



# Article Developed Gorilla Troops Technique for Optimal Power Flow Problem in Electrical Power Systems

Abdullah Shaheen <sup>1</sup>, Ahmed Ginidi <sup>1</sup>, Ragab El-Sehiemy <sup>2,</sup>\*, Abdallah Elsayed <sup>3</sup>, Ehab Elattar <sup>4</sup>, and Hassen T. Dorrah <sup>5</sup>

- <sup>1</sup> Department of Electrical Engineering, Faculty of Engineering, Suez University, Suez 43533, Egypt; abdullahshaheen2015@gmail.com (A.S.); ahmed.ginidi@eng.suezuni.edu.eg (A.G.)
- <sup>2</sup> Department of Electrical Engineering, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- <sup>3</sup> Department of Electrical Engineering, Faculty of Engineering, Damietta University, Damietta 34517, Egypt; am.elsherif@yahoo.com
- <sup>4</sup> Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia; e.elattar@tu.edu.sa
- <sup>5</sup> Department of Electrical Engineering, Cairo University, Giza 12613, Egypt; dorrahht@aol.com
- Correspondence: elsehiemy@eng.kfs.edu.eg

Abstract: This paper presents a developed solution based on gorilla troops optimization technique for OPFP in EPSs. The GTOT is motivated by gorillas' group behaviors in which several methods are replicated, such as migration to an unfamiliar location, traveling to other gorillas, migration toward a specific spot, accompanying the silverback, and competing for adult females. The multi-dimension OPFP in EPSs is examined in this article with numerous optimizing objectives of fuel cost, power losses, and harmful pollutants. The system's power demand and transmission losses must be met as well. The developed GTOT's evaluation is conducted using an IEEE standard 30-bus EPS and practical EPS from Egypt. The created GTOT is employed in numerous evaluations and statistical analyses using many modern methods such as CST, GWT, ISHT, NBT, and SST. When compared to other similar approaches in the literature, the simulated results demonstrate the GTOT's solution efficiency and robustness.

**Keywords:** gorilla troops optimization technique; electrical power systems; optimal power flow; harmful pollutants; fuel costs; power losses

MSC: 90-08

# 1. Introduction

The optimum operational analysis is critical in determining the projected financial return for electrical networks. The energy supply is shifting around the globe towards sustainability, low carbon content, and high efficiency [1]. The increased load demand acts as an urgent challenge for power system operators. The economic and environmental prospects of power generations in modern power systems are considered the weighty research targets and the key concern of electric utility operators. The OPFP is a non-linear, multi-model issue in EPSs for power system control and operation. Using OPFP, pecuniary and safe operating circumstances of EPSs can be elaborated [2]. The solution of OPFP is currently the principal strategy for controlling and operating the modern power grids [3]. The OPFP can optimize one or even more targets such as cost of fuel, EPS sources pollution, and system losses. These goals may be met while maintaining load flow balancing and keeping operating variables inside the corresponding limitations, including voltages restrictions, transmission network limits, valve constraints, and generator output limits [4].



Citation: Shaheen, A.; Ginidi, A.; El-Sehiemy, R.; Elsayed, A.; Elattar, E.; Dorrah, H.T. Developed Gorilla Troops Technique for Optimal Power Flow Problem in Electrical Power Systems. *Mathematics* **2022**, *10*, 1636. https://doi.org/10.3390/ math10101636

Received: 2 April 2022 Accepted: 9 May 2022 Published: 11 May 2022

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Various standard mathematic methodologies were proposed to address the OPFP, such as semidefinite programming [5], non-linear programming [6], linear programming [7,8], quadratic programming [9,10], fuzzy linear programming [11], sequential unconstrained minimization technique [12], Newton-based method [13,14] and interior point approach [15–17]. A myriad of these approaches can effectively impose inequality restrictions and possess high convergence properties. Nevertheless, these conventional methods cannot generate the real optimal results because they rely on the initial settings, and consequently, they may get stuck in a local minimum. Additionally, every approach should be modeled with particular variants for OPFP, and they cannot deal with variables of discrete and integer natures smoothly. Hence, it is pivotal to develop metaheuristic techniques to overcome the mentioned disadvantages. The rapid growth of computers in the last two decades has led to a trend to solve diverse OPFP challenges using several heuristic (population-based) techniques [18,19]. Examples of these population-based heuristics are CBOA [20], BBO [21], PSO [22,23], HGWODE [24], GA [25], EMM [26], TLBO [27], and SAO [28].

In addition to that, recent techniques have been manifested to attain the solution of the large-scale OPFP: QMFT [29], COA [30], CSSO [31], and WCEMFT [32]. Moreover, a multi-group strategy was combined with the marine predators method to subdivide the original population into numerous separate groups in order to reduce the operation costs of power systems to maximize the economic advantages [33]. To tackle the economic dispatch difficulties of thermal generators, the DE method based on nondominated sorting was used to reduce pollution emissions and economic costs taking into account the dynamical schedule of thermal power units with consideration of ramp-rate, valve-point impact, and balance of power [34]. This method has been applied to two different systems with 13 and 40 thermal generating units.

Various augmentations of the algorithm strategies can be used to identify the best OPFP solution. An emended moth swarm algorithm (EMSA), in [35], has been presented to the OPFP with adjustment of quasi-opposition-based learning. Moreover, AGST, developed in [36], has been illustrated and applied with three objectives which are the fuel cost, emission, and losses taking into consideration different equality and inequality constraints. Additionally, ISSO was presented to minimize fuel costs, emissions, and power losses [37] by adjusting the movement technique of male and female spiders to acceptable ratios. In [38], a modified JAYA has been manifested by proposing modifying the equation for solutions that rely on the worst and best solutions, and technique has been applied to fuel cost, emission, voltage profile, and losses functions. Furthermore, IADE has been handled, in [39], with the self-adaptive penalty constraint technique and applied to the OPFP. To enhance exploration capability and the solution optimality convergence, quasioppositional-based learning has emerged with the Jaya technique in [40] to attain the OPFP solution. Moreover, an improved NSGA-III has been utilized with constraint management and decreasing selecting attempts to solve fuel costs, losses, and emission functions, as depicted in [41]. In [42], MRFO was implemented for EPSs to decrease the costs of fuel, losses, and pollution with/without the inclusion of voltage-source-converter stations.

Recently, a technique named gorilla troops optimization technique (GTOT) [43] proposed by (Benyamin Abdollahzadeh et al.) is developed in this article for multi-dimension OPFP in EPSs by adding valve constraint to the OPFP. GTOT is developed with five strategies to enlighten the exploitation and exploration of the optimization progression. To deal with the exploration phase, three strategies are verified: migration to a not recognized place, movement to other gorillas, and migration to a recognized location. Nevertheless, in the exploitation phase, two strategies are verified: follow the silverback and struggle for adult females. The superiority of this technique is that it has few parameters to be adjusted as well as it is simple to be implemented for engineering applications. The evaluation of GTOT quality is illustrated by applying it to various systems: IEEE standard 30 bus and practical WD Area. The results of the GTOT are compared with recent techniques and other existing techniques to demonstrate its efficacy and superiority between these techniques. The following are important contributions discussed in this work.

- The designed GTOT is exploited to reduce different target functions for minimizing the fuel costs, power losses, and pollutant emissions related to EPSs and applied on the IEEE standard 30 bus and practical WD.
- Multi-dimension operations with two or three objectives are developed in this work.
- The developed GTOT outperforms a number of current approaches, including CST, GWT, ISHT, NBT, and SST.
- Statistical analyses and stability assessments are developed in this work to demonstrate the capability of the proposed GTOT in handling the OPFP with different sizes and objective functions.
- The simulation results of related techniques in the literature are compared with the developed GTOT to demonstrate the robustness and solution quality of GTOT.
- Substantial consistency is accompanied by the proposed GTOT for handling the OPFP in EPSs.

The other portions of the whole work are as follows: Section 2 illustrates the GTOT approach. Section 3 establishes the OPFP construction, whereas Section 4 manifests the designed GTOT for OPFP. Furthermore, the simulated findings and discussions are denoted in Section 5, whilst the concluding notes are provided in Section 6.

#### 2. Gorilla Troops Optimization Technique

The gorilla troops optimization technique (GTOT) simulates five strategic options to clarify the optimizing process's exploitation and exploration, as manifested in the following paragraphs.

#### 2.1. Exploration Phase

In GTOT, every gorilla is denoted by a candidate solution, but at every optimizing operational phase, the global optimal solution is designated as a silverback. For the exploratory stage of development, three distinct methods are used. The first one is the movement to an unknown destination to raise GTOT exploration, while the second method is the movement of other gorillas to enhance the consistency between exploratory and exploitation. Moreover, the third method is the gorilla's movement in the path of a recognized destination to raise GTOT capabilities to discover varied computation spaces. In this technique, the factor (Pr) should be supplied in the band [0:1] prior to the optimizing process. When a factor (Pr) is greater than a random number, the movement to an undetermined location strategy is selected [44]. Additionally, if a random number is more than or equal to 50%, a movement in the path of an identifiable place is decided, whereas if a random number is less than 50%, a movement in the path of a recognized site is selected. Those three exploratory tactics can be mathematically stated as follows:

$$GX(g+1) = \begin{cases} LL + rd_1 \times (UL - LL), & \Pr > rand, \\ H \times L + X_r(g) \times (rd_2 - C), & 0.5 \le rand, \\ X(g) + (X(g) - GX_r(t)) \times rd_3 - (X(g) - GX_r(g) \times L^2), & 0.5 > rand \end{cases}$$
(1)

F

$$C = F \times (1 - Iter / MaxIter), \tag{2}$$

$$=\cos(2\times rd_4)+1,\tag{3}$$

$$L = C \times l \tag{4}$$

$$H = Z \times X(g) \tag{5}$$

$$Z = [-C, C]. \tag{6}$$

#### 2.2. Exploitation Phase

In the exploitation stage of GTOT, two methods are used: following the silverback and competing for female adults. Based on factor *C* and contrasting it to the variable (*W*) (which can be changed), one of the two methods is selected.

The leader of the gorillas' group is the silverback that can make choices and directs the others to sources of food. If the *C* is greater than or equal to the value of *W*, this approach is chosen. Equation (7) can be used to illustrate this phenomenon.

$$GX(g+1) = L \times M(g) \times (X(g) - X_{siverback}) + X(g)$$
(7)

$$M(g) = \left( \left| (1/N) \sum_{i=1}^{N} GX_i(g) \right|^{2^L} \right)^{\left(\frac{1}{2^L}\right)}$$
(8)

If *C* is less than *W*, the next approach is competing for female adults, which is specialized for the evaluation stage. When adolescent gorillas reach adolescence, they engage in a violent rivalry with other males for the selection of female adults. This behavior is formulated as follows:

$$GX(g) = X_{silverback} - (X_{silverback} \times Q - X(g) \times Q) \times A,$$
(9)

$$Q = 2 \times rd_5 - 1 \tag{10}$$

$$A = \beta \times E \tag{11}$$

$$E = \begin{cases} N_1 & rand \ge 0.5\\ N_2 & rand < 0.5 \end{cases}$$
(12)

At the end of the exploitation stage, the cost of GX(g) is compared to its counterpart X(g), and if the cost of GX(g) is less than X(g), the GX(g) solution replaces it and becomes the optimal option (silverback). Figure 1 depicts the major processes of the developed GTOT for extracting characteristics from solar cell models [44].



Figure 1. Main steps of the GTOT.

