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Abstract: In this article, we propose a simplified radial basis function (RBF) method with exterior 

fictitious sources for solving elliptic boundary value problems (BVPs). Three simplified RBFs, 

including Gaussian, multiquadric (MQ), and inverse multiquadric (IMQ) without the shape 

parameter, are adopted in this study. With the consideration of many exterior fictitious sources 

outside the domain, the radial distance of the RBF is always greater than zero, such that we can 

remove the shape parameter from RBFs. Additionally, simplified Gaussian, MQ, and IMQ RBFs and 

their derivatives in the governing equation are always smooth and nonsingular. Comparative 

analysis is conducted for three different collocation types, including conventional uniform centers, 

randomly fictitious centers, and exterior fictitious sources. Numerical examples of elliptic BVPs in 

two and three dimensions are carried out. The results demonstrate that the proposed simplified 

RBFs with exterior fictitious sources can significantly improve the accuracy, especially for the 

Laplace equation. Furthermore, the proposed simplified RBFs exhibit the simplicity of solving 

elliptic BVPs without finding the optimum shape parameter. 
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1. Introduction 

Meshfree methods have been applied to solve problems with complicated and 

irregular geometry because of the advantages of their meshfree characteristics [1–4]. With 

the capability to deal with different kinds of partial differential equations (PDEs), the 

radial basis function collocation method (RBFCM) is one of the prominent methods for 

solving PDEs, where the variables are expressed by the function approximation [5–8]. 

Proposed by Hardy in 1971 [9], the multiquadric (MQ) radial basis function (RBF) was 

used for scattered data interpolation. The first attempt to extend the MQ RBF to the 

solution of PDEs was presented by Kansa in the early 1990s [10]. In addition to the MQ 

RBF, several RBFs have been presented, such as the inverse multiquadric (IMQ), 

Gaussian, and polyharmonic spline (PS) functions [11–14]. Among them, PS and MQ RBFs 

have received more attention for interpolation due to their high accuracy [15–17]. These 

RBFs are usually categorized into piecewise and infinite smooth functions. For example, 

the PS is piecewise smooth. On the other hand, the MQ is infinite smooth. In order to 

remain smooth, the shape parameter is introduced in the MQ [18]. Many RBF methods 

often contain the shape parameter, which has been proven to have a significant influence 

on the accuracy of RBF interpolation [19–21]. 

In the Kansa method, the centers are uniformly scattered within the domain, where 

the positions of the interior and center points are exactly the same [22]. The centers are 

often regarded as fictitious sources, which are randomly scattered within the domain [23]. 
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On the other hand, the fictitious sources can also be simultaneously scattered within and 

outside the closure of the domain [24]. Recently, Ku et al. proposed the MQ RBF without 

the shape parameter using fictitious sources collocated outside the domain [25]. Because 

the fictitious sources are situated on the exterior domain, the radial distance always has a 

non-zero value, such that the RBFs and their derivatives are always smooth and globally 

infinitely differentiable [26]. The fictitious sources used for the collocation method have 

received significant attention due to their superior properties and wide utilization for 

solving PDEs. Accordingly, the accuracy of different RBFs when using fictitious sources 

in the collocation method to solve PDEs is of significant interest and needs to be 

investigated. 

Identification of the shape parameter is often very challenging and tedious in the 

original RBFs when solving partial differential equations. In this study, we attempt to 

remove the shape parameter in conventional RBFs to solve partial differential equations. 

We propose three simplified Gaussian, MQ, and IMQ RBFs without using the shape 

parameter. The simplified RBFs have the advantages of a simple mathematical expression, 

high precision, and easy implementation. Furthermore, we demonstrate that the 

simplified RBFs, with the consideration of many exterior fictitious sources outside the 

domain, can achieve highly accurate results to solve elliptic boundary value problems. 

In this article, the accuracy of three RBFs in the collocation method for solving 

stationary convention diffusion equations is investigated. Three RBFs, including the 

Gaussian, MQ, and IMQ, are adopted. Additionally, three different collocation types are 

considered in the collocation method. Accuracy analysis of the collocation types of each RBF 

is carried out. Numerical solutions are approximated by utilizing the RBFs to solve the 

elliptic boundary value equations. Comparisons of the accuracy of three RBFs are made. The 

remainder of this article is organized as follows: in Section 2, the mathematical formulations, 

including the governing equation, the RBFs, the discretization of the governing equation, 

and the location of fictitious sources, are introduced. Section 3 describes the convergence 

analysis conducted to evaluate the robustness and effectiveness of the three RBFs in the 

collocation method. Three different collocation types are considered in the collocation 

method. Accuracy analysis of the three collocation types of each RBF is also carried out. In 

Section 4, several investigations of the elliptic boundary value problems are conducted to 

examine the robustness of the RBFs. Finally, the conclusions of this study are presented in 

Section 5. 

