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Abstract: This paper contributes in three stages in a logic of the cognitive process: we firstly propose
a new estimation of Hurst exponent by changing frequency method which is purely mathematical.
Then we want to check if the new Hurst is efficient, so we prove the advantages of this new Hurst in
asymptotic variance in the perspective compared with other two Hurst estimator. However, a purely
mathematical game is not enough, a good estimation should be proven by reality, so we apply the
new Hurst estimator into truncated and non-truncated spot volatility which fills the gap of previous
literatures using 5-min price data (Source: Wind Financial Terminal) of 10 Chinese A-share industry
indices from 1 January 2005 until 31 December 2020.

Keywords: spot volatility; change of frequency; roughness of volatility; hurst exponent; Chinese
A-share market

MSC: 60F17; 91B70

1. Introduction

Since the seminal work of Black and Scholes [1], the price dynamics described by the
following equation have been well-known to researchers in the fields.

dlogSt = µtdt + σtdWt,

where µt is a drift process, σt depicts the volatility process and Wt is standard Brownian
motion. Since the constant volatility assumption of the model in Black and Scholes [1]
contradicts empirical observation (see, for example, Fouque et al. [2]), more and more
innovative models are proposed (see Hull and White [3]; Scott [4]; Stein and Stein [5]).

Despite these improvements in the above-mentioned stochastic volatility models,
empirical studies have underlined the long-memory feature of the volatility of financial
assets. To address this issue, a natural idea is to replace Brownian motion in the volatility
process by fractional Brownian motion (fBm), which can describe the long memory property
with the Hurst parameter 0.5 < H < 1. Hence, Comte and Renault [6] proposed a
fractional version of the Hull-White stochastic volatility model with the Hurst parameter
H > 0.5 in fBm to model log-volatility and consider the option pricing problem in a long
memory volatility environment. Other related research has been conducted by Comte
et al. [7], Chronopoulou and Viens [8], Chronopoulou and Viens [9], Xiao and Yu [10].

Recent empirical studies have documented the roughness of historical volatility data
and the implied roughness of option price data (see, e.g., Bennedsen et al. [11]; Bayer
et al. [12]; Gatheral et al. [13]; Livieri et al. [14]; El Euch and Rosenbaum [15]). Early
research conducted by Alòs et al. [16] investigated the short-time behavior of implied
volatility by jump-diffusion models. Compared with Alòs et al. [16], Fukasawa and Taka-
batake [17] discussed self-similar stationary Gaussian noises such as fractional Gaussian
noises, which indicate the volatility series. They extended the Whittle estimation method to
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obtain asymptotically efficient estimators. Moreover, many studies have evaluated realized
volatility forecasting performance of several models (see, e.g., Li et al. [18]; Wang et al. [19];
Wang et al. [20]) More precisely, Gatheral et al. [13] calibrated a model to the SP500 and
NASDAQ indices, showing that the Hurst parameter of volatility should be close to 0.11.
Other important indices, including the FTSE2, N2252, RUT2, DJI2, FCHI2, KS11, SSMI,
IBEX2, NSEI, MXX, BVSP, GSPTSE, STOXX50E, FTSTI, FTSEMIB have also been studied.
This indicates extremely rough directions for the volatility process, being much more irregu-
lar than those of standard stochastic volatility models driven by Brownian motion. Further
empirical studies have confirmed the roughness of the log-volatility of thousands of stocks
on the US equity market (Bennedsen et al. [11]). Livieri et al. [14] found that at-the-money
short term volatility from SP500 options is also rough. Using high-frequency data for major
volatility indices and the qth-order structure function (SF) method proposed by Gatheral
et al. [13], Da Fonseca and Zhang [21] computed the volatility of major indices in the USA
and showed the roughness of the volatility of volatility. Cao et al. [22] showed that even
the elasticity of variance for the SP500 is rough. Takaishi [23] verified the roughness of
Bitcoin volatility using MF-DFA based on Bitcoin tick data. Bennedsen et al. [11] verified
the volatility roughness of many stocks. It has been shown recently that both the realized
volatility and the option-implied volatility are rough. Recently, Fukasawa et al. [24] used a
quasi-likelihood estimator to estimate the Hurst parameter of the S&P 500, FTSE 100, Nikkei
225, DAX, and Russell 3000 indices and found that the volatility is rough. Brandi and Di
Matteo [25] computed the Hurst exponent on realized variance from the Oxford volatility
library and found that the volatility is indeed rough with a Hurst exponent between 0.08
and 0.15. Alòs and León [26] provided a comprehensive discussion of rough volatility. With
research progressing, spot volatility catches the eyes of researchers. Efficient estimation
of spot volatility can be achieved by using Riemann-like integration. Applications of spot
volatility are of great importance. For example, spot volatility can be used to detect the
micro-structure of the of financial assets. It was also useful to explain jumps and co-jumps
of volatility series as shown by Jacod and Todorov [27]. Moreover, spot volatility can be
calibrated to implied volatility and play a key role in the option pricing. There are many
publications about spot volatility in which it has been extensively studied (see, e.g., Fan
and Wang [28]; Reno [29] and references therein).