### 3. Problem Formulation

In OPFP, the dependent and independent variables are represented. To illustrate, the generators' real power output and the reactive power injections of switching capacitors and reactors, voltages of the generators, tap changer settings, the number of on-load tap changers, generators, and reactive power sources, generator reactive power outputs, load bus voltage magnitudes, and transmission flow limits, number of transmission lines and load buses are the main pillars of OPFP. This problem can be expressed as follows:

$$Min OJ = \{OJ_1(x, y), OJ_2(x, y), \dots, OJ_m(x, y)\}$$
(13)

Subject to : 
$$F(x,y) = 0$$
 (14)

$$M(x,y) \le 0 \tag{15}$$

# 3.1. Objectives

The primary goal is to calculate the  $OJ_1$  in dollars per hour as follows:

$$OJ_1 = \sum_{k=1}^{Ng} C_k \times Pg_k^2 + B_k \times Pg_k + A_k$$
(16)

Because of the constant change in steam values in power plants, the value-point load influence generates fluctuations in the FCs. As a consequence, the FCs formula is produced by integrating sinusoidal rectifications to the quadratic formula, and  $OJ_2$  can be represented as follows:

$$OJ_{2} = \sum_{k=1}^{Ng} C_{k} \times Pg_{k}^{2} + B_{k} \times Pg_{k} + A_{k} + \left| E_{k} \times (\sin(F_{k}(Pg_{k} - Pg_{k}^{\min}))) \right|$$
(17)

The second goal is to minimize  $OJ_3$  from the power plants, which can be formulated as:

$$OJ_3 = \sum_{k=1}^{Ng} (\gamma_k \times Pg_k^2 + \beta_k \times Pg_k + \alpha_k) / 100 + \zeta_k \times e^{\lambda_k \times Pg_k}$$
(18)

The third goal is to minimize the overall power loss throughout the transmission system, which is mathematically stated as:

$$OJ_4 = \sum_{m=1}^{Nb} \sum_{n=1}^{Nb} G_{mn} \times (V_m^2 + V_n^2 - 2(V_m \times V_n \times \cos \theta_{mn}))$$
(19)

# 3.2. System Constraints

The load flow balance equations, Equations (20) and (21), manifest the equality constraints:

$$Pg_j - PL_j - V_j \times \sum_{k=1}^{Nb} V_k \times (G_{jk} \times \cos \theta_{jk} + B_{jk} \times \sin \theta_{jk}) = 0, \ j = 1, \dots, Nb$$
(20)

$$QL_j - V_j \times \sum_{k=1}^{Nb} V_k \times (G_{jk} \times \sin\theta_{jk} - B_{jk} \times \cos\theta_{jk}) = 0, \ j = 1, 2, \dots, Nb$$
(21)

Furthermore, the operating variables and the accompanying restrictions are written as follows:

$$Pg_k^{\min} \le Pg_k \le Pg_k^{max}, \ k = 1, \ 2, \ \dots, \ Ng$$
 (22)

$$Vg_k^{\min} \le Vg_k \le Vg_k^{\max}, \ k = 1, \ 2, \ \dots, \ Ng$$

$$(23)$$

$$Qg_k^{\min} \le Qg_k \le Qg_k^{\max}, \ k = 1, \ 2, \ \dots, \ Ng$$
(24)

$$Tap_{Tr}^{\min} \le Tap_{Tr} \le Tap_{Tr}^{\max}, \ Tr = 1, \ 2, \ \dots, \ Nt$$
(25)

$$Qc_{VAR}^{\min} \le Qc_{VAR} \le Qc_{VAR}^{max}, VAR = 1, 2, \dots, Nq$$
(26)

$$VL_j^{\min} \le VL_j \le VL_j^{\max}, \ j = 1, \ 2, \ \dots, \ NPQ$$

$$(27)$$

$$\left|S_{fl}\right| \leq S_{fl}^{max}, \, fl = 1, \, 2, \, \dots, \, Nf$$
 (28)

# 4. Developed Solution-Based GTOT for OPFP in EPSs

The equality and inequality constraints are indeed considered while handling the stated OPFP problem. To satisfy the equality conditions that describe power flow balance models, the NRA is applied. It depicts the steady-state operation of electric grids and meets the balance constraints. Consequently, the NRA is used by MATPOWER and represents a key framework for demonstrating three-phase systems [45].

# 4.1. Improvement of GTOT for Incorporating Operational Limitations of Independent Variables

The operational limitations of independent variables of Equations (22)–(26) may be rewritten as follows:

$$Pg_{k} = \begin{cases} Pg_{k}^{\min} & \text{if } Pg_{k} \leq Pg_{k}^{\min} \\ Pg_{k}^{\max} & \text{if } Pg_{k} \geq Pg_{k}^{\max} \end{cases}, \ k = 1, 2, \dots, Ng$$

$$(29)$$

$$Vg_{k} = \begin{cases} Vg_{k}^{\min} & \text{if } Vg_{k} \leq Vg_{k}^{\min} \\ Vg_{k}^{\max} & \text{if } Vg_{k} \geq Vg_{k}^{\max} \end{cases}, \ k = 1, 2, \dots, Ng$$
(30)

$$Qg_{k} = \begin{cases} Qg_{k}^{\min} & \text{if } Qg_{k} \leq Qg_{k}^{\min} \\ Qg_{k}^{\max} & \text{if } Qg_{k} \geq Qg_{k}^{\max} \end{cases}, \ k = 1, 2, \dots, Ng$$
(31)

$$Tap_{Tr} = \begin{cases} Tap_{Tr}^{\min} & \text{if } Tap_{Tr} \leq Tap_{Tr}^{\min} \\ Tap_{Tr}^{\max} & \text{if } Tap_{Tr} \geq Tap_{Tr}^{\max} \end{cases}, \ Tr = 1, 2, \dots, Nt$$
(32)

$$Qc_{VAR} = \begin{cases} Qc_{VAR}^{\min} & \text{if } Qc_{VAR} \leq Qc_{VAR}^{\min} \\ Qc_{VAR}^{\max} & \text{if } Qc_{VAR} \geq Qc_{VAR}^{\max} \end{cases}, VAR = 1, 2, \dots, Nq$$
(33)

As shown, the variables continue to reach their limitations, and if one of these surpasses ratings, they are regenerated randomly inside the appropriate constraints.

### 4.2. Improvement of GTOT for Incorporating Operational Limitations of Dependent Variables

Moreover, the target cost objective expands and penalizes the second category's limitations. Therefore, if the gorilla's location exceeds any of the appropriate constraints, it would be discarded in the next round. Such concepts may be used to construct the contemplated objective (*OJ*), as shown in Equation (34).

$$OJ = OJ_j + Pen_1 \sum_{NPQ} \Delta V_{LL}^2 + Pen_2 \sum_{Nq} \Delta Q_{GG}^2 + Pen_3 \sum_{N_f} \Delta S_{FF}^2, \ j = 1, \dots, m$$
(34)

where  $\Delta V_{LL}$ ,  $\Delta Q_{GG}$ , and  $\Delta S_{FF}$  are presented as:

$$\Delta V_{LL} = \begin{cases} V_L^{\min} - V_L & \text{if } V_L < V_L^{\min} \\ V_L^{max} - V_L & \text{if } V_L > V_L^{max} \end{cases}$$
(35)

$$\Delta Q_{GG} = \begin{cases} Q_G^{\min} - Q_G & \text{if } Q_G < Q_G^{\min} \\ Q_G^{\max} - Q_G & \text{if } Q_G > Q_G^{\max} \end{cases}$$
(36)

$$\Delta S_{FF} = S_F^{max} - S_F \quad if \ S_F > S_F^{max} \tag{37}$$

Figure 2 displays the stages of the designed GTOT for OPFP in EPSs.



Figure 2. Developed solution-based GTOT for OPFP in EPSs.

On the other side, in order to handle the model of multi-objectives, the different objective functions can be augmented using the weighted sum approach as follows:

$$OJ = w_1 \frac{OJ_1}{OJ_{1max}} + w_2 \frac{OJ_2}{OJ_{2max}} + w_3 \frac{OJ_3}{OJ_{3max}} + w_4 \frac{OJ_4}{OJ_{4max}}$$
(38)

where

$$\sum_{i=1}^{4} w_i = 1 \tag{39}$$

# 5. Simulation Results

The developed GTOT is implemented on the standard IEEE 30-bus EPS, a practical Egyptian EPS called West Delta-EPS (WD-EPS). Thirty simulation runs are conducted based on the developed GTOT with peak iterations of 300 and gorillas' group of 25 members. The first EPS is depicted in Figure 3, which consists of 41 transmission lines, 30 buses, 4 tap changers, 6 generators, and 9 reactive power devices. The complete data of this EPS are extracted from [46]. The highest and minimum generator voltages are 1.1 and 0.95 p.u., respectively. The second EPS is described in Figure 4, which consists of 52 buses. The highest and lowest generator voltages are 1.06 and 0.94 p.u., respectively. The developed GTOT and various other innovative techniques were presented to minimize the fuel generation costs such as CST [47], SST, NBT [48], and ISHT. MatlabR2017b is utilized to carry out the simulations using CPU (2.5 GHz) Intel(R)-Core (TM) i7-7200U and 8 GB of RAM.



Figure 3. IEEE 30-bus EPS [42,49].



**Figure 4.** Real WD-EPS [50,51].

#### 5.1. Results of the First EPS

For this EPS, six scenarios are examined:

- Scenario 1: *OJ*<sub>1</sub> minimization of FGCs described in Equation (16);
- Scenario 2: *OJ*<sub>2</sub> minimization of FGCSs described in Equation (17);
- Scenario 3: *OJ*<sub>3</sub> minimization of PE described in Equation (18);
- Scenario 4: *OJ*<sub>4</sub> minimization of OPL described in Equation (19);
- Scenario 5: Merging *OJ*<sub>1</sub> and *OJ*<sub>3</sub> as a multi-objective function;
- Scenario 6: Merging *OJ*<sub>1</sub>, *OJ*<sub>3</sub>, and *OJ*<sub>4</sub> as a multi-objective function.

# 5.1.1. Scenario 1

For this scenario, the proposed GTOT is implemented, and the results are shown in Table 1. In this table, the values of the voltages of the six generators (Vg 1, Vg 2, Vg 5, Vg 8,  $Vg_{11}$ , and  $Vg_{13}$ ) started at 1.05, 1.04, 1.01, 1.01, 1.05, and 1.05, respectively, and ended at 1.1, 1.088, 1.0619, 1.0696, 1.1, and 1.0, respectively. In addition to this, the values of four tap changer settings (Tap 6-9, Tap 6-10, Tap 4-12, and Tap 28-27) started at 1.0780, 1.0690, 1.0320, and 1.0680, respectively, and ended at 1.0551, 0.90, 0.99, and 0.9669, respectively. Additionally, the values of all nine reactive power devices (Qc 10, Qc 12, Qc 15, Qc 17, Qc 20, Qc 21, Qc 23, Qc 24, and Qc 29) started at 0 and ended at 5.0, 5.0, 5.0, 5, 4.4549, 4.978, 2.7861, and 5.0, respectively. Furthermore, the values of all six generators' real power output (Pg 1, Pg 2, Pg 5, Pg 8, Pg 11, and Pg 13) started at 99.24, 80.0, 50.0, 20.0, 20.0, and 20.0, respectively, and ended at 177.0191, 48.7234, 21.2921, 21.0921, 11.8996, and 12.0, respectively. As demonstrated in this table, the proposed GTOT reduces FGCs from 901.96 USD/h to 799.0831 USD/h compared to the initial case. This decrease is a proportion of 11.406%. In addition, Figure 5 depicts the convergent characteristic of the proposed GTOT, where it obtains the optimal solution in a short time with the effectiveness and robustness of the solution.

