 0.7819 0.6896

Worst 0.7914 0.7473

Standard deviation 0.0909 0.0043

Standard error 0.0166 0.0008

|Best-Worst| 2.7057% 11.6914%

|Mean-Worst| 1.2176% 8.3600%

|Best-Mean| 1.4701% 3.0743%

Additionally, Table 9 indicates the statistical data for the fifth and sixth scenarios. As
manifested in this table, the standard deviations for the four scenarios are 0.0909 and 0.0043,
while the standard errors are 0.0166 and 0.0008. Additionally, the values of |Best-Mean|
obtained by the proposed GTOT are 1.4701% and 3.0743%. These statistical indices illustrate
the effectiveness and robustness of the developed GTOT.

5.2. Results of the Second EPS

For this EPS, the three scenarios listed below are studied:

• Scenario 7: OJ1 minimization described in Equation (16);
• Scenario 8: OJ4 minimization described in Equation (19);
• Scenario 9: Merging OJ1 and OJ4 as a multi-objective function.

5.2.1. Scenario 7

For this case, the designed GTOT is implemented, and the results are shown in Table 10.
In this table, the values of the voltages of the eight generators (Vg 1, Vg 2, Vg 3, Vg 4,
Vg 5, Vg 6, Vg 7, and Vg 8) started at 1 and ended at 1.0600, 1.0590, 1.0599, 1.0599, 1.0599,
1.0599, 1.0455, and 1.0517, respectively. In addition to this, the values of all eight generators’
real power output (Pg 1, Pg 2, Pg 3, Pg 4, Pg 5, Vg 6, Pg 7, and Pg 8) started at 85.6900,
157.4000, 139.3100, 113.6900, 166.4800, 31.7100, 92.000, and 122.4900, respectively, and
ended at 189.5676, 10.0000, 214.6980, 180.4253, 10.0000, 234.0139, 56.3042, and 32.1957,
respectively. As illustrated, the proposed GTOT reduces FGCs from 25,098.7000 USD/h to
22,953.42472 USD/h in comparison with the initial scenario. This decrease is a percentage
of 8.54%. Furthermore, Figure 10 depicts the convergent characteristic of the proposed
GTOT, where it obtains the optimal solution in a short time with the effectiveness and
robustness of the solution.
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Table 10. Simulation outcomes based on the designed GTOT for the seventh scenario.

Variables Initial Fifth Scenario

Voltage setting of the generators (p.u)

Gen 1 1.0000 1.0600

Gen 2 1.0000 1.0599

Gen 3 1.0000 1.0599

Gen 4 1.0000 1.0599

Gen 5 1.0000 1.0599

Gen 6 1.0000 1.0599

Gen 7 1.0000 1.0455

Gen 8 1.0000 1.05173

Output powers of the generators (MW)

Gen 1 85.6900 189.5676

Gen 2 157.400 10.0000

Gen 3 139.3100 214.6980

Gen 4 113.6900 180.4253

Gen 5 166.4800 10.0000

Gen 6 31.7100 234.0139

Gen 7 92.0000 56.3042

Gen 8 122.4900 32.1957

FGCs (USD/h) 25,098.7000 22,953.4247

OPLs (MW) 19.0150 37.4550
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For such a scenario, the created GTOT is contrasted to a number of other novel
approaches used in this instance, as shown in Table 11. As can be observed, the produced
GTOT beats all other strategies in terms of minimizing FGCs, with the developed GTOT
obtaining the smallest FGCs of 22,953.4247 USD/h.
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Table 11. Comparison for Scenario 7.