This paper focuses on the roughness of spot volatility and proposes some interesting
contributions:

• We propose a new Hurst exponent by changing the frequency method, prove consis-
tency, and derive the asymptotic volatility of our estimator. Then we do simulations
by the Monte Carlo method and compare our new Hurst estimator with existing Hurst
exponents, showing its advantages.

• We introduce a non-parametric estimator for spot volatility based on the rough volatil-
ity environment proposed by Bayer et al. [12], and Gatheral et al. [13]. While Fan and
Wang [28] proposed the same non-parametric estimator for spot volatility based on
fractional stochastic volatility models with H ∈ (1/2, 1), we extend this estimator for
all H ∈ (0, 1). The proof method established in this paper can be also applied to a
general fractional stochastic volatility model with a bounded drift term.

• We employ the MF-DFA method proposed by Kantelhardt et al. [30] and qth-order
SF method used by Gatheral et al. [13] to analyze the roughness of 10 industrial
indices’ spot volatility in the Chinese financial market. Then we compared two Hurst
exponents of the least square method proposed by Berzin et al. [31] with our new Hurst
exponents using empirical data. Gatheral et al. [13] proved the SF method in American
markets, and their numeric results are similar to ours in Chinese markets. There is
much evidence showing the roughness of volatility in different sectors and markets
(see Guennoun et al. [32], Funahashi and Kijima [33], Neuenkirch and Shalaiko [34].
We confirmed that the Hurst exponent we propose is universal in other markets and
sectors. Our results suggest that spot volatility is also rough, and has confirmed the
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roughness of realized volatility (Bennedsen et al. [10]; Gatheral et al. [13]) and implied
volatility (Livieri et al. [14]).

The rest of this paper is organized as follows. Section 2 introduces the non-parametric
estimator for spot volatility from the rough stochastic volatility model proposed by Bayer
et al. [12], and Gatheral et al. [13] and provides the asymptotic theory for the proposed non-
parametric estimator. Section 3 presents the new estimator and investigates its asymptotic
properties. Four popular methods for estimating the generalized Hurst exponent are also
introduced in the later part of this Section. Section 4 presents some empirical studies. Section 5
discusses the contribution of this study with other research in the literature. Section 6 outlines
the conclusion of our analysis. Components of proofs are collected in Appendix A.