| Variables                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | First Scenario |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                                           | Gen 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.1000         |
| _                                         | Gen 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0880         |
| Voltage setting of the generators (n.u)   | Gen 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Initial         First           Gen $_1$ 1.0500         1           Gen $_2$ 1.0400         1           Gen $_5$ 1.0100         1           Gen $_5$ 1.0100         1           Gen $_1$ 1.0500         1           Gen $_{11}$ 1.0500         1           Gen $_{13}$ 1.0500         1           Gen $_1$ 99.2400         17           Gen $_2$ 80.0000         2           Gen $_5$ 50.0000         2           Gen $_5$ 50.0000         2           Gen $_1$ 20.0000         1           Tr $_{6-9}$ 1.0780         1           Tr $_{6-9}$ 1.0780         1           Tr $_{6-9}$ 1.0690         0           Tr $_{6-10}$ 1.0690         0           Tr $_{6-27}$ 1.0680         0           Bus $_{10}$ 0.0000         5           Bus $_{10}$ 0.0000         5           Bus $_{12}$ 0.0000         5           Bus $_{21}$ 0.0000         2           Bus $_{21}$ 0.0000         5 </th <th>1.0619</th>                                             | 1.0619         |
| voltage setting of the generators (p.u) = | Gen 1         1.0500         1.1000           Gen 2         1.0400         1.0880           Gen 5         1.0100         1.0619           Gen 8         1.0100         1.0619           Gen 11         1.0500         1.1000           Gen 13         1.0100         1.0696           Gen 11         1.0500         1.1000           Gen 13         1.0500         1.1000           Gen 13         1.0500         1.1000           Gen 13         1.0500         1.1000           Gen 2         80.0000         48.7234           Gen 5         50.0000         21.2921           Gen 11         20.0000         11.8995           Gen 13         20.0000         11.8995           Gen 13         20.0000         10.0511           Tr 6-9         1.0780         1.0551           Tr 6-9         1.0780         0.0900           Tr 28-27         1.0680         0.9668           Bus 10         0.0000         5.0000           Bus 12         0.0000         5.0000           Bus 20         0.0000         5.0000           Bus 21         0.0000         5.0000           Bus 23   | 1.0696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| _                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.1000         |
| _                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.1000         |
|                                           | Gen 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99.2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 177.0191       |
| _                                         | Initial           Gen 1         1.0500           Gen 2         1.0400           Gen 5         1.0100           Gen 1         1.0500           Gen 11         1.0500           Gen 13         1.0500           Gen 13         1.0500           Gen 13         1.0500           Gen 2         80.0000           Gen 5         50.0000           Gen 1         20.0000           Gen 13         20.0000           Tr 6-9         1.0780           Tr 4-12         1.0320           Tr 28-27         1.0680           Bus 10         0.0000           Bus 12         0.0000           Bus 15         0.0000           Bus 20         0.0000           Bus 21         0.0000           Bus 23         0.0000           Bus 24         0.0000           Bus 29         0.0000                                                                                                                                                                              | 80.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.7234        |
| Output powers of the generators (MW)      | Gen 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Initial         1.0500         1.0400         1.0100         1.0100         1.0500         1.0100         1.0500         1.0500         1.0500         1.0500         1.0500         1.0500         1.0500         1.0500         20.0000         20.0000         1.0780         1.0780         1.0690         2.1.0320         7       1.0680         0.0000         2.0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                      | 21.2921        |
| Sulput powers of the generators (1997) =  | Initial         First           Gen 1         1.0500         1.0400           Gen 2         1.0400         1.0100           Gen 5         1.0100         1.0100           Gen 11         1.0500         1.0100           Gen 11         1.0500         1.0100           Gen 11         1.0500         1.0100           Gen 13         1.0500         1.0100           Gen 13         1.0500         1.0100           Gen 2         80.0000         4           Gen 5         50.0000         2           Gen 6         20.0000         1           Gen 11         20.0000         1           Gen 13         20.0000         1           Gen 13         20.0000         1           Tr 6-9         1.0780         1           Tr 4-12         1.0320         0           Bus 10         0.0000         1           Bus 12         0.0000         1           Bus 15         0.0000         1           Bus 20         0.0000         1           Bus 21         0.0000         1           Bus 23         0.0000         1           Bus 24 <td< th=""><th>21.0921</th></td<>            | 21.0921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| _                                         | Gen 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.8995        |
|                                           | Gen 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.0000        |
|                                           | Tr 6-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0551         |
|                                           | Tr <sub>6-10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9000         |
| Tap setting of the transformers (p.u)     | Tr <sub>4-12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9900         |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9668         |
|                                           | Bus 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.0000         |
|                                           | Bus 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.0000         |
|                                           | Bus 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Initial         Firm           1         1.0500           2         1.0400           5         1.0100           8         1.0100           11         1.0500           13         1.0500           1         99.2400           2         80.0000           5         50.0000           8         20.0000           11         20.0000           13         20.0000           14         20.0000           15         50.0000           10         1.0690           12         1.0320           27         1.0680           10         0.0000           12         0.0000           12         0.0000           13         0.0000           14         0.0000           15         0.0000           16         0.0000           17         0.0000           13         0.0000           14         0.0000           15         0.0000           16         0.0000           17         0.0000           19         0.0000           29 </th <th>5.0000</th> | 5.0000         |
|                                           | Bus 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.0000         |
| Sources ar buses (MVAr)                   | Gen 1         1.0500         1.1000           Gen 2         1.0400         1.0880           Gen 5         1.0100         1.0619           Gen 8         1.0100         1.0696           Gen 11         1.0500         1.1000           Gen 13         1.0500         1.1000           Gen 13         1.0500         1.1000           Gen 1         99.2400         177.0191           Gen 2         80.0000         48.7234           Gen 5         50.0000         21.2921           Gen 5         50.0000         21.0921           Gen 11         20.0000         11.8995           Gen 13         20.0000         12.0000           Tr 6-9         1.0780         1.0551           Tr 6-9         1.0780         0.9900           Tr 4-12         1.0320         0.9900           Tr 28-27         1.0680         0.9668           Bus 10         0.0000         5.0000           Bus 12         0.0000         5.0000           Bus 15         0.0000         5.0000           Bus 20         0.0000         4.4549           Bus 21         0.0000         2.7861           Bus 24 | 4.4549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                                           | Bus 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.9780         |
| _                                         | Bus 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.7861         |
| _                                         | Bus 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.0000         |
|                                           | Bus 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.6571         |
| Cost_Pg                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 901.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 799.0831       |
| Losses                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.8324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.6263         |

 Table 1. Simulation outcomes based on the designed GTOT for the first scenario.

For this Scenario, Table 2 includes the comparison of reducing FGCs with a variety of other approaches. As shown, the developed GTOT obtains the minimum FGCs of 799.0831 USD/h, among other techniques.

 Table 2. Comparison for Scenario 1.

| Technique      | FGCs (USD/h) | Technique  | FGCs (USD/h) |
|----------------|--------------|------------|--------------|
| Developed GTOT | 799.0831     | IMFT [52]  | 800.3848     |
| GWT [53]       | 800.4330     | SOST [54]  | 801.5733     |
| TLT [27]       | 800.4212     | ICT) [55]  | 801.843      |
| GT [56]        | 800.9728     | DHST [57]  | 802.2966     |
| MCST [58]      | 799.3332     | GA [41]    | 802.1962     |
| BHBT [57]      | 799.9217     | AGT [56]   | 800.0212     |
| MST [59]       | 800.5099     | CST [47]   | 799.8266     |
| IEOT [60]      | 799.688      | EMRFT [42] | 798.9888     |
| NBT [61]       | 799.7516     | JFST [62]  | 799.1065     |



Figure 5. Convergence feature of developed GTOT for Scenario 1.

#### 5.1.2. Scenario 2

Taking into account the valve point impact, the developed GTOT is used to reduce FGCSs. For this scenario, the regarding results are shown in Table 3. In this table, the values of the voltages of the six generators (Vg 1, Vg 2, Vg 5, Vg 8, Vg 11, and Vg 13) started at 1.050, 1.040, 1.010, 1.010, 1.050, and 1.050, respectively, and ended at 1.1000, 1.0809, 1.0550, 1.0653, 1.0999, and 1.1000, respectively. In addition to this, the values of four tap changer settings (Tap 6-9, Tap 6-10, Tap 4-12, and Tap 28-27) started at 1.0780, 1.0690, 1.0320, and 1.0680, respectively, and ended at 1.1000, 0.9203, 1.0595, and 0.9936, respectively. Additionally, the values of all nine reactive power devices (Qc 10, Qc 12, Qc 15, Qc 17, Qc 20, Qc 21, Qc 23, Qc 24, and Qc 29) started at 0 and ended at 5.0000, 4.994, 4.8523, 5.0000, 5.0000, 5.0000, 3.7342, 4.5993, and 2.8053, respectively. Furthermore, the values of all six generators' real power output (Pg  $_1$ , Pg  $_2$ , Pg  $_5$ , Pg  $_8$ , Pg  $_{11}$ , and Pg  $_{13}$ ) started at 99.2400, 80.0000, 50.0000, 20.0000, 20.0000, and 20.0000, respectively, and ended at 194.7610, 47.7489, 19.0111, 10, 10.0000, and 12.0014, respectively. As shown, the developed GTOT reduces the FGCSs from 901.9600 USD/h in the initial scenario to 832.7696 USD/h in the final scenario. This reduction in cost represents a percentage of 7.6700%. Additionally, Figure 6 displays the convergent characteristic of the proposed GTOT, where it obtains the optimal solution in a short time with the effectiveness and robustness of the solution.

Table 3. Simulation outcomes based on the designed GTOT for the second scenario.

| Variables                                                              |                  | Initial | Second Scenario |
|------------------------------------------------------------------------|------------------|---------|-----------------|
|                                                                        | Gen 1            | 1.0500  | 1.1000          |
|                                                                        | Gen <sub>2</sub> | 1.0400  | 1.0809          |
| <ul> <li>Voltage setting of the generators (p.u)</li> <li>-</li> </ul> | Gen 5            | 1.0100  | 1.0550          |
|                                                                        | Gen <sub>8</sub> | 1.0100  | 1.0653          |
|                                                                        | Gen 11           | 1.0500  | 1.0999          |
|                                                                        | Gen 13           | 1.0500  | 1.1000          |

| Variables                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Second Scenario |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                       | Gen 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99.2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 194.7610        |
| -                                     | Gen 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47.7489         |
| Output powers of the generators (MW)  | Gen 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.0111         |
|                                       | Initial         Secon           Gen 1         99.2400         19           Gen 2         80.0000         44           Gen 5         50.0000         14           Gen 8         20.0000         14           Gen 11         20.0000         14           Gen 13         20.0000         14           Gen 14         20.0000         14           Gen 15         0.00         14           Tr 6-10         1.0690         00           Tr 4-12         1.0320         11           Tr 28-27         1.0680         00           Bus 10         0.0         5           Bus 12         0.0         4           Bus 20         0.0         5           Bus 23         0.0         3           Bus 24         0.0         4           Bus 29         0.0         2           901.9600         83         3 | 10.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
|                                       | Gen 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.0000         |
| -                                     | Gen 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Initial         S           1         99.2400           2         80.0000           5         50.0000           8         20.0000           11         20.0000           13         20.0000           9         1.0780           10         1.0690           12         1.0320           -27         1.0680           10         0.0           12         0.0           13         0.0           14         0.0           15         0.0           16         0.0           17         0.0           20         0.0           21         0.0           22         0.0           23         0.0           24         0.0           901.9600         5.8324 | 12.0014         |
|                                       | Tr 6-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1000          |
|                                       | Tr 6-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9203          |
| Tap setting of the transformers (p.u) | <b>p.u)</b> Tr <sub>4–12</sub> 1.0320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| -                                     | Tr 28-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9936          |
|                                       | Bus 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0000          |
|                                       | Gen 1         99.2400         1           Gen 2         80.0000         4           Gen 5         50.0000         1           Gen 11         20.0000         1           Gen 11         20.0000         1           Gen 13         20.0000         1           Gen 14         20.0000         1           Gen 15         0.00         1           Tr 6-9         1.0780         1           Tr 4-12         1.0320         1           Bus 10         0.0         1           Bus 12         0.0         1           Bus 12         0.0         1           Bus 20         0.0         1           Bus 21         0.0         1           Bus 23         0.0         1           Bus 24         0.0         1           901.9600         8         1           901.9600         8         1                                                           | 4.9949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.8523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
|                                       | Bus 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0000          |
| Sources ar buses (MVAr)               | Bus 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0000          |
|                                       | Bus 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $n_2$ $80.0000$ $4$ $n_5$ $50.0000$ $1$ $n_8$ $20.0000$ $1$ $n_{11}$ $20.0000$ $1$ $n_{13}$ $20.0000$ $1$ $n_{13}$ $20.0000$ $1$ $n_{-9}$ $1.0780$ $1$ $6-9$ $1.0780$ $1$ $6-9$ $1.0780$ $1$ $6-9$ $1.0780$ $1$ $6-9$ $1.0780$ $1$ $6-9$ $1.0780$ $1$ $6-9$ $1.0780$ $1$ $6-9$ $1.0780$ $1$ $6-9$ $1.0780$ $1$ $8-27$ $1.0680$ $1$ $8 \cdot 10$ $0.0$ $8 \cdot 12$ $0.0$ $8 \cdot 17$ $0.0$ $8 \cdot 21$ $0.0$ $8 \cdot 23$ $0.0$ $8 \cdot 24$ $0.0$ $8 \cdot 29$ $0.0$ $8 \cdot 29$ $0.0$ $901.9600$ $8 \cdot 5.8324$ $5 \cdot 8324$ $1 \cdot 3 \cdot 10^{-1}$                                                                                           | 5.0000          |
| -                                     | Bus 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.7342          |
| -                                     | Bus 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.5993          |
| -                                     | Bus 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.8053          |
| Cost_Pg                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 901.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 832.7696        |
| Losses                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.8324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.1201         |