2. Methodology 

2.1. Elliptic Boundary Value Problems 

The equation of the elliptic boundary value problem is expressed as follows: 

)()()()()(2 xxxxAx fuBuu =++ , (1) 

)()( xx gu =  on  , (2) 

where   defines the gradient operator; )(xu  denotes the variable of interest, which is 

usually the concentration; x is the Cartesian coordinate, defined as ),,( zyx=x ; A is the 

velocity, defined as ),,( zyx AAAA = ; )(xB  is the given function; )(xf  is the given 

function value; )(xg  defines the given boundary conditions; and   is the domain with 

the boundary  . 

2.2. Simplified Radial Basis Functions 

Three simplified Gaussian, MQ, and IMQ RBFs without the shape parameter are 

proposed for solving elliptic boundary value problems, as listed in Table 1. The simplified 

RBF simply removes the shape parameter from its original one. For example, the 

simplified Gaussian RBF can be expressed as: 
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2)(

_ )( R

r

SGaussian er
−

= , (3) 

where )(_ rSGaussian  denotes the simplified Gaussian RBF; r denotes the radial distance, 

sr xx−= ; x denotes the interior point; sx  denotes the source point, defined as 

),,( ssss zyx=x ; and R denotes the characteristic length, which is the maximum radial 

distance. We can easily obtain the simplified MQ RBF as follows: 

rrSMQ =)(_ , (4) 

where )(_ rSMQ  denotes the simplified MQ RBF. Similarly, the simplified IMQ RBF is 

expressed as: 

r
rSIMQ

1
)(_ = , (5) 

where )(_ rSIMQ  denotes the simplified IMQ RBF. In this study, three simplified MQ, 

IMQ, and Gaussian RBFs are developed without assigning any shape parameter. Table 1 

lists a comparison of the original RBFs and the simplified RBFs. From Table 1, the original 

Gaussian, MQ, and IMQ RBFs in the RBFCM are defined by the shape parameter. The 

accuracy of these RBFs is strongly affected by the shape parameter. Accordingly, 

optimization techniques are required to determine the optimal shape parameter for these 

RBFs [19–21]. As for the proposed simplified RBFs, it is clear that the shape parameter has 

been completely eliminated in the RBFs. 

Table 1. RBFs adopted in this study. 

Type of RBFs Original RBFs Simplified RBFs 

Gaussian 
2)(

)( c

r

Gaussian er
−

=  
2)(

_ )( R

r

SGaussian er
−

=  

Multiquadric (MQ) 22)( crrMQ +=  rrSMQ =)(_  

Inverse multiquadric (IMQ) 22

1
)(

cr
rIMQ

+
=  

r
rSIMQ

1
)(_ =  

Notation: c denotes the shape parameter. 

2.3. Discretization 

Utilizing the RBFCM, the unknown can be approximated as: 


=

=

M

j

jj rλu
1

)()( x , (6) 

where M denotes the total number of source points; jλ  denotes the coefficient to be 

solved; )( jr  denotes the RBF; jr  denotes the radial distance at the jth source point, 

defined as s
jjr xx −= ; and s

jx  denotes the jth source point, defined as ),,( s
j

s
j

s
j

s
j zyx=x . 

2.3.1. Discretization in Two Dimensions 

The two-dimensional elliptic boundary value equation is expressed as: 

),(),(),(
),(),(),(),(

2

2

2

2

yxfyxuyxB
y

yxu
A

x

yxu
A

y

yxu

x

yxu
yx =+




+




+




+




. (7) 

Utilizing the simplified Gaussian RBF, the derivative of Equation (7) with respect to 

x is as follows: 
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Taking the derivative of Equation (7) with respect to y also gives: 

2)(

2

)(2)(
R

rs
jyj

j

e
R

yyA

y

r −−
−=




. (9) 

Again, the derivative of Equation (8) with respect to x is as follows: 

22 )(

2

)(

4

2

2

2
2)(4)(

R

r

R

rs
jj

jj

e
R

e
R

xx

x

r −−

−
−

=



. (10) 

Similarly, we take the derivative of Equation (9) with respect to y: 

22 )(

2

)(

4

2

2

2
2)(4)(

R

r

R

rs
jj

jj

e
R

e
R

yy

y

r −−

−
−

=



. (11) 

Substituting the aforementioned Equations (8)–(11) into Equation (7), the 

approximation of the two-dimensional governing equation is as follows: 

),()(])()([
2

]1)([
4

1

)(

1

)(

2

1

2)(

2

222

yxfeλByyAxxAe
R

λ
R

r
e

R
λ

M

j

R

r

j

M

j

s
jy

s
jx

R

r

j

M

j

jR

r

j

jjj

=+−+−−− 
=

−

=

−

=

−

x . (12) 