Technique FGCs (USD/h) Technique FGCs (USD/h)

Developed GTOT 22,953.4247 ISHT [65] 22,958.7800

NBT [48] 22,960.8100 CST [47] 22,959.3600

SST [65] 22,965.5900 MCST [47] 22,955.5500

GWT [65] 22,957.7200

5.2.2. Scenario 8

The proposed GTOT achieves the minimizing of the OPLs in the eighth scenario, as
shown in Table 12. In this table, the values of the voltages of the eight generators (Vg 1,
Vg 2, Vg 3, Vg 4, Vg 5, Vg 6, Vg 7, and Vg 8) started at 1 and ended at 1.0595, 1.0600, 1.0600,
1.0600, 1.0600, 1.0600, 1.0600, and 1.0600, respectively. In addition to this, the values of
all eight generators’ real power output (Pg 1, Pg 2, Pg 3, Pg 4, Pg 5, Vg 6, Pg 7, and Pg 8)
started at 85.6900, 157.4000, 139.3100, 113.6900, 166.4800, 31.7100, 92.0000, and 122.4900,
respectively, and ended at 60.4617, 58.8194, 180.6455, 130.7554, 117.9838, 105.4722, 156.5709,
and 86.2761, respectively. The proposed GTOT, as demonstrated, reduces the OPLs from
19.0150 MW to 7.2353 MW compared with the initial scenario. This decrease reflects a
61.95 percent reduction. In addition, Figure 11 depicts the related convergent characteristic
of the proposed GTOT for Scenario 8, where it obtains the optimal solution in a short time
with the effectiveness and robustness of the solution.

Table 12. Simulation outcomes based on the designed GTOT for the eighth scenario.

Variables Initial Sixth Scenario

Voltage setting of the generators (p.u)

Gen 1 1.0000 1.0595

Gen 2 1.0000 1.0600

Gen 3 1.0000 1.0600

Gen 4 1.0000 1.0600

Gen 5 1.0000 1.0600

Gen 6 1.0000 1.0600

Gen 7 1.0000 1.0600

Gen 8 1.0000 1.0600

Output powers of the generators (MW)

Gen 1 85.6900 60.4617

Gen 2 157.4000 58.8194

Gen 3 139.3100 180.6455

Gen 4 113.6900 130.7554

Gen 5 166.4800 117.9838

Gen 6 31.7100 105.4722

Gen 7 92.0000 156.5709

Gen 8 122.4900 86.2761

FGCs (USD/h) 25,098.7000 24,773.0865

OPLs (MW) 19.0150 7.2353
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5.2.3. Stability Assessment of the GTOT for the Second EPS

For this EPS, similarly, the obtained objectives of the thirty runs are recorded. For every
scenario, the estimated indicators of the percentages of the objectives via the proposed
GTOT are displayed in Figure 12.
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As seen, the developed GTOT always has the ability to find close percentage to 100%
where its mean is near to its minimum. For the first scenario, the highest indicator percent is
100.0000167%, while the minimum index percent is 99.9999%. The maximum index percent
is 100.123%, while the minimum index percent is 99.9862%. This demonstrates the high
stability of the developed GTOT for all scenarios.

Additionally, Table 13 indicates the statistical data for the seventh and eighth scenario.
As manifested in this table, the standard deviations for the two scenarios are 7.3505 and
1.28 × 10−5 while the standard errors are 1.3420 and 2.33 × 10−6. Additionally, the values
of |Best-Mean| obtained by the proposed GTOT are 0.0137% and 0.0002%. These statistical
indices illustrate the effectiveness and robustness of the developed GTOT.

Table 13. Simulation outcomes based on the GTOT for the seventh and eighth scenarios.

Statistical Indices Scenario 7 Scenario 8

Best 22,953.4200 7.2353

Mean 22,956.5800 7.2353

Worst 22,984.9400 7.2353

Standard deviation 7.3505 1.28 × 10−5

Standard error 1.3420 2.33 × 10−6

|Best-Worst| 0.1373% 0.0003%

|Mean-Worst| 0.1235% 0.0001%

|Best-Mean| 0.0137% 0.0002%

5.2.4. Scenario 9

The designed GTOT achieves the minimization of both the FGCs and OPL in the
ninth scenario, as shown in Table 14. In this table, the values of FGCs and OPL in the
ninth scenario have started with 25,098.7000 and 19.0150, respectively, and ended with
24,586.3700 and 7.3036, respectively.