# 5.1.3. Scenario 3

As demonstrated in Table 4, the designed GTOT minimizes the PEs in the third scenario. In this table, the values of the voltages of the six generators (Vg  $_1$ , Vg  $_2$ , Vg  $_5$ , Vg  $_8$ , Vg  $_{11}$ , and Vg  $_{13}$ ) started at 1.0500, 1.0400, 1.0100, 1.0100, 1.0500, and 1.0500, respectively, and ended at 1.1000, 1.0961, 1.0784, 1.0859, 1.1000 and 1.1000, respectively.

Table 4. Simulation outcomes based on the designed GTOT for the third scenario.

| Variables                                                    |                                                                                                  | Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Third Scenario |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                                                              | Gen 1                                                                                            | 1.0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1000         |
|                                                              | Gen <sub>2</sub>                                                                                 | 1.0400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0961         |
| Voltage setting of the generators (n.u.)                     | Gen 5                                                                                            | 1.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0784         |
| voltage setting of the generators (p.u)                      | Gen <sub>8</sub>                                                                                 | 1.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0859         |
|                                                              | Gen 11                                                                                           | 1.0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1000         |
|                                                              | Gen 13                                                                                           | 1.0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1000         |
|                                                              | Gen 1                                                                                            | 99.2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63.9480        |
|                                                              | Gen 2                                                                                            | 80.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67.4323        |
| Output nowers of the generators (MW)                         | Gen 5                                                                                            | Initial           1.0500           1.0400           1.0100           1.0100           1.0500           1.0500           1.0500           99.2400           80.0000           20.0000           20.0000           20.0000           1.0780           1.0690           1.0680           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000                                                                                                                                                             | 50.0000        |
| Output powers of the generators (WW)                         | Gen <sub>8</sub>                                                                                 | 20.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.0000        |
| -                                                            | Gen 11                                                                                           | Gen 1       1.0500         Gen 2       1.0400         Gen 5       1.0100         Gen 1       1.0500         Gen 11       1.0500         Gen 13       1.0500         Gen 1       99.2400         Gen 2       80.0000         Gen 3       20.0000         Gen 4       20.0000         Gen 5       50.0000         Gen 6       20.0000         Gen 7       20.0000         Gen 8       20.0000         Gen 13       20.0000         Gen 13       20.0000         Gen 13       20.0000         Gen 14       20.0000         Gen 13       20.0000         Gen 13       20.0000         Gen 13       20.0000         Gen 13       20.0000         Gen 14       20.0000         Gen 15       0.0000         Bus 12       0.0000         Bus 15       0.0000         Bus 21       0.0000         Bus 23       0.0000         Bus 24       0.0000         Bus 29       0.0000         901.9600       5.8324         0.2390       0.2390 </th <th>30.0000</th> | 30.0000        |
| -                                                            | Gen 13                                                                                           | 20.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.0000        |
|                                                              | Tr 6–9                                                                                           | 1.0780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0696         |
|                                                              | Gen $_{13}$ 20.0000       Tr $_{6-9}$ 1.0780       Tr $_{6-10}$ 1.0690       Tr $_{4-12}$ 1.0320 | 0.9001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| Tap setting of the transformers (p.u)                        | Tr <sub>4-12</sub>                                                                               | 1.0320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9864         |
|                                                              |                                                                                                  | 0.9731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|                                                              | Bus 10                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.9999         |
| -                                                            | Bus 12                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.9999         |
| -                                                            | Bus 15                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.0000         |
|                                                              | Bus 17                                                                                           | Initial           1.0500           1.0400           1.0100           1.0100           1.0500           1.0500           1.0500           1.0500           99.2400           80.0000           20.0000           20.0000           20.0000           1.0780           1.0690           1.0680           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.0000           0.2390                                                                                                                           | 5.0000         |
| Output reactive powers of the VAR<br>sources ar buses (MVAr) | Bus 20                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.3098         |
|                                                              | Bus 21                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.9999         |
| -                                                            | Bus 23                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.3956         |
| -                                                            | Bus 24                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.0000         |
| -                                                            | Bus 29                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.3154         |
| Cost_Pg                                                      |                                                                                                  | 901.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 943.5287       |
| Losses                                                       |                                                                                                  | 5.8324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.9803         |
| Emissions                                                    |                                                                                                  | 0.2390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2046         |

In addition to this, the values of four tap changer settings (Tap  $_{6-9}$ , Tap  $_{6-10}$ , Tap  $_{4-12}$ , and Tap  $_{28-27}$ ) started at 1.0780, 1.0690, 1.0320, and 1.0680, respectively, and ended at 1.0696, 0.9001, 0.9864, and 0.9731, respectively. Additionally, the values of all nine reactive power devices (Qc  $_{10}$ , Qc  $_{12}$ , Qc  $_{15}$ , Qc  $_{17}$ , Qc  $_{20}$ , Qc  $_{21}$ , Qc  $_{23}$ , Qc  $_{24}$ , and Qc  $_{29}$ ) started at zero and ended at 4.9999, 4.9999, 5.0000, 5, 4.3098, 4.9999, 2.3956, and 5.0000, respectively. Furthermore, the values of all six generators' real power output (Pg  $_1$ , Pg  $_2$ , Pg  $_5$ , Pg  $_8$ , Pg  $_{11}$ , and Pg  $_{13}$ ) started at 99.2400, 80.0000, 50.0000, 20.0000, and 40.0000, respectively. It is illustrated from this table that the obtained PE value is 0.2046 ton/h.

In addition to this, Figure 7 depicts the convergence properties of the generated GTOT for Scenario 3, where it obtains the optimal solution in a short time with the effectiveness and robustness of the solution. Table 5 compares it to other metaheuristics optimization techniques. It is illustrated from the table the developed GTOT attains the minimum PE objective of 0.2046 ton/h. It outperforms the other metaheuristics that are shown in the mentioned table.



Figure 7. Convergence feature of the developed GTOT for Scenario 3.

| Technique      | PEs (tonne/h) | Technique         | PEs (ton/h) |
|----------------|---------------|-------------------|-------------|
| Developed GTOT | 0.2046        | AGT [56]          | 0.2048      |
| Stud KHT [63]  | 0.2048        | GT [56]           | 0.2049      |
| ARBT [21]      | 0.2048        | Modified TLT [64] | 0.2049      |
| KHT [63]       | 0.2049        | EMRFT [42]        | 0.2048      |
| CST [58]       | 0.2051        | NBT [58]          | 0.2052      |
| JFST [62]      | 0.2047        | MCST [58]         | 0.2049      |

Table 5. Comparison for Scenario 3.

# 5.1.4. Scenario 4

The proposed GTOT achieves the minimizing of the OPLs in the fourth scenario, as shown in Table 6. In this table, the values of the voltages of the six generators (Vg  $_1$ , Vg  $_2$ , Vg  $_5$ , Vg  $_8$ , Vg  $_{11}$ , and Vg  $_{13}$ ) started at 1.0500, 1.0400, 1.0100, 1.0100, 1.0500, and 1.0500, respectively, and ended at 1.1000, 1.0975, 1.0797, 1.0868, 1.1000, and 1.1000, respectively. In addition to this, the values of four tap changer settings (Tap  $_{6-9}$ , Tap  $_{6-10}$ , Tap  $_{4-12}$ , and Tap  $_{28-27}$ ) started at 1.0780, 1.0690, 1.0320, and 1.0680, respectively, and ended at 1.0675, 0.9000, 0.9872, and 0.9728, respectively. Additionally, the values of all nine reactive power devices (Qc  $_{10}$ , Qc  $_{12}$ , Qc  $_{15}$ , Qc  $_{17}$ , Qc  $_{20}$ , Qc  $_{21}$ , Qc  $_{23}$ , Qc  $_{24}$ , and Qc  $_{29}$ ) started at 0 and ended at 5.0000, 5.0000, 5.0000, 4.999, 5, 1.4887, 5.0000, and 2.2640, respectively. Furthermore, the values of all six generators' real power output (Pg  $_1$ , Pg  $_2$ , Pg  $_5$ , Pg  $_8$ , Pg  $_{11}$ , and Pg  $_{13}$ ) started at 99.2400, 80.0000, 50.0000, 20.0000, and 20.0000, respectively. It

is illustrated from the table the acquired value of OPLs is 2.8525 MW, whereas the value of OPLs is 5.8324 MW in the initial scenario. This reduction in cost represents a percentage of 51.09%. Additionally, Figure 8 depicts the convergent characteristic of the designed GTOT for Scenario 4, where it obtains the optimal solution in a short time with the effectiveness and robustness of the solution.



| Figure 8. Convergence feature of the developed GTOT for Scenar | io 4. |
|----------------------------------------------------------------|-------|
|----------------------------------------------------------------|-------|

| Table 6. Sim | ulation outcomes | based on the | designed | GTOT f | or the f | ourth scenario |
|--------------|------------------|--------------|----------|--------|----------|----------------|
|              |                  |              |          |        |          |                |

| Variables                                 |                   | Initial | Fourth Scenario |
|-------------------------------------------|-------------------|---------|-----------------|
|                                           | Gen 1             | 1.0500  | 1.1000          |
| -                                         | Gen 2             | 1.0400  | 1.0975          |
| Voltage setting of the generators (n 1)   | Gen 5             | 1.0100  | 1.0797          |
| voltage setting of the generators (p.u) - | Gen <sub>8</sub>  | 1.0100  | 1.0868          |
| -                                         | Gen 11            | 1.0500  | 1.1000          |
| -                                         | Gen 13            | 1.0500  | 1.1000          |
|                                           | Gen 1             | 99.2400 | 51.2525         |
|                                           | Gen <sub>2</sub>  | 80.0000 | 80.0000         |
| Output powers of the generators (MW)      | Gen 5             | 50.0000 | 50.000          |
| Sulput powers of the generators (WW)      | Gen <sub>8</sub>  | 20.0000 | 35.0000         |
|                                           | Gen 11            | 20.0000 | 30.0000         |
|                                           | Gen 13            | 20.0000 | 40.0000         |
|                                           | Tr <sub>6-9</sub> | 1.0780  | 1.0675          |
|                                           | Tr 6-10           | 1.0690  | 0.9000          |
| Tap setting of the transformers (p.u)     | Tr 4-12           | 1.0320  | 0.9872          |
| -                                         | Tr 28-27          | 1.0680  | 0.9728          |

| Variables               |                                                                                                                                                                                                                                                                                                                                                                                                                           | Initial  | Fourth Scenario |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|
|                         | Bus 10                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000   | 5.0000          |
|                         | Variables         Initial           Bus 10         0.0000           Bus 12         0.0000           Bus 15         0.0000           Bus 15         0.0000           Bus 17         0.0000           Bus 20         0.0000           Bus 21         0.0000           Bus 23         0.0000           Bus 24         0.0000           Bus 29         0.0000           Bus 29         0.0000           Bus 29         0.0000 | 5.0000   |                 |
| _                       | Bus 15                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000   | 5.0000          |
|                         | Bus 17                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000   | 5.0000          |
| Sources ar buses (MVAr) | Bus 20                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000   | 4.9999          |
|                         | Bus 21                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000   | 5.0000          |
| -                       | Bus 23                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000   | 1.4887          |
|                         | Bus 24                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000   | 5.0000          |
|                         | Bus 29                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000   | 2.2640          |
| Cost_Pg                 |                                                                                                                                                                                                                                                                                                                                                                                                                           | 901.9600 | 967.0722        |
| Losses                  |                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.8324   | 2.8525          |

Table 6. Cont.