Equation (12) describes the discretization of the governing equation in two 

dimensions using the simplified Gaussian RBF. In the same way, we substitute the 

simplified MQ RBF into Equation (7): 

),()(
)()(1

111

yxfrλB
r

yyAxxA
λ

r
λ

M

j

jj

M

j j

s
jy

s
jx

j

M

j j

j =+
−+−

+ 
===

x . (13) 

Substituting the simplified IMQ RBF into Equation (7) also obtains: 

),(
1

)(
)()(1

11

3

1

3
yxf

r
λB

r

yyAxxA
λ

r
λ

M

j j

j

M

j j

s
jy

s
jx

j

M

j j

j =+
−+−

− 
===

x . (14) 

Equations (13) and (14) describe the discretization of the governing equation in two 

dimensions using the simplified MQ and IMQ RBFs, respectively. 

2.3.2. Discretization in Three Dimensions 

The three-dimensional elliptic boundary value equation is: 

),,(),,(),,(

),,(),,(),,(

),,(),,(),,(
2

2

2

2

2

2

zyxfzyxuzyxB

z

zyxu
A

y

zyxu
A

x

zyxu
A

z

zyxu

y

zyxu

x

zyxu

zyx

=+




+




+




+




+




+





. 
(15) 

Considering the three-dimensional problem depicted in Equation (15), the derivative 

of the simplified Gaussian RBF interpolation is as follows: 

.),,()(

])()()([
2)6(4

1

)(

1

)(

2

)(

1
4

22

2

22

zyxfeλB

zzAyyAxxAe
R

λe
R

Rr
λ

M

j

R

r

j

M

j

s
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s
jy

s
jx

R

r

j
R

rM

j

j

j

j

jj
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−+−+−−
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=

−

=

−−

=

x

 (16) 

Using the same perspective, we obtain the derivative of Equation (15) by the 

simplified MQ RBF as: 
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Identifying the derivative of Equation (15) with the simplified IMQ interpolation 

results in the following equation: 

.),,(
1

)(
)()()(

11

3
zyxf

r
λB

r

zzAyyAxxA
λ

M

j j

j

M

j j

s
jz

s
jy

s
jx

j =+
−+−+−

− 
==

x  (18) 

From the above equations, the shape parameter has been eliminated from the original 

Gaussian, MQ, and IMQ RBFs. Considering the boundary conditions, the following 

system of linear equations is finally acquired: 

  







=

















1

1

][

][

]

]

b

i

b

i

N

N

MNB

MNL

g

f
α

[A

[A
, (19) 

where LA  is an MNi   matrix for the interior points; BA  is an MNb   matrix for 

the boundary points; α  is an 1M  vector of undetermined coefficients containing the 

unknown coefficients; f is an 1iN  vector of the function values for the interior points, 

written as ] ,... , ,[ 21 iNfff=f ; g is an 1bN  vector of boundary data, written as 

] ,... , ,[ 21 bNggg=g ; iN  is the number of interior points; and bN  is the number of 

boundary points. Once the unknown coefficients are determined, we can collocate the 

validation points uniformly placed inside the domain to obtain the computed results. 

To investigate the effectiveness and accuracy of the simplified RBFs in the collocation 

method, this study adopts the root mean square error (RMSE) as follows: 


=

−=
TN

i

TiNiA Nuu
1

2
/)()(RMSE xx , (20) 

where TN  denotes the number of validation points, ix  denotes the ith validation point, 

and )( iAu x  and )( iNu x  are the analytical and numerical solutions evaluated at the ith 

validation point, respectively. 

2.4. Location of Fictitious Sources 

In the conventional RBF method, the interior, center, and boundary points must be 

placed where the positions of the interior and center points usually coincide at the same 

place. In this study, the center points in the conventional RBFs are regarded as the 

fictitious sources, where three different collocation types for locating the fictitious sources 

are considered in the collocation method as depicted in Figure 1. The implementation of 

the three different collocation types for solving the elliptic boundary value problems are 

described as follows. 

2.4.1. Type A: Uniform Centers 

In type A, the source points are uniformly scattered within the domain. Figure 1a,d 

illustrate the location of the fictitious sources for the two-dimensional and three-

dimensional domains, respectively. In Figure 1a, the two-dimensional amoeba-like object 

is adopted. The boundary shape is defined as follows: 

 




 20 ,])2(cos)2(sin0.5[)(

,sin)( ,cos)(),(

2)cos(2)sin( +=

===

ee

yxyx
. (21) 

The fictitious sources are uniformly scattered within the two-dimensional amoeba-

like domain, as depicted in Figure 1a. The interior, sources, and boundary points are 

placed such that the positions of the interior and fictitious sources are identical. 
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Considering the three-dimensional object, the boundary shape is given by the 

spherical parametric equation as follows: 

 

.])3(sin8)3cos(][)cos(2[25.0)(

 ,in)( ,sincos)( ,coscos)(),,(

312 /

szyxzyx





−++=

====
 (22) 

 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 1. Location of the fictitious sources for the two-dimensional and three-dimensional domain. 