2. The Spot Volatility Model

Modeling rough volatility is becoming increasingly popular and has important appli-
cations in finance. This is because rough volatility models must fit the volatility skew, which
is defined as the derivative of the implied volatility surface under the Black-Scholes-Merton
model with respective to log-strike price evaluated at-the-money. Moreover, rough volatility
models must satisfy the mono-fractal scaling property of the historical volatility data, which
means that for a given lag ∆, each q-th sample moment of the differences of log-volatility ex-
hibits a power-scaling relationship with respect to this lag, i.e., |log σt+∆n − log σt|q ∝ ∆qH

with q > 0 and ∆ > 0. Consequently, rough volatility models have important applications
in finance, and the literature on estimating spot volatility is large. From the celebrated
rough volatility model by Bayer et al. [12], Gatheral et al. [13] and Xiao and Yu [10], we
assume that the asset price St follows the following dynamic:

dSt
St

= µtdt + σtdWt

σt = exp{Xt}, t ∈ [0, T]
dXt = α(m− Xt)dt + νdBH

t

(1)

where St and σt are the price and volatility processes, respectively. Moreover, µt is a suitable
drift term and satisfies sup{|µt − µs|, |t− s| ≤ a} = OP(a1/2

∣∣∣log a
∣∣∣1/2) , σt is the diffusion

term, i.e., the spot volatility of the stock, α > 0 is the speed of mean-reversion, m is the
long term level of the variance, ν is the volatility of volatility, Wt is a Wiener process, i.e., a
Brownian motion, and BH

t is a fBm with Hurst parameter H ∈ (0, 1). Following the idea of
Bayer et al. [12] and Gatheral et al. [13], we assume that BH

t is independent of Wt.
The model of (1) can describe both the mean reverting property and the roughness

of the volatility. The self-similarity parameter, also called the Hurst parameter in the fBm,
is a crucial criterion to test the roughness of the volatility. Consequently, estimating the
Hurst parameter in the volatility has been the subject of active research and a challenging
theoretical problem. In the literature, there exist many approaches for estimating the Hurst
parameter, such as rescaled range, aggregated variance, aggregated absolute value, variance
of residuals, log-periodogram regression, Whittle estimation, local Whittle estimation, novel
time-varying generalized Hurst exponent methodology (see, for example, Kermarrec [35],
Keshari Jena et al. [36], and Xiao et al. [37]) and so on. In this paper, we use MF-DFA
proposed by Kantelhardt et al. [30] and the q-th order SF introduced by Gatheral et al. [13].
In what follows, we first introduce a non-parametric estimator for spot volatility in (1) then
we introduce two methods for estimating the Hurst parameter.

The recent availability of high frequency data in finance has permitted more efficient
ways of computing spot volatility. However, the estimation of the spot volatility from asset
price observations is challenging because observed high frequency data are generally af-
fected by noise-microstructure effects. Hence, following Fan and Wang [28], this subsection
is devoted to the nonparametric estimation method for spot volatility in a rough volatility
environment, which yields suboptimal convergence rates.

For any positive integer n, let ∆ = T/n and K(x) be a kernel with
∫ 1
−1 K(x)dx = 1.

Moreover, suppose that we observe Sti at n discrete time points with ti = i∆ = iT/n,
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i = 1, 2, . . . , n. Then, following the idea of Fan and Wang [28], we define the kernel type
estimator for the spot volatility as:

σ̂t :=

√√√√ 1
b

t+b

∑
ti=t−b

K
(

ti − t
b

)(
Sti − Sti−1

)2 (2)

where b is a bandwidth.
The estimator (2) will be used for the continuous case as it is not jump robust and not

noise robust. From Christensen et al. [38], we can see that the impact of jumps is negligible
in the data studied here. Moreover, 5-min sampling data is commonly used and not affected
by market micro-structure noise. Fan and Wang [28] impose the following assumptions for
µt, σt and K(x) provided by the following result.

When the price process is assumed to be present with jumps, the truncated estimator
σt for the spot volatility can be calculated as:

σt(kn, νn) =

√
1

kn∆n
∑kn−1

i=0

(
Y(m+1+i)∆n −Y(m+i)∆n

)2
1{|Y(m+1+i)∆n−Y(m+i)∆n |≤νn} (3)

Hypothesis 1. Suppose the following conditions are satisfied:

A1 The diffusion term σtin (1) satisfies:

sup{|σs − σt|, |s− t| ≤ a} = OP(a1/2
∣∣∣log(a)

∣∣∣1/2) and sup
0≤t≤T

∣∣σ2
t
∣∣ = OP(1).