#### 5.1.5. Stability Assessment of the Developed GTOT for the First EPS

To make a detailed evaluation of the stability of the developed GTOT for the first EPS, the obtained objectives of the thirty runs are recorded. For each scenario, the related average objective is calculated, and a graph is plotted to describe the percentage of every objective value to Ind<sub>OJk</sub>, so the closeness of every run compared to the mean can be described. Figure 9 describes the obtained indicators of the related objective percentages via the developed GTOT.

$$\operatorname{Ind}_{OJ_{k}} = \frac{OJ_{k}}{\frac{1}{30}\sum\limits_{k=1}^{30}OJ_{k}}, \ k = 1, 2, \dots m$$
(40)

As it can be observed from the figure, the developed GTOT always has the ability to find a close percentage to 100% where its mean is near to its minimum value. The highest percentage of the index is 100.085% in the first scenario, while it reached 101.1680% in the second scenario. For the third scenario, the maximum index percentage is 101.0400, while it reached 100.05% in the fourth scenario. This demonstrates the high stability of the developed GTOT for all scenarios. Additionally, Table 7 indicates the statistical data for the four scenarios. As manifested in this table, the best, mean, and worst values obtained by the developed GTOT are very close, which illustrates the robustness of the developed GTOT.

Table 7. Statistical data based on the designed GTOT for the 4 scenarios.

| Statistical Indices | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 |
|---------------------|------------|------------|------------|------------|
| Best                | 799.0831   | 832.8144   | 0.2046     | 2.8525     |
| Mean                | 799.2081   | 833.4394   | 0.2050     | 2.9128     |
| Worst               | 799.8904   | 843.1896   | 0.2072     | 3.1655     |
| Standard deviation  | 0.2140     | 1.8636     | 0.0008     | 0.0824     |
| Standard error      | 0.0390     | 0.3402     | 0.0001     | 0.0150     |
| Best-Worst          | 0.1010%    | 1.2458%    | 1.2350%    | 10.9711%   |
| Mean-Worst          | 0.0853%    | 1.1698%    | 1.0667%    | 8.6738%    |
| Best-Mean           | 0.0156%    | 0.0750%    | 0.1665%    | 2.1139%    |



Figure 9. Obtained objectives percentages by means of the designed GTOT.

Moreover, other statistical indices are conducted on the four scenarios, which are standard deviation, standard error, |Best-Worst|, |Mean-Worst|, and |Best-Mean|. The standard deviations for the four scenarios are 0.214, 1.8636, 0.0001, and 0.0150, while the standard errors are 0.0390, 0.3402, 0.0001, and 0.0150. Additionally, another important index, which is |Best-Mean|, represents the difference between the best and mean values obtained by the proposed GTOT. The values of |Best-Mean| are 0.0156%, 0.0750%, 0.1665%, and 2.1139%. These statistical indices illustrate the effectiveness and robustness of the developed GTOT.

## 5.1.6. Scenario 5 and Scenario 6

In the fifth scenario, two different objective functions are considered for the minimization of both the FGCs and PE. In the sixth scenario, three different objective functions are considered for the minimization of FGCs, PE, and OPL. For both cases, the proposed GTOT is applied, and the optimal settings of the control variables and the regarding objectives are shown in Table 8. In this table, the values of FGCs and PE in the fifth scenario started at 901.9600 and 0.2390, respectively, and ended at 890.1029 and 0.2127, respectively, when applying the GTOT on this system. In addition to this, the values of FGCs, PE, and OPL in the sixth scenario started at 901.9600, 0.2390, and 5.8324, respectively, and ended at 895.4292, 0.2123, and 4.6529, respectively.

Table 8. Simulation outcomes based on the designed GTOT for the fifth and sixth scenario.

| Variables                             |                     | Initial | Fifth Scenario        | Sixth Scenario |
|---------------------------------------|---------------------|---------|-----------------------|----------------|
|                                       | Gen 1               | 1.0500  | 1.1000                | 1.0057         |
|                                       | Gen 2               | 1.0400  | 1.0960                | 1.0045         |
| Voltage setting of the                | Gen 5               | 1.0100  | 1.0771                | 1.0003         |
| generators (p.u)                      | Gen <sub>8</sub>    | 1.0100  | 1.0881                | 1.0111         |
|                                       | Gen 11              | 1.0500  | 1.1000                | 1.0007         |
|                                       | Gen 13              | 1.0500  | 1.0546                | 1.0018         |
|                                       | Gen 1               | 99.2400 | 1.0553                | 1.0137         |
|                                       | Gen 2               | 80.0000 | 1.1000                | 0.9097         |
| Output powers of the                  | Gen 5               | 50.0000 | 1.1000                | 0.9814         |
| generators (MW)                       | Gen <sub>8</sub>    | 20.0000 | 1.1000                | 0.9741         |
|                                       | Gen 11              | 20.0000 | $6.243 	imes 10^{-9}$ | 5.0000         |
|                                       | Gen 13              | 20.0000 | 0.0000                | 5.0000         |
| Tap setting of the transformers (p.u) | Tr <sub>6-9</sub>   | 1.0780  | 5.0000                | 5.0000         |
|                                       | Tr <sub>6-10</sub>  | 1.0690  | 4.6221                | 5.0000         |
|                                       | Tr 4-12             | 1.0320  | 0.0000                | 5.0000         |
|                                       | Tr <sub>28–27</sub> | 1.0680  | 5.0000                | 5.0000         |
|                                       | Bus 10              | 0.0000  | 5.0000                | 5.0000         |
|                                       | Bus 12              | 0.0000  | 5.0000                | 5.0000         |
|                                       | Bus 15              | 0.0000  | 5.0000                | 4.9517         |
| Output reactive powers of             | Bus 17              | 0.0000  | 82.1327               | 81.8371        |
| the VAR sources ar<br>buses (MVAr)    | Bus 20              | 0.0000  | 62.7968               | 62.4782        |
|                                       | Bus 21              | 0.0000  | 37.4611               | 38.7375        |
|                                       | Bus 23              | 0.0000  | 35.0000               | 35.0000        |
|                                       | Bus 24              | 0.0000  | 30.0000               | 30.0000        |
|                                       | Bus 29              | 0.0000  | 40.0000               | 40.0000        |

| Variables | Initial  | Fifth Scenario | Sixth Scenario |
|-----------|----------|----------------|----------------|
| Cost_Pg   | 901.9600 | 890.1029       | 895.4292       |
| Losses    | 5.8324   | 3.9906         | 4.6529         |
| Emissions | 0.2390   | 0.2127         | 0.2123         |
| Fitness   | 1.0000   | 0.7705         | 0.6691         |
|           |          |                |                |

Table 8. Cont.

Additionally, Table 9 indicates the statistical data for the fifth and sixth scenarios. As manifested in this table, the best, mean, and worst values obtained by the developed GTOT are very close, which illustrates the robustness of the developed GTOT. Moreover, other statistical indices are conducted on the four scenarios, which are standard deviation, standard error, |Best-Worst|, |Mean-Worst|, and |Best-Mean|, that illustrate the effectiveness and robustness of the developed GTOT.

| Statistical Indices | Scenario 5 | Scenario 6 |
|---------------------|------------|------------|
| Best                | 0.7705     | 0.6691     |
| Mean                | 0.7819     | 0.6896     |
| Worst               | 0.7914     | 0.7473     |
| Standard deviation  | 0.0909     | 0.0043     |
| Standard error      | 0.0166     | 0.0008     |
| Best-Worst          | 2.7057%    | 11.6914%   |
| Mean-Worst          | 1.2176%    | 8.3600%    |
| Best-Mean           | 1.4701%    | 3.0743%    |

**Table 9.** Simulation outcomes of the designed GTOT for the fifth and sixth scenario.

Additionally, Table 9 indicates the statistical data for the fifth and sixth scenarios. As manifested in this table, the standard deviations for the four scenarios are 0.0909 and 0.0043, while the standard errors are 0.0166 and 0.0008. Additionally, the values of |Best-Mean| obtained by the proposed GTOT are 1.4701% and 3.0743%. These statistical indices illustrate the effectiveness and robustness of the developed GTOT.

# 5.2. Results of the Second EPS

For this EPS, the three scenarios listed below are studied:

- Scenario 7: *OJ*<sub>1</sub> minimization described in Equation (16);
- Scenario 8: *OJ*<sub>4</sub> minimization described in Equation (19);
- Scenario 9: Merging  $OJ_1$  and  $OJ_4$  as a multi-objective function.

# 5.2.1. Scenario 7

For this case, the designed GTOT is implemented, and the results are shown in Table 10. In this table, the values of the voltages of the eight generators (Vg <sub>1</sub>, Vg <sub>2</sub>, Vg <sub>3</sub>, Vg <sub>4</sub>, Vg <sub>5</sub>, Vg <sub>6</sub>, Vg <sub>7</sub>, and Vg <sub>8</sub>) started at 1 and ended at 1.0600, 1.0590, 1.0599, 1.0599, 1.0599, 1.0599, 1.0599, 1.0599, 1.0599, 1.0599, 1.0599, 1.0455, and 1.0517, respectively. In addition to this, the values of all eight generators' real power output (Pg <sub>1</sub>, Pg <sub>2</sub>, Pg <sub>3</sub>, Pg <sub>4</sub>, Pg <sub>5</sub>, Vg <sub>6</sub>, Pg <sub>7</sub>, and Pg <sub>8</sub>) started at 85.6900, 157.4000, 139.3100, 113.6900, 166.4800, 31.7100, 92.000, and 122.4900, respectively, and ended at 189.5676, 10.0000, 214.6980, 180.4253, 10.0000, 234.0139, 56.3042, and 32.1957, respectively. As illustrated, the proposed GTOT reduces FGCs from 25,098.7000 USD/h to 22,953.42472 USD/h in comparison with the initial scenario. This decrease is a percentage of 8.54%. Furthermore, Figure 10 depicts the convergent characteristic of the proposed GTOT, where it obtains the optimal solution in a short time with the effectiveness and robustness of the solution.

| Variables                                 |                  | Initial     | Fifth Scenario |
|-------------------------------------------|------------------|-------------|----------------|
|                                           | Gen 1            | 1.0000      | 1.0600         |
| -                                         | Gen 2            | 1.0000      | 1.0599         |
| _                                         | Gen 3            | 1.0000      | 1.0599         |
| Voltage setting of the generators (n.u)   | Gen <sub>4</sub> | 1.0000      | 1.0599         |
| voltage setting of the generators (p.u) - | Gen 5            | 1.0000      | 1.0599         |
| _                                         | Gen <sub>6</sub> | 1.0000      | 1.0599         |
| _                                         | Gen 7            | 1.0000      | 1.0455         |
|                                           | Gen <sub>8</sub> | 1.0000      | 1.05173        |
|                                           | Gen 1            | 85.6900     | 189.5676       |
|                                           | Gen <sub>2</sub> | 157.400     | 10.0000        |
|                                           | Gen 3            | 139.3100    | 214.6980       |
|                                           | Gen <sub>4</sub> | 113.6900    | 180.4253       |
| Sulput powers of the generators (1111) -  | Gen 5            | 166.4800    | 10.0000        |
| -                                         | Gen <sub>6</sub> | 31.7100     | 234.0139       |
|                                           | Gen 7            | 92.0000     | 56.3042        |
|                                           | Gen <sub>8</sub> | 122.4900    | 32.1957        |
| FGCs (USD/h)                              |                  | 25,098.7000 | 22,953.4247    |
| OPLs (MW)                                 |                  | 19.0150     | 37.4550        |

Table 10. Simulation outcomes based on the designed GTOT for the seventh scenario.