(a) A two-dimensional domain: Type A. (b) A two-dimensional domain: Type B. (c) A two-

dimensional domain: Type C. (d) A three-dimensional domain: Type A. (e) A three-dimensional 

domain: Type B. (f) A three-dimensional domain: Type C. 
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Figure 1d illustrates the location of the fictitious sources for three-dimensional 

domains. Similarly, the positions of the interior and source points are collocated exactly 

at the same place [23] in Figure 1d. 

2.4.2. Type B: Randomly Fictitious Centers 

In type B, the boundary shapes in two and three dimensions are exactly the same as 

those in type A. However, the source points are regarded as the fictitious centers, which 

are randomly scattered within the domain [24], as depicted in Figure 1b,e. 

2.4.3. Type C: Exterior Fictitious Sources 

In type C, the fictitious sources are randomly collocated in the exterior domain, as 

shown in Figure 1c,f. In Figure 1c, the two-dimensional amoeba-like object is adopted. The 

fictitious sources are randomly scattered within the range between the domain boundary 

and the fictitious boundary, as depicted in Figure 1c. The boundary shape of the problem 

domain is defined as Equation (21). The fictitious boundary is defined by the following 

parametric equation: 

 sjs
j

s
j

s
j

s
j

s
j

s
j

s
j

s
j

s
j

s yxyx  sin)( ,cos)(),( === , (23) 

where s  denotes the fictitious boundary; s
jx  denotes the x-coordinate of the jth source 

point; s
jy  denotes the y-coordinate of the jth source point;   denotes the dilation factor, 

which is used to adjust the size of the fictitious boundary; s
j  denotes the angle of the 

fictitious sources; and s
j  denotes the radius of the fictitious sources, defined as 

 20 ,])(10sin2)(10cos[2)( 3/1 2 −+= s
j

s
j

s
j

s
j

s
j . 

Considering a three-dimensional object, the boundary shape is given by the spherical 

parametric equation as shown in Equation (22). The fictitious sources are randomly 

scattered within the three-dimensional space between the domain boundary and the 

fictitious boundary, as depicted in Figure 1f. The boundary shape of the problem domain 

is defined as Equation (22). The three-dimensional fictitious boundary is defined by the 

following parametric equations: 

  ,in)( ,sincos)( ,coscos)(),,( s
j

s
j

s
j

s
j

s
j

s
j

s
j

s
j

s
j

s
j

s
j

s
j

s
j

s
j

s
j

s
j

s
j

s szyxzyx  ====  (24) 

where s
jz  denotes the z-coordinate of the jth source point; s

j  represents the radius of 

the fictitious sources, defined as  20 ,)](9sin)(10sin
28

1
[0.51)( 









+= s
j

s
j

s
j

s
j

s
j ; 

s
j  is the polar angle used to describe the location of the fictitious sources in cylindrical 

coordinates; and s
j  is the azimuth angle of the fictitious sources. 

The fictitious sources are randomly collocated in the exterior domain, as shown in 

Figure 1c,f. Since the radial distance for RBFs remains greater than zero, the shape 

parameter for the original Gaussian, MQ, and IMQ RBFs can be completely eliminated. 

The three simplified Gaussian, MQ, and IMQ RBFs with exterior fictitious sources (type 

C) are utilized to solve elliptic boundary value problems. 

3. Validation of the Methodology 

3.1. Example 1 

To investigate the accuracy, a comparison of the three collocation types is performed. 

The Laplace equation in two dimensions is described as Equation (1), where 0=A , 0=B
, and 0)( =xf . The domain boundary is defined as Equation (21). Boundary data for the 

boundary conditions are assigned to the boundaries by adopting the following exact 

solution: 



Mathematics 2022, 10, 1622 8 of 23 
 

 

xy eyexyxu )cos()sin(),( += . (25) 

Three simplified RBFs, including Gaussian, MQ, and IMQ, are adopted to solve this 

problem. Three collocation types for locating the sources are considered. In type A, the 

fictitious sources are uniformly scattered within the domain, as depicted in Figure 1a. The 

interior, sources, and boundary points are placed such that the positions of the interior 

and fictitious sources are identical. In type B, the fictitious sources are randomly scattered 

within the domain, as depicted in Figure 1b. In type C, the fictitious sources are 

simultaneously scattered outside the closure of the domain, as depicted in Figure 1c. The 

location of the exterior fictitious sources is defined as Equation (23). A total of 164 interior 

points, 315 source points, and 200 boundary points are used. The dilation factor is 3. 