A2 For i = 1, 2, . . . , n, sup{|
∫ ti

ti−1
(σ(s)− σ(ti−1))dWs|

2
} = OP

(
n−2+η

)
, where η is an arbitrar-

ily small number.
A3 The drift term µt in (1) satisfies:

sup{|µt − µs|, |t− s| ≤ a} = OP(a1/2
∣∣∣loga

∣∣∣1/2)

A4 Bandwidth b and kernel K satisfy b ∼ n−1/2/log(n), K(·) is twice differentiable with support
[1, 1] and

∫ 1
−1 K(x)dx = 1.

From Cheridito et al. [39], and for α > 0, we can see that Xt = log(σt) defined by (1) is
a stationary and ergodic if one chooses a suitable initial condition X0 = µ+ σ

∫ 0
−∞ eκsdBH

s .
Moreover, we have the following important result.

Lemma 1. For α > 0, the random variable Xt = log(σt) has normal distribution with mean(
1− e−αt)m + X0e−αt and

VarXt = Hv2
∫ t

0
z2H−1

(
e−αz + e−α(2t−z)

)
dz (4)

To verify the assumptions in Hypothesis 1, we state the following technical lemma.

Lemma 2. For all H ∈ (0, 1) and any p ≥ 1, there exist positive constants C, such that

E|Xt|p ≤ C (5)

E|Xt − Xs|p ≤ C
∣∣t− s

∣∣pH (6)

for all t, s ≥ 0.
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We show below that Assumptions A1 and A2 of σt in Hypothesis 1 are satisfied for
the volatility process in (1) as well as its super-positions.

Lemma 3. Suppose that the volatility process is described by Xt in (1). Then conditions A1 and A2
in Hypothesis 1 are satisfied.

Now, using the definition of µt and K(x) = ex1(x≤0), we can see that A3 and A4 in
Hypothesis 1 are satisfied. Under assumption 1, Fan and Wang [28] provided the asymptotic
theory for σ̂t, which is proposed by the following result.

Proposition 1. Under the Hypothesis 1, we have:

√
nb
(

σ̂2
t − σ2

t

)
d→ N

(
0, σ4

t

∫ 1

−1
K2(x)dx

)
(7)

where d→ denotes convergence in distribution and K(x) is defined in A4 of Hypothesis 1.
Moreover, let Mn = sup

0≤t≤T

√
nb ‖ σ̂2

t − σ2
t ‖ and λ(k) =

∫ 1
−1 K2(x)dx If σt is a stationary

process, then we have

(2log n)1/2(
Mn√∫ 1

−1 K2(x)dx
− dn)

d→ exp
(
−2e−x) (8)

where

dn =


(2log n)1/2 + log λ1(K)−0.5log π−0.5log(log n)

(2log n)1/2 , if K2(−1)+K2(1)
2λ(K) > 0

(2log n)1/2 +
log
(

1
2λ(K)

∫
[K′(x)]2dx

)
−log(2π)

(2log n)1/2 , otherwise. (9)

Remark 1. The class of kernels K(·) which are allowed for the asymptotic theory in Proposition 2.1
include those in the existing literature. From Fan and Wang [28], we impose differentiability and
some kind of Lipschitz regularity for K(·). Prominent kernel functions, such as the Gaussian kernel
allow for the asymptotic theory in Proposition 1.

Remark 2. Using Proposition 1, we can construct an asymptotic confidence band for the unknown
spot volatility process.