Figure 10. Convergence feature of developed GTOT for Scenario 7.

For such a scenario, the created GTOT is contrasted to a number of other novel approaches used in this instance, as shown in Table 11. As can be observed, the produced GTOT beats all other strategies in terms of minimizing FGCs, with the developed GTOT obtaining the smallest FGCs of 22,953.4247 USD/h.

| Technique      | FGCs (USD/h) | Technique | FGCs (USD/h) |
|----------------|--------------|-----------|--------------|
| Developed GTOT | 22,953.4247  | ISHT [65] | 22,958.7800  |
| NBT [48]       | 22,960.8100  | CST [47]  | 22,959.3600  |
| SST [65]       | 22,965.5900  | MCST [47] | 22,955.5500  |
| GWT [65]       | 22,957.7200  |           |              |

Table 11. Comparison for Scenario 7.

# 5.2.2. Scenario 8

The proposed GTOT achieves the minimizing of the OPLs in the eighth scenario, as shown in Table 12. In this table, the values of the voltages of the eight generators (Vg  $_1$ , Vg  $_2$ , Vg  $_3$ , Vg  $_4$ , Vg  $_5$ , Vg  $_6$ , Vg  $_7$ , and Vg  $_8$ ) started at 1 and ended at 1.0595, 1.0600, 1.0600, 1.0600, 1.0600, 1.0600, and 1.0600, respectively. In addition to this, the values of all eight generators' real power output (Pg  $_1$ , Pg  $_2$ , Pg  $_3$ , Pg  $_4$ , Pg  $_5$ , Vg  $_6$ , Pg  $_7$ , and Pg  $_8$ ) started at 85.6900, 157.4000, 139.3100, 113.6900, 166.4800, 31.7100, 92.0000, and 122.4900, respectively, and ended at 60.4617, 58.8194, 180.6455, 130.7554, 117.9838, 105.4722, 156.5709, and 86.2761, respectively. The proposed GTOT, as demonstrated, reduces the OPLs from 19.0150 MW to 7.2353 MW compared with the initial scenario. This decrease reflects a 61.95 percent reduction. In addition, Figure 11 depicts the related convergent characteristic of the proposed GTOT for Scenario 8, where it obtains the optimal solution in a short time with the effectiveness and robustness of the solution.

Table 12. Simulation outcomes based on the designed GTOT for the eighth scenario.

| Variables                                 |                  | Initial     | Sixth Scenario |
|-------------------------------------------|------------------|-------------|----------------|
|                                           | Gen 1            | 1.0000      | 1.0595         |
| -                                         | Gen 2            | 1.0000      | 1.0600         |
| _                                         | Gen 3            | 1.0000      | 1.0600         |
| Voltage setting of the generators (n 1)   | Gen <sub>4</sub> | 1.0000      | 1.0600         |
| voltage setting of the generators (p.u) - | Gen 5            | 1.0000      | 1.0600         |
| _                                         | Gen <sub>6</sub> | 1.0000      | 1.0600         |
| _                                         | Gen 7            | 1.0000      | 1.0600         |
| -                                         | Gen <sub>8</sub> | 1.0000      | 1.0600         |
|                                           | Gen 1            | 85.6900     | 60.4617        |
|                                           | Gen 2            | 157.4000    | 58.8194        |
|                                           | Gen 3            | 139.3100    | 180.6455       |
|                                           | Gen <sub>4</sub> | 113.6900    | 130.7554       |
|                                           | Gen 5            | 166.4800    | 117.9838       |
|                                           | Gen <sub>6</sub> | 31.7100     | 105.4722       |
|                                           | Gen 7            | 92.0000     | 156.5709       |
|                                           | Gen <sub>8</sub> | 122.4900    | 86.2761        |
| FGCs (USD/h)                              |                  | 25,098.7000 | 24,773.0865    |
| OPLs (MW)                                 |                  | 19.0150     | 7.2353         |



Figure 11. Convergence feature of the developed GTOT for Scenario 8.

5.2.3. Stability Assessment of the GTOT for the Second EPS

For this EPS, similarly, the obtained objectives of the thirty runs are recorded. For every scenario, the estimated indicators of the percentages of the objectives via the proposed GTOT are displayed in Figure 12.



Figure 12. Estimated objective percentages via the designed GTOT.

As seen, the developed GTOT always has the ability to find close percentage to 100% where its mean is near to its minimum. For the first scenario, the highest indicator percent is 100.0000167%, while the minimum index percent is 99.9999%. The maximum index percent is 100.123%, while the minimum index percent is 99.9862%. This demonstrates the high stability of the developed GTOT for all scenarios.

Additionally, Table 13 indicates the statistical data for the seventh and eighth scenario. As manifested in this table, the standard deviations for the two scenarios are 7.3505 and  $1.28 \times 10^{-5}$  while the standard errors are 1.3420 and  $2.33 \times 10^{-6}$ . Additionally, the values of |Best-Mean| obtained by the proposed GTOT are 0.0137% and 0.0002%. These statistical indices illustrate the effectiveness and robustness of the developed GTOT.

| Statistical Indices | Scenario 7  | Scenario 8         |
|---------------------|-------------|--------------------|
| Best                | 22,953.4200 | 7.2353             |
| Mean                | 22,956.5800 | 7.2353             |
| Worst               | 22,984.9400 | 7.2353             |
| Standard deviation  | 7.3505      | $1.28	imes10^{-5}$ |
| Standard error      | 1.3420      | $2.33	imes10^{-6}$ |
| Best-Worst          | 0.1373%     | 0.0003%            |
| Mean-Worst          | 0.1235%     | 0.0001%            |
| Best-Mean           | 0.0137%     | 0.0002%            |

Table 13. Simulation outcomes based on the GTOT for the seventh and eighth scenarios.

#### 5.2.4. Scenario 9

The designed GTOT achieves the minimization of both the FGCs and OPL in the ninth scenario, as shown in Table 14. In this table, the values of FGCs and OPL in the ninth scenario have started with 25,098.7000 and 19.0150, respectively, and ended with 24,586.3700 and 7.3036, respectively.

Table 14. Simulation outcomes based on the designed GTOT for Scenario 9.

| Variables                               |                  | Initial     | Ninth Scenario |
|-----------------------------------------|------------------|-------------|----------------|
|                                         | Gen 1            | 1.0000      | 1.0600         |
|                                         | Gen 2            | 1.0000      | 1.0600         |
|                                         | Gen 3            | 1.0000      | 1.0600         |
| Voltage setting of the generators (p.u) | Gen <sub>4</sub> | 1.0000      | 1.0600         |
| forme occurs of the generators (pra)    | Gen 5            | 1.0000      | 1.0599         |
|                                         | Gen <sub>6</sub> | 1.0000      | 1.0600         |
|                                         | Gen 7            | 1.0000      | 1.0599         |
|                                         | Gen <sub>8</sub> | 1.0000      | 1.0600         |
|                                         | Gen 1            | 85.6900     | 67.2453        |
|                                         | Gen 2            | 157.4000    | 51.3626        |
|                                         | Gen 3            | 139.3100    | 183.2907       |
| Output powers of the generators (MW)    | Gen <sub>4</sub> | 113.6900    | 133.4820       |
| Sulput powers of the generators (MIT)   | Gen 5            | 166.4800    | 108.3223       |
|                                         | Gen <sub>6</sub> | 31.7100     | 123.8325       |
|                                         | Gen 7            | 92.0000     | 148.2581       |
|                                         | Gen 8            | 122.4900    | 81.2601        |
| FGCs (USD/h)                            |                  | 25,098.7000 | 24,586.3700    |
| OPLs (MW)                               |                  | 19.0150     | 7.3036         |
| Fitness                                 |                  | 1.0000      | 0.6818         |

In addition, Figure 13 depicts the convergent characteristic of the designed GTOT for Scenario 9, where it obtains the optimal solution in a short time with the effective-ness and robustness of the solution. Moreover, Table 15 indicates the statistical data for the ninth scenario. As manifested in this table, the standard deviation for this scenario is  $1.9551 \times 10^{-8}$ , while the standard error is  $3.5696 \times 10^{-9}$ . Additionally, the value of |Best-Mean| obtained by the proposed GTOT is  $3.4413 \times 10^{-6}$ %. These statistical indices illustrate the effectiveness and robustness of the developed GTOT.



Figure 13. Convergence feature of the developed GTOT for Scenario 9.

Table 15. Simulation outcomes based on the designed GTOT for the seventh and eighth scenario.

| Statistical Indices                                                                                                       | Scenario 9                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Best                                                                                                                      | 0.6818                                                                                                                                                                                                |
| Mean                                                                                                                      | 0.6818                                                                                                                                                                                                |
| Worst                                                                                                                     | 0.6818                                                                                                                                                                                                |
| Standard deviation                                                                                                        | $1.9551 	imes 10^{-8}$                                                                                                                                                                                |
| Standard error                                                                                                            | $3.5696 	imes 10^{-9}$                                                                                                                                                                                |
| Best-Worst                                                                                                                | $6.1814 	imes 10^{-6}\%$                                                                                                                                                                              |
| Mean-Worst                                                                                                                | $2.7401 	imes 10^{-6}\%$                                                                                                                                                                              |
| Best-Mean                                                                                                                 | $3.4413 	imes 10^{-6}\%$                                                                                                                                                                              |
| Worst         Standard deviation         Standard error           Best-Worst             Mean-Worst             Best-Mean | $\begin{array}{r} 0.6818\\ \hline 1.9551 \times 10^{-8}\\ \hline 3.5696 \times 10^{-9}\\ \hline 6.1814 \times 10^{-6}\%\\ \hline 2.7401 \times 10^{-6}\%\\ \hline 3.4413 \times 10^{-6}\%\end{array}$ |

# 6. Conclusions

In this paper, a methodology centered on the gorilla troops optimization technique (GTOT) is developed for optimal power flow problem (OPFP) in electrical power systems (EPSs). The assessment of the designed GTOT is carried out utilizing an IEEE specified 30 bus EPS and actual WD-EPS from Egypt. Nine different scenarios are evaluated, each with a different goal function of fuel expense, transmission losses, and harmful pollutants. Significant decreases in the objective goals are achieved for all tested circumstances. The main outcomes of this paper are developed as follows:

 Multi-dimension objectives combining two and three objectives for both systems are developed in this work.

- Their percentages of reduction for the single objectives are reached (11.406%, 7.67%, 14.39%, 51.09%, 8.54%, and 61.95%) for the six single objective scenarios in comparison to the initial circumstance.
- The GTOT is employed in different evaluations and statistical analyses with many modern methods such as GWT, CST, SST, NBT, and ISHT.
- The developed GTOT always has the ability to find a close percentage to 100% where its average is near to its minimum for both EPSs.
- When developed GTOT compared to other similar approaches in the literature, the simulated results demonstrate the designed GTOT's solution validity and stability.
- The developed GTOT derives considerable stability for all scenarios.

Considering the high efficacy of the suggested algorithm in the OPFP application in this paper, it is preferred that the proposed algorithm be tested in the future for resolving the OPFP with high penetration of renewable energies in power grids. It may also be designed for AC-DC electrical systems with the incorporation of modern voltage source converters.

**Author Contributions:** Conceptualization, A.G. and R.E.-S.; Data curation, A.S. and A.E.; Formal analysis, A.S., R.E.-S., A.E. and H.T.D.; Funding acquisition, E.E.; Investigation, R.E.-S. and A.E.; Methodology, A.G.; Resources, A.G., E.E. and H.T.D.; Software, A.S.; Supervision, R.E.-S. and H.T.D. All authors have read and agreed to the published version of the manuscript.