For comparison purposes, the original Gaussian, MQ, and IMQ RBFs with various 

shape parameters for type A and type B are also considered in the analysis. Particularly, 

for type C, the above RBFs without a shape parameter are utilized. The RMSE is used to 

examine the accuracy of the computed results. Comparisons of the accuracy for the three 

RBFs are then conducted. 

3.1.1. The Gaussian RBF 

The Gaussian RBF with three different collocation types with various shape 

parameters is first investigated, as shown in Figure 2a. From Figure 2a, it appears that the 

simplified Gaussian RBF without the shape parameter utilizing the exterior fictitious 

sources of type C provides the most accurate solution. The results obtained demonstrate 

that the RMSE of the simplified Gaussian RBF without a shape parameter for type C is in 

the order of 10−12. It seems that the simplified Gaussian RBFs utilizing the exterior fictitious 

sources of type C have the best accuracy among those Gaussian RBFs for type A and type 

B even when different values of the shape parameter are considered. 

3.1.2. The MQ RBF 

The MQ RBF with various shape parameters for type A and type B is considered. For 

type C, the simplified MQ RBF is utilized. Figure 2b illustrates the accuracy of the MQ 

RBFs for the three collocation types. According to Figure 2b, the RMSE of the MQ RBF in 

type A and type B are in the order of 10−2 to 10−7 as the shape parameter ranges from 0.2 

to 5. However, the RMSE of the simplified MQ RBF in type C is 10–13. It was found that the 

RMSE of the simplified MQ RBF without a shape parameter in type C has the best 

accuracy among the MQ RBFs for type A and type B for different values of the shape 

parameter. 

3.1.3. The IMQ RBF 

The IMQ RBF is analyzed by adopting the same perspective. Figure 2c illustrates the 

accuracy of the IMQ RBF for the three collocation types. Similar to the results obtained in 

Figure 2b, we also found that the simplified IMQ RBF for type C acquires more accurate 

results than the other IMQ RBFs for type A and type B with the best shape parameter, as 

illustrated in Figure 2c. It is obvious that the simplified IMQ RBFs without a shape 

parameter that utilize the exterior fictitious sources of type C provide the most accurate 

solution. 
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(c) 

Figure 2. The RMSE of the three RBFs with three different collocation types: (a) Gaussian RBF, (b) 

MQ RBF, and (c) IMQ RBF. 

Table 2 lists the results of the RMSE using the three RBFs with the three different 

collocation types. The processor used was an AMD Ryzen 7 5800X 8-Core @ 3.80 GHz. As 

depicted in Table 2, all the simplified Gaussian, MQ, and IMQ RBFs utilizing the exterior 

fictitious sources of type C provided more accurate results than the other two fictitious 

source collocation types, even when the best shape parameter was adopted. The 

simplified Gaussian, MQ, and IMQ RBFs utilizing the exterior fictitious sources of type C 

provided the most accurate results, with an RMSE of the order of 10−12, 10−13, and 10−12, 

respectively. From the results, we also demonstrated that the above simplified RBFs with 

exterior fictitious sources can be used to solve this two-dimensional Laplace problem with 

very high accuracy. From Table 2, the comparison of the computing time also illustrates 

the efficiency of the proposed method. 

Table 2. Comparison of the results for example 1. 

RBF 
RMSE 

Type A Type B Type C ( 3= ) 

Gaussian 

1.24 × 10–7 9.73 × 10–8 7.87 × 10–12 

( 1.75=c ) ( 2.0=c ) ( 1=c ) 

(t = 5.84 s) (t = 4.62 s) (t = 8.11 s) 

MQ 

1.42 × 10–7 1.46 × 10–7 4.35 × 10–13 

( .51=c ) ( 1.75=c ) ( 0=c ) 

(t = 5.78 s) (t = 5.75 s) (t = 7.96 s) 

IMQ 

1.47 × 10–7 8.46 × 10–8 6.37 × 10–12 

( 1.5=c ) ( 1.5=c ) ( 0=c ) 

(t = 6.12 s) (t = 6.28 s) (t = 8.51 s) 

Notation: c denotes the shape parameter; t denotes the computing time. 



Mathematics 2022, 10, 1622 11 of 23 
 

 

To further clarify the possible influences of the positions of the exterior fictitious 

sources for type C on the accuracy, a sensitivity analysis was further conducted. Three 

RBFs considering the MQ, IMQ, and Gaussian RBFs were adopted to solve the two-

dimensional Laplace problem. The MQ, IMQ, and Gaussian RBFs without the shape 

parameter were used. 

In this example, the values of the dilation factor ranged from 0.5 to 5. A plot of the 

RMSE versus the dilation factor is depicted in Figure 3. From Figure 3, the RMSE of the 

MQ, IMQ, and Gaussian RBFs utilizing the exterior fictitious sources for type C fluctuates 

between 10–11 and 10–13 while the dilation factor ranges from 2.5 to 5. The results obtained 

show that the dilation factor has low sensitivity regarding the numerical accuracy while 

the dilation factor is greater than 2.5. Accordingly, the following numerical 

implementations of type C were solved using 3= . 