Table 14. Simulation outcomes based on the designed GTOT for Scenario 9.

Variables Initial Ninth Scenario

Voltage setting of the generators (p.u)

Gen 1 1.0000 1.0600

Gen 2 1.0000 1.0600

Gen 3 1.0000 1.0600

Gen 4 1.0000 1.0600

Gen 5 1.0000 1.0599

Gen 6 1.0000 1.0600

Gen 7 1.0000 1.0599

Gen 8 1.0000 1.0600

Output powers of the generators (MW)

Gen 1 85.6900 67.2453

Gen 2 157.4000 51.3626

Gen 3 139.3100 183.2907

Gen 4 113.6900 133.4820

Gen 5 166.4800 108.3223

Gen 6 31.7100 123.8325

Gen 7 92.0000 148.2581

Gen 8 122.4900 81.2601

FGCs (USD/h) 25,098.7000 24,586.3700

OPLs (MW) 19.0150 7.3036

Fitness 1.0000 0.6818
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In addition, Figure 13 depicts the convergent characteristic of the designed GTOT
for Scenario 9, where it obtains the optimal solution in a short time with the effective-
ness and robustness of the solution. Moreover, Table 15 indicates the statistical data for
the ninth scenario. As manifested in this table, the standard deviation for this scenario
is 1.9551 × 10−8, while the standard error is 3.5696 × 10−9. Additionally, the value of
|Best-Mean| obtained by the proposed GTOT is 3.4413 × 10−6%. These statistical indices
illustrate the effectiveness and robustness of the developed GTOT.
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Table 15. Simulation outcomes based on the designed GTOT for the seventh and eighth scenario.

Statistical Indices Scenario 9

Best 0.6818

Mean 0.6818

Worst 0.6818

Standard deviation 1.9551 × 10−8

Standard error 3.5696 × 10−9

|Best-Worst| 6.1814 × 10−6%

|Mean-Worst| 2.7401 × 10−6%

|Best-Mean| 3.4413 × 10−6%

6. Conclusions

In this paper, a methodology centered on the gorilla troops optimization technique
(GTOT) is developed for optimal power flow problem (OPFP) in electrical power systems
(EPSs). The assessment of the designed GTOT is carried out utilizing an IEEE specified
30 bus EPS and actual WD-EPS from Egypt. Nine different scenarios are evaluated, each
with a different goal function of fuel expense, transmission losses, and harmful pollutants.
Significant decreases in the objective goals are achieved for all tested circumstances. The
main outcomes of this paper are developed as follows:

• Multi-dimension objectives combining two and three objectives for both systems are
developed in this work.
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• Their percentages of reduction for the single objectives are reached (11.406%, 7.67%,
14.39%, 51.09%, 8.54%, and 61.95%) for the six single objective scenarios in comparison
to the initial circumstance.

• The GTOT is employed in different evaluations and statistical analyses with many
modern methods such as GWT, CST, SST, NBT, and ISHT.

• The developed GTOT always has the ability to find a close percentage to 100% where
its average is near to its minimum for both EPSs.

• When developed GTOT compared to other similar approaches in the literature, the
simulated results demonstrate the designed GTOT’s solution validity and stability.

• The developed GTOT derives considerable stability for all scenarios.

Considering the high efficacy of the suggested algorithm in the OPFP application
in this paper, it is preferred that the proposed algorithm be tested in the future for re-
solving the OPFP with high penetration of renewable energies in power grids. It may
also be designed for AC-DC electrical systems with the incorporation of modern voltage
source converters.
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List of Acronyms