Remark 3. For the asymptotic theory of spot volatility in (2), we have to eliminate the jumps on
inference for spot volatility. In the case of jump activity, we can use truncated power variations
and multipower variations to eliminate the jumps asymptotically. In fact, whether we allow for
discontinuous price processes or not, itis quite crucial from a statistical point of view, since the
existence of jumps requires a significant modification of the involved statistics to ensure jump
robustness. The extension of jumps is complicated and will be reported in later work.

Remark 4. Micro-structure noise in high-frequency data is a commonly accepted fact. The theory
presented in Fan and Wang [28] is clearly not noise-robust. The extension of their theory to
noise-robust estimators is a challenging but very interesting question.

Remark 5. Following the idea of Bayer et al. [11] and Gatheral et al. [13], we assume that there is no
leverage effect in (1). Thus, the Brownian motion and the fBm in (1) are independent. Establishing
the asymptotic theory of the estimator for the spot volatility in (1) will be pursued in a future study.
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3. Estimation Methods of the Hurst Exponent

In the literature, there exist many papers that describe different methods for estimat-
ing the Hurst parameter. For example, the parameter estimation method includes the
exact maximum likelihood estimation and Whittle the maximum likelihood estimation.
Semi-parametric estimation approaches involve the celebrated R/S statistic method, the
modified R/S statistic method, Higuchi’s method, detrended fluctuation analysis, the
log-periodogram regression method and the local Whittle method. Non-parametric esti-
mation includes the increment ratio method, the wavelet-based method and the quadratic
variations approach. In this paper, we first introduce a new estimator, which is based on
the change of frequency.

3.1. A New Hurst Exponent Hn

In this section we propose a new Hurst exponent estimator, which is:

Ĥn =
1
2
− 1

2 ln 2
ln

∑2n−1
k=1

(
∆(2)

2n,kX
)2

∑n−1
k=1

(
∆(2)

n,k X
)2


where

∆(2)
n,k X = X

(
tn
k+1
)
− 2X(tn

k ) + X
(
tn
k−1
)

and tn
k = kT/n

From the equation above, we have:

Ĥn → H a.s.

2 ln 2
√

n
(

Ĥn − H
) d→ N

(
0; σ2

H

)
, σ2

H =
3
2

Σ11 − 2Σ12.

Σ11 = 2(1 + 2
(4−22H)

2

∞

∑
j=1

ρ̂2
H(j)), Σ22 = 1

2 Σ11,

Σ12 = Σ21 = 1
22H(4−22H)

2 ∑
j∈Z

ρ̃2
H(j),

ρ̂H(j) = 1
2 [−6

∣∣j∣∣2H−
∣∣j− 2

∣∣∣2H −
∣∣j + 2

∣∣2H + 4
∣∣j− 1

∣∣∣2H + 4
∣∣∣j + 1

∣∣∣2H ],

ρ̃H(j) = 1
2 [
∣∣j + 1

∣∣2H + 2
∣∣j + 2

∣∣∣2H −
∣∣j + 3

∣∣2H+
∣∣j− 1

∣∣∣2H − 4
∣∣∣j∣∣∣2H

−
∣∣j− 3

∣∣2H + 2
∣∣j− 2

∣∣2H ].

Set BH =
{

BH(t) : t ∈ [0, T]
}

, T > 0 as fBm.
We obtain:

V B̂H

in,T =
in−1

∑
k=1

(
∆(2)

in,k B̂H
)2

, ∆(2)
in,k B̂H =

∆(2)
in,k BH√

E
(

∆(2)
in,k BH

)2
i = 1, 2,

dB̂H ,in
k,j = E∆(2)

in,k B̂H∆(2)
in,j B̂

H , 1 ≤ j, k ≤ in− 1, i = 1, 2,

cB̂H ,2n
j,k = E∆(2)

n,j B̂H∆(2)
2n,k B̂H , 1 ≤ j ≤ n− 1, 1 ≤ k ≤ 2n− 1,

∆(2)
in,k B̂H = B̂H

k+1
in T
− 2B̂H

k
in T

+ B̂H
k−1
in TH , 1 ≤ k ≤ in− 1, i = 1, 2.