 

Figure 3. RMSE versus the dilation factor. 

3.2. Example 2 

A three-dimensional problem is enclosed by a sophisticated irregular domain 

boundary, as shown in Figure 4a. The governing equation in three dimensions is 

expressed as Equation (1), where A , B , and )(xf  are 0. The object boundary is given 

by the spherical parametric equation as follows: 

 

.])(2sin1.5)2cos([)(

 ,in)( ,sincos)( ,coscos)(),,(

1/22 



−+=

==== szyxzyx
 (26) 
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The Dirichlet data are imposed using the following exact solution for this three-

dimensional problem as: 

222

1
),,(

zyx
zyxu = . (27) 

The Gaussian, MQ, and IMQ RBFs were utilized in the analysis. Additionally, three 

collocation types were considered. As depicted in Figure 4b–d, there were 2461 source 

points, 1600 interior points, and 861 boundary points. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Problem domain and location of the fictitious sources for example 2. (a) Problem domain. 

(b) Type A. (c) Type B. (d) Type C (blue and red circles denote the source and interior points, 

respectively). 

Figure 5 illustrates the RMSE of the Gaussian, MQ, and IMQ RBFs with three 

different collocation types. The RMSE of the simplified Gaussian, MQ, and IMQ RBFs 

(type C) was 10−14, 10−15, and 10−13, respectively. It is significant that excellent agreement 
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was achieved, and highly accurate results were acquired using the simplified RBFs. From 

these results, it is demonstrated that the simplified RBFs with exterior fictitious sources 

can be used to solve the three-dimensional stationary Laplace equation with very high 

accuracy. 

 
(a) 

 
(b) 
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(c) 

Figure 5. RMSEs of three RBFs using three different collocation types: (a) Gaussian RBF, (b) MQ 

RBF, and (c) IMQ RBF. 

4. Application Examples 

4.1. Application Example 1 

The governing equation for the first application example is depicted in Equation (1), 

where 0=A , 0=B , and  )sin()cos()( xyyxf +−=x . The boundary is defined as 

follows: 

      20 ,)12sin(0.510.50.5)(,sin)( ,cos)(),( ++==== yxyx . (28) 

The Dirichlet data are assigned from the analytical solution: 

)cos()sin(),( yxxyyxu += . (29) 

Three RBFs, including the Gaussian, MQ, and IMQ, were used in the collocation 

method. Three collocation types for locating the sources as illustrated in Figure 6 were 

considered in the above RBFs to solve this problem. There were 342 source points, 151 

interior points, and 200 boundary points. In type A, the fictitious sources are uniformly 

scattered within the domain, as depicted in Figure 6a. The interior, sources, and boundary 

points are placed such that the positions of the interior and fictitious sources are identical. 

In type B, the fictitious sources are randomly scattered within the domain, as depicted in 

Figure 6b. In type C, the fictitious sources are randomly scattered outside the closure of 

the domain, as depicted in Figure 6c. The collocation of the exterior fictitious sources is 

defined by the following parametric equations: 

 sjs
j

s
j

s
j

s
j

s
j

s
j

s
j

s
j

s
j

s yxyx  sin)( ,cos)(),( === , (30) 

where  20 ,])(10sin2)(10cos[2)( 3/1 2 −+= s
j

s
j

s
j

s
j

s
j . In this example, the 

dilation factor for type C is 3. 
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(a) (b) (c) 

Figure 6. Collocation points for application example 1. (a) Type A. (b) Type B. (c) Type C. 

The Gaussian, MQ, and IMQ RBFs with various shape parameters for type A and 

type B were considered. For type C, the above RBFs without a shape parameter were 

utilized. The accuracy of the Gaussian, MQ, and IMQ RBFs for the three collocation types 

are illustrated in Figure 7. According to Figure 7a, the Gaussian RBF utilizing the exterior 

fictitious sources for type C obtained more accurate results, where the RMSE of the 

Gaussian RBF without a shape parameter in type C reached the order of 10–13. Figure 7b 

demonstrates the RMSE of the MQ RBF for the three collocation types. According to 

Figure 7b, the RMSE of the MQ RBF in type A and type B was in the order of 10−2 to 10−7 

as the shape parameter ranged from 0 to 5. The RMSE of the MQ RBF without a shape 

parameter in type C was in the order of 10–10. The IMQ RBFs was analyzed by adopting 

the same perspective. The RMSE values of the IMQ for the three collocation types are 

illustrated in Figure 7c. Similar to the results obtained in Figure 7b, we also found the IMQ 

without the shape parameter for type C reached the order of 10–8. From the results, it is 

significant that the Gaussian RBF without the shape parameter for type C showed a high-

accuracy performance. 