AGT Adaptive GT
ARBT Adaptive real biogeography-based technique
AGST Adaptive group search technique
BBO Biogeography-based optimization
BHBT Black-hole-based technique
CBOA Colliding bodies optimization algorithm
COA Coyote optimization algorithm
CSSO Chaotic salp swarm optimizer
CST Crow search technique
DE Differential evolution
DHST Differential harmony search technique
EMM Electromagnetism-like mechanism
EPSs Electrical power systems
EMRFT Enhanced manta ray foraging technique
EMSA Emended moth swarm algorithm
FGCs Fuel generation costs
FGCSs FGC with sinusoids
GA Genetic algorithm
GTOT Gorilla troops optimization technique
GT Grasshopper technique
GWT Grey wolf technique
HGWODE Hybridization of GWT and DE
ICT Imperialist competitive technique
IEOT Improved electromagnetism-like technique
IMFT Improved moth-flame technique
INSGA-III Improved non-dominated sorting genetic algorithm
ISHT Improved spotted-hyena technique
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ISST Improved social spider technique
IADE Adaptive differential evolution
JFST Jellyfish search technique
KHT Krill herd technique
MCST Modified crow search technique
NBT Novel bat technique
MRFT Manta-ray foraging technique
MST Moth swarm technique
OPFP Optimal power flow problem
OPL Overall power loss
PE Produced emissions
PSO Particle swarm optimization
QCMFT Quantum computing and moth flame technique
SAO Simulated annealing optimization
SOST Symbiotic organisms search technique
SST Salp swarm technique
TLT Teaching-learning technique
WCEMFT Combination of water cycle with moth flame technique
WD West delta
WD-EPS West Delta-EPS

List of Variables

A Level of violence in a fight
Xr The current group position of gorilla
LL Variables’ minimum bound
X(g) Vector of gorilla location in the g iteration
GX(g + 1) Vector of gorilla location in the g + 1 iteration
rand, rd1, rd2, rd3 Random values ranging from 0 to 1
Pr Migrating coefficient
GXr Candidate group position of gorilla
UL Variables’ maximum bound
Iter Present iteration number
MaxIter Maximum iteration number
rd4 Random value inside the bound [0:1]
l Random values between −1 and 1
X(g) Vector of gorilla location
Q Force of impact
rd5 Random value within bound [0:1]
β Pre-optimization value
E Violence efficacy
Vg1, Vg2, . . . , VgNg) Voltages of the generators
Tap1, Tap2, . . . TapNt Tap changer settings
Nt Number of on-load tap changers
Qg1, Qg2, . . . , QgNg Generator reactive power outputs
Pg1, Pg2, . . . , PgNg Generators’ real power output
OJ Investigated vector of several m targets
OJ1 Costs of fuel generation in dollars per hour
Pgk Real power output in megawatts of generator
OJ2 Costs of fuel generation with sinusoids
θ Phase angle
Gmn Conductance of a line between buses m and n
QL Power consumption in its reactive components
Gjk Mutual conductance of line between bus j and k
VLj Load voltage at bus j
OJj Each objective function
NRA Newton–Raphson approach
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Pen3 Penalty coefficient for any violation in line flow
Ng Number of on-load generators
Nq Number of on-load reactive power sources,
SF1, . . . , SFNF Transmission flow limits
Z Random values between [−c:c]
Xsilverback The best solution which is the silverback
N Population of gorillas
A Level of violence in a fight
VL1, . . . , VLNPQ Load bus voltage magnitudes
NPQ The number of load buses,
x Independent variables
y Dependent variables
m Vector of several targets
k; Ck, Bk, and Ak Cost factors of generator k
NF Number of transmission lines
Qc1, Qc2, . . . , QcNq Reactive power injections of switching capacitors
Pgmin

k Lowest limitation of generator k
Ek and Fk Generator k’s sinusoid cost factors
OJ3 Produced ton/hr emissions from the power plants
γk, βk, αk, ξk, and λk Emission factors of generator k
Nb Number of buses
V Voltage
PL Power consumption in its active components
Bjk Mutual susceptance of a line between bus j and k
Sfl Power flow via line
Pen1 Penalty coefficient for violation in load voltage
Pen2 Penalty coefficient for violation in reactive power output

from generators
IndOJk Mean value
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