Then we have following conclusion:

Theorem 1. SupposeBH =
{

BH(t) : t ∈ [0, T]
}

, T > 0 is fBm, then:

Xn =
√

n

(
n−1V B̂H

n,T − 1
(2n)−1V B̂H

2n,T − 1

)
d→ N (0; ΣH), ΣH =

(
Σ11 Σ12
Σ12 Σ22

)
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where N (0; ΣH) is a Gaussian vector:

Σ11 = 2(1 + 2
(4−22H)

2

∞

∑
j=1

ρ̂2
H(j)), Σ22 = 1

2 Σ11,

Σ12 = Σ21 = 1
(4−22H)

2 ∑
j∈Z

ρ̃2
H(j),

ρ̂H(j) = 1
2 [−6|j|2H−|j− 2

∣∣∣2H − |j + 2|2H + 4|j− 1
∣∣∣2H + 4

∣∣∣j + 1
∣∣∣2H ],

ρ̃H(j) = 1
22H+1 [

∣∣j + 1
∣∣2H + 2

∣∣j + 2
∣∣∣2H −

∣∣j + 3
∣∣2H+

∣∣j− 1
∣∣∣2H − 4

∣∣∣j∣∣∣2H

−|j− 3|2H + 2|j− 2|2H ].

Proof. The proof is similar to the proof of Theorem 4 in Kubilius [40]. However, since our
result is slightly different from that in Kubilius [40], we provide brief derivations here.

To determine limiting distribution of Xn, we compute a limiting moment generating
function limMXn(λ) = M(λ).

Consider a centered Gaussian vector Gn =
(

G(l)
n , 1 ≤ i ≤ 3n− 2

)
G(i)

n = ∆(2)
n,i B̂H , 1 ≤ i ≤ n− 1,

G(i)
n =

√
2−1∆(2)

2n,i+1−n B̂H , n ≤ i ≤ 3n− 2

And a diagonal matrix:

Dn = diag

(
λ1, . . . , λ1︸ ︷︷ ︸

n− 1
,

λ2, . . . , λ2︸ ︷︷ ︸
2n− 1

)

It is evident that EG(i)
n = 0 and E

(
G(i)

n

)2
= 1 for all 1 ≤ i ≤ n− 1, E

(
G(i)

n

)2
= 2−1 for

all n ≤ i ≤ 3n− 2. We denote the covariance matrix of the vector Gn by ΣGn .
Set:

D̃n =
(

Σ1/2
Gn

)T
DnΣ1/2

Gn

We give bound on eigenvalues of D̃n. It is obvious that D̃n is symmetric. Denote
by ‖An‖ = sup

‖x‖=1
‖Anx‖ matrix A norm. For symmetric matrix D̃n its norm is equal to its

spectral norm, i.e., ‖D̃n‖ = ρ(D̃n) := max
k
|λk(D̃n)|. Since norm ‖·‖ is submultiplicative

norm then:

max
k

∣∣∣λk

(
D̃n

)∣∣∣ =‖ D̃n ‖≤‖ Σ1/2
Gn
‖ · ‖ Dn ‖ · ‖ Σ1/2

Gn
‖=‖ Σ1/2

Gn
‖2 · ‖ Dn ‖

= ρ((Σ1/2
Gn

)
2
) · ρ(Dn) = ρ(ΣGn) · ρ(Dn) = λmax(ΣGn) ·max{|l1|, |l2|}

Now consider λmax(ΣGn). In order to bound the maximal eigenvalue, we again make
use of the fact that the latter does not exceed the maximal row sum of absolute values. Thus:

λmax(ΣGn) ≤ max
j

3n−2

∑
i=1

∣∣∣(ΣGn)ij

∣∣∣
Note that: (

∑Gn

)
i,j+1−n = 1√

2
E
[
∆(2)

n,i B̂H∆(2)
2n,j+1−n B̂H

]
= 1√

2
E
[(

∆(2)
2n,2i+1B̂H + ∆(2)