Table 3 presents a comparison of the results for the application example 1. For type A 

and type B, the Gaussian, MQ, and IMQ RBFs with the optimal shape parameter were 

utilized. For type C, the above RBFs without a shape parameter were adopted. As depicted 

in Table 3, all the RBFs, including the Gaussian, MQ, and IMQ RBFs, utilizing the fictitious 

sources of type C provided more accurate results than the other two source collocation 

types even with the optimum shape parameter. From the results, it is clear that numerical 

solutions with a very high accuracy can be obtained by utilizing the proposed simplified 

Gaussian, MQ, and IMQ RBFs with exterior fictitious sources. 

Table 3. Comparison of the results for the application example 1. 

RBF 
RMSE 

Type A Type B Type C ( 3= ) 

Gaussian 

2.45 × 10–8 1.33 × 10–8 9.50 × 10–13 

( 75.1=c ) ( 1.25=c ) ( 1=c ) 

(t = 3.82 s) (t = 7.02 s) (t = 8.81 s) 

MQ 

4.61 × 10–8 4.41 × 10–8 1.39 × 10–10 

( 2.25=c ) ( 1.75=c ) ( 0=c ) 

(t = 3.80 s) (t = 6.90 s) (t = 8.77 s) 

IMQ 

3.38 × 10–8 2.85 × 10–8 1.37 × 10–9 

( 2.5=c ) ( 2.0=c ) ( 0=c ) 

(t = 3.80 s) (t = 6.99 s) (t = 8.83 s) 
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(c) 

Figure 7. RMSEs of three RBFs with three different collocation types: (a) Gaussian RBF, (b) MQ RBF, 

and (c) IMQ RBF. 

4.2. Application Example 2 

The governing equation for the second application example is expressed as  

Equation (1) [25], where 0=A , 2−=B , 0)( =xf , and 32 = . The object boundary is 

defined as: 

   20 ,])3(sin3)3cos(0.5[)(,sin)( ,cos)(),( 4 ++==== yxyx . (31) 

The Dirichlet data are assigned to the boundaries utilizing the exact solution as 

follows: 

2

)(2

),(
yx

eyxu
−

=



. (32) 

Three RBFs, including the Gaussian, MQ, and IMQ, are were in the collocation 

method. Three collocation types for locating the sources, as illustrated in Figure 8, were 

considered in the above RBFs to solve this problem. There were 355 source points, 210 

interior points, and 200 boundary points. In type A, the fictitious sources are uniformly 

scattered within the domain, as depicted in Figure 8a. The interior, sources, and boundary 

points are placed such that the positions of the interior and fictitious sources are identical. 

In type B, the fictitious sources are randomly scattered within the domain, as depicted in 

Figure 8b. In type C, the fictitious sources are randomly scattered outside the closure of 

the domain, as depicted in Figure 8c. The collocation of the exterior fictitious sources is 

defined by the following parametric equations: 

 sjs
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s yxyx  sin)( ,cos)(),( === . (33) 
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where  20 ,])(10sin2)(10cos[2)( 3/1 2 −+= s
j

s
j

s
j

s
j

s
j . In this example, the 

dilation factor for type C is 3. 

   

(a) Type A (b) Type B (c) Type C 

Figure 8. Collocation points of the three types in the application example 2. 

Figure 9a demonstrates the RMSE of the Gaussian RBF for the three collocation types. 

From Figure 9a, the RMSE of the Gaussian RBF in type A and type B was in the order of 

10−1 to 10−6 as the shape parameter ranged from 0.5 to 5. However, the RMSE of the 

Gaussian RBF without a shape parameter in type C reached the order of 10–11. The MQ 

and IMQ RBFs were analyzed by adopting the same perspective. The RMSE of the MQ 

and IMQ RBFs for the three collocation types are illustrated in Figure 9b,c, respectively. 

Similar to the results shown in Figure 9a, we also found that the MQ and IMQ RBFs 

without the shape parameter for type C reached the order of 10–9 and 10–8, respectively. 

 
(a) 
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(b) 

 
(c) 

Figure 9. RMSEs of RBFs with three different collocation types: (a) Gaussian RBF, (b) MQ RBF, and 

(c) IMQ RBF. 
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Table 4 presents a comparison of the results for the application example 2. For type 

A and type B, the Gaussian, MQ, and IMQ RBFs with the optimal shape parameter were 

utilized. For type C, the above RBFs without a shape parameter were adopted. As depicted 

in Table 4, all the RBFs, including the Gaussian, MQ, and IMQ RBFs utilizing the fictitious 

sources of type C, provided more accurate results than the other two source collocation 

types, even when the best shape parameter was adopted. The obtained results 

demonstrate that numerical solutions with a very high accuracy can be obtained by 

utilizing the proposed simplified Gaussian, MQ, and IMQ RBFs with exterior fictitious 

sources. 