**Funding:** Taif University Researchers Supporting Project number (TURSP-2020/86), Taif University, Taif, Saudi Arabia.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

**Conflicts of Interest:** The authors declare no conflict of interest.

#### List of Acronyms

| AGT       | Adaptive GT                                      |
|-----------|--------------------------------------------------|
| ARBT      | Adaptive real biogeography-based technique       |
| AGST      | Adaptive group search technique                  |
| BBO       | Biogeography-based optimization                  |
| BHBT      | Black-hole-based technique                       |
| CBOA      | Colliding bodies optimization algorithm          |
| COA       | Coyote optimization algorithm                    |
| CSSO      | Chaotic salp swarm optimizer                     |
| CST       | Crow search technique                            |
| DE        | Differential evolution                           |
| DHST      | Differential harmony search technique            |
| EMM       | Electromagnetism-like mechanism                  |
| EPSs      | Electrical power systems                         |
| EMRFT     | Enhanced manta ray foraging technique            |
| EMSA      | Emended moth swarm algorithm                     |
| FGCs      | Fuel generation costs                            |
| FGCSs     | FGC with sinusoids                               |
| GA        | Genetic algorithm                                |
| GTOT      | Gorilla troops optimization technique            |
| GT        | Grasshopper technique                            |
| GWT       | Grey wolf technique                              |
| HGWODE    | Hybridization of GWT and DE                      |
| ICT       | Imperialist competitive technique                |
| IEOT      | Improved electromagnetism-like technique         |
| IMFT      | Improved moth-flame technique                    |
| INSGA-III | Improved non-dominated sorting genetic algorithm |
| ISHT      | Improved spotted-hyena technique                 |
|           |                                                  |

| ISST                             | Improved social spider technique                             |
|----------------------------------|--------------------------------------------------------------|
|                                  | Adaptive differential evolution                              |
| IFST                             | Induptive underential evolution                              |
|                                  | Keill hard tashnigua                                         |
|                                  | Krill nero technique                                         |
| MCSI                             | Modified crow search technique                               |
| NBT                              | Novel bat technique                                          |
| MRFT                             | Manta-ray foraging technique                                 |
| MST                              | Moth swarm technique                                         |
| OPFP                             | Optimal power flow problem                                   |
| OPL                              | Overall power loss                                           |
| PE                               | Produced emissions                                           |
| PSO                              | Particle swarm optimization                                  |
| OCMFT                            | Quantum computing and moth flame technique                   |
| SAO                              | Simulated annealing optimization                             |
| SOST                             | Symbiotic organisms search technique                         |
| CCT                              | Symbolic organisms search technique                          |
| 551<br>TIT                       | Tagahing laguning taghning                                   |
|                                  | reaching-learning technique                                  |
| WCEMFI                           | Combination of water cycle with moth flame technique         |
| WD                               | West delta                                                   |
| WD-EPS                           | West Delta-EPS                                               |
| List of Variables                |                                                              |
| A                                | Level of violence in a fight                                 |
| Xr<br>Xr                         | The current group position of gorilla                        |
|                                  | Variables' minimum bound                                     |
| LL $V(z)$                        | Variables minimum bound                                      |
| A(g)                             | Vector of gorilla location in the giteration                 |
| GX(g+1)                          | Vector of gorilla location in the $g + 1$ iteration          |
| rand, rd1, rd2, rd3              | Random values ranging from 0 to 1                            |
| Pr                               | Migrating coefficient                                        |
| GXr                              | Candidate group position of gorilla                          |
| UL                               | Variables' maximum bound                                     |
| Iter                             | Present iteration number                                     |
| MaxIter                          | Maximum iteration number                                     |
| rd4                              | Random value inside the bound [0:1]                          |
| 1                                | Random values between $-1$ and $1$                           |
| X(g)                             | Vector of gorilla location                                   |
| 0                                | Force of impact                                              |
| rd5                              | Random value within bound [0:1]                              |
| β                                | Pre-optimization value                                       |
| Ē                                | Violence efficacy                                            |
| $V\sigma_1 V\sigma_2 V\sigma_3 $ | Voltages of the generators                                   |
| $Tan_{a}$ $Tan_{a}$ $Tan_{a}$    | Tap changer settings                                         |
| $np_1, np_2, \dots np_{Nt}$      | Number of on load tan changers                               |
|                                  |                                                              |
| $Qg_1, Qg_2, \dots, Qg_{Ng}$     | Generator reactive power outputs                             |
| $Pg_1, Pg_2, \ldots, Pg_{Ng}$    | Generators real power output                                 |
| 0J                               | Investigated vector of several <i>m</i> targets              |
| $OJ_1$                           | Costs of fuel generation in dollars per hour                 |
| $Pg_k$                           | Real power output in megawatts of generator                  |
| OJ <sub>2</sub>                  | Costs of fuel generation with sinusoids                      |
| $\theta$                         | Phase angle                                                  |
| G <sub>mn</sub>                  | Conductance of a line between buses $m$ and $n$              |
| QL                               | Power consumption in its reactive components                 |
| G <sub>ik</sub>                  | Mutual conductance of line between bus <i>j</i> and <i>k</i> |
| $VL_i$                           | Load voltage at bus <i>j</i>                                 |
| $OI_i$                           | Each objective function                                      |
| NRA                              | Newton–Raphson approach                                      |
|                                  |                                                              |

| Penalty coefficient for any violation in line flow         |
|------------------------------------------------------------|
| Number of on-load generators                               |
| Number of on-load reactive power sources,                  |
| Transmission flow limits                                   |
| Random values between [-c:c]                               |
| The best solution which is the silverback                  |
| Population of gorillas                                     |
| Level of violence in a fight                               |
| Load bus voltage magnitudes                                |
| The number of load buses,                                  |
| Independent variables                                      |
| Dependent variables                                        |
| Vector of several targets                                  |
| Cost factors of generator k                                |
| Number of transmission lines                               |
| Reactive power injections of switching capacitors          |
| Lowest limitation of generator k                           |
| Generator k's sinusoid cost factors                        |
| Produced ton/hr emissions from the power plants            |
| Emission factors of generator <i>k</i>                     |
| Number of buses                                            |
| Voltage                                                    |
| Power consumption in its active components                 |
| Mutual susceptance of a line between bus $j$ and $k$       |
| Power flow via line                                        |
| Penalty coefficient for violation in load voltage          |
| Penalty coefficient for violation in reactive power output |
| from generators                                            |
| Mean value                                                 |
|                                                            |

# References

- Trivedi, I.N.; Jangir, P.; Parmar, S.A.; Jangir, N. Optimal Power Flow with Voltage Stability Improvement and Loss Reduction in Power System Using Moth-Flame Optimizer. *Neural Comput. Appl.* 2018, 30, 1889–1904. [CrossRef]
- Buch, H.; Trivedi, I.N.; Jangir, P. Moth Flame Optimization to Solve Optimal Power Flow with Non-Parametric Statistical Evaluation Validation. *Cogent Eng.* 2017, 4, 1286731. [CrossRef]
- 3. Attia, A.F.; El Sehiemy, R.A.; Hasanien, H.M. Optimal Power Flow Solution in Power Systems Using a Novel Sine-Cosine Algorithm. *Int. J. Electr. Power Energy Syst.* 2018, *99*, 331–343. [CrossRef]
- 4. Montoya, O.D. A Convex OPF Approximation for Selecting the Best Candidate Nodes for Optimal Location of Power Sources on DC Resistive Networks. *Eng. Sci. Technol. Int. J.* **2020**, *23*, 527–533. [CrossRef]
- Bai, X.; Wei, H. A Semidefinite Programming Method with Graph Partitioning Technique for Optimal Power Flow Problems. Int. J. Electr. Power Energy Syst. 2011, 33, 1309–1314. [CrossRef]
- 6. Dommel, H.W.; Tinney, W.F. Optimal Power Flow Solutions. IEEE Trans. Power Appar. Syst. 1968, PAS-87, 1866–1876. [CrossRef]
- Crisan, O.; Mohtadi, M.A. Efficient Identification of Binding Inequality Constraints in the Optimal Power Flow Newton Approach. *IEE Proc. C Gener. Transm. Distrib.* 1992, 139, 365–370. [CrossRef]
- 8. Mota-Palomino, R.; Quintana, V.H. Sparse Reactive Power Scheduling by a Penalty Function-Linear Programming Technique. *IEEE Trans. Power Syst.* **1986**, *1*, 31–39. [CrossRef]
- 9. Granelli, G.P.; Montagna, M. Security-Constrained Economic Dispatch Using Dual Quadratic Programming. *Electr. Power Syst. Res.* **2000**, *56*, 71–80. [CrossRef]
- 10. Burchett, R.C.; Happ, H.H.; Vierath, D.R. Quadratically Convergent Optimal Power Flow. *IEEE Trans. Power Appar. Syst.* **1984**, *PAS-103*, 3267–3275. [CrossRef]
- 11. El-Sehiemy, R.A.; El Ela, A.A.A.; Shaheen, A. A Multi-Objective Fuzzy-Based Procedure for Reactive Power-Based Preventive Emergency Strategy. *Int. J. Eng. Res. Afr.* 2015, *13*, 91–102. [CrossRef]
- 12. Rahli, M.; Pirotte, P. Optimal Load Flow Using Sequential Unconstrained Minimization Technique (SUMT) Method under Power Transmission Losses Minimization. *Electr. Power Syst. Res.* **1999**, *52*, 61–64. [CrossRef]
- 13. Sun, D.I.; Ashley, B.; Brewer, B.; Hughes, A.; Tinney, W.F. Optimal Power Flow by Newton Approach. *IEEE Trans. Power Appar. Syst.* **1984**, *PAS-103*, 2864–2880. [CrossRef]
- 14. Santos, A.; da Costa, G.R.M. Optimal-Power-Flow Solution by Newton's Method Applied to an Augmented Lagrangian Function. *IEE Proc. Gener. Transm. Distrib.* **1995**, 142, 33–36. [CrossRef]