Table 4. Comparison of the results for the application example 2. 

RBF 
RMSE 

Type A Type B Type C ( 3= ) 

Gaussian 

1.18 × 10–6 1.61 × 10–6 2.76 × 10–11 

( 50.2=c ) ( 25.2=c ) ( 1=c ) 

(t = 7.24 s) (t = 9.47 s) (t = 12.57 s) 

MQ 

6.28 × 10–6 3.70 × 10–6 5.04 × 10–9 

( 1=c ) ( 1=c ) ( 0=c ) 

(t = 7.28 s) (t = 10.34 s) (t = 13.01 s) 

IMQ 

4.54 × 10–6 4.32 × 10–6 4.59 × 10–8 

( 1.25=c ) ( 1.25=c ) ( 0=c ) 

(t = 7.24 s) (t = 11.67 s) (t = 12.67 s) 

4.3. Application Example 3 

The three-dimensional problem is enclosed by a sophisticated irregular domain 

boundary, as shown in Figure 10a. The three-dimensional elliptic boundary value 

problems is expressed as Equation (1), where 1== yx AA , 0== BAz , and 

)sinh()cos(2),,( yxzzyxf = . The object boundary is given by the spherical parametric 

equation as Equation (22). The Dirichlet data are imposed using the following exact 

solution for this three-dimensional problem as: 

)sinh()sin()cosh()cos(),,( yxzyxzzyxu += . (34) 

Three RBFs, including the Gaussian, MQ, and IMQ, were used in the collocation 

method. Three collocation types for locating the sources were considered in the above 

RBFs to solve this three-dimensional problem. There were 2500 source points, 1600 

interior points, and 861 boundary points. The three collocation types of this three-

dimensional problem are illustrated in Figure 1. In type A, the fictitious sources are 

uniformly scattered within the domain, as depicted in Figure 1d. The interior, sources, 

and boundary points are placed such that the positions of the interior and fictitious 

sources are identical. In type B, the fictitious sources are randomly scattered within the 

domain, as depicted in Figure 1e. In type C, the fictitious sources are randomly scattered 

outside the closure of the domain, as depicted in Figure 1f. 

Figure 10 illustrates the RMSE of the Gaussian, MQ, and IMQ RBFs with the three 

different collocation types. From Figure 10, it appears that the RMSE of the above RBFs 

for type A and type B fluctuated between 10−2 to 10−6 as the shape parameter ranged from 

0.5 to 5. However, the RMSE of the simplified Gaussian, MQ, and IMQ RBFs (type C) 

without a shape parameter reached the order of 10−8, 10−8, and 10−10, respectively. 
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(a) (b) 

  
(c) (d) 

Figure 10. Problem domain and RMSEs of RBFs using three different collocation types: (a) 

problem domain, (b) Gaussian RBF, (c) MQ RBF, and (d) IMQ RBF. 

5. Conclusions 

In this study, a novel concept of using exterior fictitious sources to solve elliptic 

boundary value problems with the simplified radial basis function method was proposed. 

The concept of the proposed approach was addressed in detail. The significant findings 

are concluded as follows. 

(1) In this study, we demonstrated that the simplified RBFs, which consider many 

exterior fictitious sources outside the domain, can achieve accurate results to solve 

elliptic boundary value problems. The obtained results demonstrate that the 

simplified RBFs obtain a better accuracy than the original RBFs with the optimum 

shape parameter when solving elliptic boundary value problems. 
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(2) Identification of the shape parameter is often very challenging and tedious in the 

original RBFs when solving partial differential equations. In this study, we proposed 

three simplified Gaussian, MQ, and IMQ RBFs without the shape parameter. The 

simplified RBFs have the advantages of a simple mathematical expression, high 

precision, and easy implementation. 

(3) With the consideration of many exterior fictitious sources outside the domain, we 

found that the radial distance is always greater than zero. The simplified Gaussian, 

MQ, and IMQ RBFs and their derivatives in the governing equation are always 

smooth and nonsingular. 

(4) Comparative analysis was conducted on the three different collocation types 

considering conventional uniform centers, randomly fictitious centers, and exterior 

fictitious sources. It was found that the exterior fictitious sources proposed in this 

study significantly improved the accuracy when solving problems. 

(5) Numerical examples, including elliptic BVPs in two and three dimensions, were 

carried out. The simplified radial basis function method with exterior fictitious 

sources can be applied to three-dimensional problems with ease and high accuracy. 

(6) In this study, we attempted to remove the shape parameter in conventional RBFs to 

solve partial differential equations. We achieved a promising result for three 

simplified Gaussian, MQ, and IMQ RBFs, especially for solving Laplace-type 

equations in two and three dimensions. Further studies to investigate the 

characteristics of the proposed method to solve different kinds of PDEs are 

suggested. 
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