- 15. Yan, X.; Quintana, V.H. Improving an Interior-Point-Based off by Dynamic Adjustments of Step Sizes and Tolerances. *IEEE Trans. Power Syst.* **1999**, *14*, 709–716. [CrossRef]
- 16. Yan, W.; Yu, J.; Yu, D.C.; Bhattarai, K. A New Optimal Reactive Power Flow Model in Rectangular Form and Its Solution by Predictor Corrector Primal Dual Interior Point Method. *IEEE Trans. Power Syst.* **2006**, *21*, 61–67. [CrossRef]
- Momoh, J.A.; Zhu, J.Z. Improved Interior Point Method for off Problems. *IEEE Trans. Power Syst.* 1999, 14, 1114–1120. [CrossRef]
   Reddy, S.S.; Bijwe, P.R. Efficiency Improvements in Meta-Heuristic Algorithms to Solve the Optimal Power Flow Problem. *Int. J. Emerg. Electr. Power Syst.* 2016, 17, 631–647. [CrossRef]
- 19. Chaib, A.E.; Bouchekara, H.R.E.H.; Mehasni, R.; Abido, M.A. Optimal Power Flow with Emission and Non-Smooth Cost Functions Using Backtracking Search Optimization Algorithm. *Int. J. Electr. Power Energy Syst.* **2016**, *81*, 64–77. [CrossRef]
- 20. Bouchekara, H.R.E.H.; Chaib, A.E.; Abido, M.A.; El-Sehiemy, R.A. Optimal Power Flow Using an Improved Colliding Bodies Optimization Algorithm. *Appl. Soft Comput. J.* **2016**, *42*, 119–131. [CrossRef]
- 21. Kumar, A.R.; Premalatha, L. Optimal Power Flow for a Deregulated Power System Using Adaptive Real Coded Biogeography-Based Optimization. *Int. J. Electr. Power Energy Syst.* 2015, 73, 393–399. [CrossRef]
- 22. Basu, M. Modified Particle Swarm Optimization for Nonconvex Economic Dispatch Problems. *Int. J. Electr. Power Energy Syst.* 2015, 69, 304–312. [CrossRef]
- 23. Singh, R.P.; Mukherjee, V.; Ghoshal, S.P. Particle Swarm Optimization with an Aging Leader and Challengers Algorithm for the Solution of Optimal Power Flow Problem. *Appl. Soft Comput. J.* **2016**, *40*, 161–177. [CrossRef]
- 24. El-Fergany, A.A.; Hasanien, H.M. Single and Multi-Objective Optimal Power Flow Using Grey Wolf Optimizer and Differential Evolution Algorithms. *Electr. Power Compon. Syst.* **2015**, *43*, 1548–1559. [CrossRef]
- 25. Bouchekara, H.R.E.H.; Chaib, A.E.; Abido, M.A. Optimal Power Flow Using GA with a New Multi-Parent Crossover Considering: Prohibited Zones, Valve-Point Effect, Multi-Fuels and Emission. *Electr. Eng.* **2018**, *100*, 151–165. [CrossRef]
- 26. El-Hana Bouchekara, H.R.; Abido, M.A.; Chaib, A.E. Optimal Power Flow Using an Improved Electromagnetism-like Mechanism Method. *Electr. Power Compon. Syst.* 2016, 44, 434–449. [CrossRef]
- 27. Ghasemi, M.; Ghavidel, S.; Gitizadeh, M.; Akbari, E. An Improved Teaching-Learning-Based Optimization Algorithm Using Lévy Mutation Strategy for Non-Smooth Optimal Power Flow. *Int. J. Electr. Power Energy Syst.* 2015, 65, 375–384. [CrossRef]
- Ziane, I.; Benhamida, F.; Graa, A. Simulated Annealing Algorithm for Combined Economic and Emission Power Dispatch Using Max/Max Price Penalty Factor. *Neural Comput. Appl.* 2017, 28, 197–205. [CrossRef]
- 29. Dabba, A.; Tari, A.; Meftali, S. Hybridization of Moth Flame Optimization Algorithm and Quantum Computing for Gene Selection in Microarray Data. *J. Ambient Intell. Humaniz. Comput.* **2020**, *12*, 2731–2750. [CrossRef]
- 30. El-Ela, A.A.A.; El-Sehiemy, R.A.; Shaheen, A.M.; Ellien, A.R. Optimal Allocation of Distributed Generation Units Correlated with Fault Current Limiter Sites in Distribution Systems. *IEEE Syst. J.* **2020**, *15*, 2148–2155. [CrossRef]
- Bentouati, B.; Javaid, M.S.; Bouchekara, H.R.E.H.; El-Fergany, A.A. Optimizing Performance Attributes of Electric Power Systems Using Chaotic Salp Swarm Optimizer. *Int. J. Manag. Sci. Eng. Manag.* 2020, 15, 165–175. [CrossRef]
- Khalilpourazari, S.; Khalilpourazary, S. An Efficient Hybrid Algorithm Based on Water Cycle and Moth-Flame Optimization Algorithms for Solving Numerical and Constrained Engineering Optimization Problems. *Soft Comput.* 2019, 23, 1699–1722. [CrossRef]
- 33. Pan, J.S.; Shan, J.; Chu, S.C.; Jiang, S.J.; Zheng, S.G.; Liao, L. A Multigroup Marine Predator Algorithm and Its Application for the Power System Economic Load Dispatch. *Energy Sci. Eng.* **2021**. [CrossRef]
- 34. Bai, Y.; Wu, X.; Xia, A. An Enhanced Multi-Objective Differential Evolution Algorithm for Dynamic Environmental Economic Dispatch of Power System with Wind Power. *Energy Sci. Eng.* **2021**, *9*, 316–329. [CrossRef]
- Bentouati, B.; Khelifi, A.; Shaheen, A.M.; El-Sehiemy, R.A. An Enhanced Moth-Swarm Algorithm for Efficient Energy Management Based Multi Dimensions OPF Problem. J. Ambient Intell. Humaniz. Comput. 2020, 12, 9499–9519. [CrossRef]
- Daryani, N.; Hagh, M.T.; Teimourzadeh, S. Adaptive Group Search Optimization Algorithm for Multi-Objective Optimal Power Flow Problem. *Appl. Soft Comput. J.* 2016, *38*, 1012–1024. [CrossRef]
- 37. Nguyen, T.T. A High Performance Social Spider Optimization Algorithm for Optimal Power Flow Solution with Single Objective Optimization. *Energy* **2019**, 171, 218–240. [CrossRef]
- 38. Elattar, E.E.; ElSayed, S.K. Modified JAYA Algorithm for Optimal Power Flow Incorporating Renewable Energy Sources Considering the Cost, Emission, Power Loss and Voltage Profile Improvement. *Energy* **2019**, *178*, 598–609. [CrossRef]
- 39. Li, S.; Gong, W.; Wang, L.; Yan, X.; Hu, C. Optimal Power Flow by Means of Improved Adaptive Differential Evolution. *Energy* **2020**, *198*, 117314. [CrossRef]
- 40. Warid, W.; Hizam, H.; Mariun, N.; Wahab, N.I.A. A Novel Quasi-Oppositional Modified Jaya Algorithm for Multi-Objective Optimal Power Flow Solution. *Appl. Soft Comput.* **2018**, *65*, 360–373. [CrossRef]
- Zhang, J.; Wang, S.; Tang, Q.; Zhou, Y.; Zeng, T. An Improved NSGA-III Integrating Adaptive Elimination Strategy to Solution of Many-Objective Optimal Power Flow Problems. *Energy* 2019, 172, 945–957. [CrossRef]
- 42. Elattar, E.E.; Shaheen, A.M.; Elsayed, A.M.; El-Sehiemy, R.A. Optimal Power Flow with Emerged Technologies of Voltage Source Converter Stations in Meshed Power Systems. *IEEE Access* 2020, *8*, 166963–166979. [CrossRef]
- 43. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. Artificial Gorilla Troops Optimizer: A New Nature-Inspired Metaheuristic Algorithm for Global Optimization Problems. *Int. J. Intell. Syst.* **2021**, *36*, 5887–5958. [CrossRef]

- Ginidi, A.; Ghoneim, S.M.; Elsayed, A.; El-Sehiemy, R.; Shaheen, A.; El-Fergany, A. Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems. *Sustainability* 2021, 13, 9459. [CrossRef]
- 45. Zimmerman, R.D. Matpower [Software]. Available online: https://Matpower.Org (accessed on 1 August 2021).
- 46. Liu, Y.; Gong, D.; Sun, J.; Jin, Y. A Many-Objective Evolutionary Algorithm Using a One-by-One Selection Strategy. *IEEE Trans. Cybern.* **2017**, *47*, 2689–2702. [CrossRef] [PubMed]
- 47. Askarzadeh, A. A Novel Metaheuristic Method for Solving Constrained Engineering Optimization Problems: Crow Search Algorithm. *Comput. Struct.* **2016**, *169*, 1–12. [CrossRef]
- 48. Horng, S.C.; Lin, S.S. Bat Algorithm Assisted by Ordinal Optimization for Solving Discrete Probabilistic Bicriteria Optimization Problems. *Math. Comput. Simul.* **2019**, *166*, 346–364. [CrossRef]
- Shaheen, A.M.; El-Sehiemy, R.A.; Elsayed, A.M.; Elattar, E.E. Multi-Objective Manta Ray Foraging Algorithm for Efficient Operation of Hybrid AC/DC Power Grids with Emission Minimisation. *IET Gener. Transm. Distrib.* 2021, 15, 1314–1336. [CrossRef]
- 50. El-Sehiemy, R.; Elsayed, A.; Shaheen, A.; Elattar, E.; Ginidi, A. Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer. *Sustainability* **2021**, *13*, 11947. [CrossRef]
- Shaheen, A.M.; El-Sehiemy, R.A. Application of Multi-Verse Optimizer for Transmission Network Expansion Planning in Power Systems. In Proceedings of the International Conference on Innovative Trends in Computer Engineering ITCE 2019, Aswan, Egypt, 2–4 February 2019; pp. 371–376. [CrossRef]
- 52. Taher, M.A.; Kamel, S.; Jurado, F.; Ebeed, M. An Improved Moth-Flame Optimization Algorithm for Solving Optimal Power Flow Problem. *Int. Trans. Electr. Energy Syst.* 2019, 29, e2743. [CrossRef]
- 53. Abdo, M.; Kamel, S.; Ebeed, M.; Yu, J.; Jurado, F. Solving Non-Smooth Optimal Power Flow Problems Using a Developed Grey Wolf Optimizer. *Energies* 2018, *11*, 1692. [CrossRef]
- 54. Duman, S. Symbiotic Organisms Search Algorithm for Optimal Power Flow Problem Based on Valve-Point Effect and Prohibited Zones. *Neural Comput. Appl.* **2017**, *28*, 3571–3585. [CrossRef]
- 55. Ghanizadeh, A.J.; Mokhtari, M.; Abedi, M.; Gharehpetian, G.B. Optimal Power Flow Based on Imperialist Competitive Algorithm. *Int. Rev. Electr. Eng.* **2011**, *6*, 4–12.
- Alhejji, A.; Hussein, M.E.; Kamel, S.; Alyami, S. Optimal Power Flow Solution with an Embedded Center-Node Unified Power Flow Controller Using an Adaptive Grasshopper Optimization Algorithm. *IEEE Access* 2020, *8*, 119020–119037. [CrossRef]
- 57. Bouchekara, H.R.E.H. Optimal Power Flow Using Black-Hole-Based Optimization Approach. *Appl. Soft Comput. J.* 2014, 24, 879–888. [CrossRef]
- 58. Shaheen, A.M.; El-Sehiemy, R.A.; Elattar, E.E.; Abd-Elrazek, A.S. A Modified Crow Search Optimizer for Solving Non-Linear OPF Problem with Emissions. *IEEE Access* **2021**, *9*, 43107–43120. [CrossRef]
- 59. Mohamed, A.A.A.; Mohamed, Y.S.; El-Gaafary, A.A.M.; Hemeida, A.M. Optimal Power Flow Using Moth Swarm Algorithm. *Electr. Power Syst. Res.* 2017, 142, 190–206. [CrossRef]
- Jeddi, B.; Einaddin, A.H.; Kazemzadeh, R. A Novel Multi-Objective Approach Based on Improved Electromagnetism-like Algorithm to Solve Optimal Power Flow Problem Considering the Detailed Model of Thermal Generators. *Int. Trans. Electr. Energy Syst.* 2017, 27, e2293. [CrossRef]
- 61. Yang, X.S. Bat Algorithm: Literature Review and Applications. Int. J. Bio-Inspired Comput. 2013, 5, 141–149. [CrossRef]
- Shaheen, A.M.; El-Sehiemy, R.A.; Ginidi, A.R.; Ghoneim, S.S.M.; Alharthi, M.M. Multi-Objective Jellyfish Search Optimizer for Efficient Power System Operation Based on Multi-Dimensional OPF Framework. *Energy* 2021, 237, 121478. [CrossRef]
- Pulluri, H.; Naresh, R.; Sharma, V. A Solution Network Based on Stud Krill Herd Algorithm for Optimal Power Flow Problems. Soft Comput. 2018, 22, 159–176. [CrossRef]
- 64. Shabanpour-Haghighi, A.; Seifi, A.R.; Niknam, T. A Modified Teaching-Learning Based Optimization for Multi-Objective Optimal Power Flow Problem. *Energy Convers. Manag.* 2014, 77, 597–607. [CrossRef]
- Shaheen, A.M.; Elsayed, A.M.; El-Sehiemy, R.A.; Ghoneim, S.S.M.; Alharthi, M.M.; Ginidi, A.R. Multi-Dimensional Energy Management Based on an Optimal Power Flow Model Using an Improved Quasi-Reflection Jellyfish Optimization Algorithm. *Eng. Optim.* 2022, 1–23. [CrossRef]