2n,2i−1B̂H + 2∆(2)
2n,2i B̂

H
)

∆(2)
2n,j+1−n B̂H

]
= 1√

2

[
dB̂H ,2n

2i+1,j+1−n + dB̂H ,2n
2i−1,j+1−n + 2dB̂H ,2n

2i,j+1−n

]
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For 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ 2n− 1, from Equations above, we can obtain:

λmax
(
∑Gn

)
≤ max

1≤j≤n−1

n−1

∑
i=1

∣∣∣dB̂H ,n
i,j

∣∣∣+ 1
2 max

1≤j≤2n−1

2n−1

∑
i=1

| dB̂H ,2n|
i,j

+ 1√
2

max
1≤j≤n−1

2n−1

∑
i=1

(∣∣∣dB̂H ,2n
i,2j+1

∣∣∣+ ∣∣∣dB̂H ,2n
i,2j−1

∣∣∣+ 2
∣∣∣dB̂H ,2n

i,2j

∣∣∣)
+ 1√

2
max

1≤j≤2n−1

n−1

∑
i=1

(∣∣∣dB̂H ,2n
2i+1,j

∣∣∣+ ∣∣∣dB̂H ,2n
2i−1,j

∣∣∣+ 2
∣∣∣dBH ,2n

2i,j

∣∣∣)


≤ max
1≤j≤n−1

n−1

∑
∣∣∣d ˆBH ,n

i,j

∣∣∣+ ( 1
2 + 8√

2

)
max

1≤j≤2n−1

2n−1

∑
∣∣∣dB̂H ,2n

i,j

∣∣∣ ≤ 20

Summing up, we come to conclusion that max
k

∣∣∣λk

(
D̃n

)∣∣∣ is uniformly (in n, k) bounded

by a finite constant depending only on λ1, λ2.
Note that:

λTYn :=
√

n(λ1, λ2)

 n−1
(

V B̂H

n,T − EV B̂H

n,T

)
(2n)−1

(
V B̂H

2n,T − EV B̂H

2n,T

)  =
1√
n

(
GT

n DnGn − EGT
n DnGn

)

Recall that Gn
d
=
√

ΣGnZn with Zn ∼ N (0; I3n−2), where I3n−2 denotes an identity
3n− 2 matrix. So, one can determine the following equality:

GT
n DnGn

d
=
(

Σ1/2
Gn

Zn

)T
DnΣ1/2

Gn
Zn = ZT

n

(
Σ1/2

Gn

)T
DnΣ1/2

Gn
Zn = ZT

n D̃nZn

Let D̃n = QT
nΛ
(

D̃n

)
Qn be canonical representation of D̃n via a diagonal matrix of

eigenvalues and a corresponding orthogonal matrix of eigenvectors. Since the orthogonal
transform does not change the distribution of Zn, we have:

ZT
n D̃nZn = ZT

n QT
n Λ
(

D̃n

)
QnZn

d
= ZT

n Λ
(

D̃n

)
Zn =

3n−2

∑
j=1

Z2
n,jλn,j

The estimation of eigenvalues of D̃n shows that we can choose no n−1/2max
k
|λk(D̃n)| <

1/2 for all n ≥ n0. To have MYn(λ) well defined, we assume that all n in the sequel satisfy
this condition.

Now, the moment-generating function MYn(λ) we can be rewritten as:

MYn(λ) = exp

(
−EGT

n DnGn√
n

)
E

[
exp

(
3n−2

∑
j=1

Z2
n,j

λn,j√
n

)]

Thus:

MYn(λ) = exp
(
−EGT

n DnGn√
n

) 3n−2
∏
j=1

Mχ2(1)

(
λn,j√

n

)
= exp

(
−EGT

n DnGn√
n

)(3n−2
∏
j=1

1

1−2
λn,j√

n

) 1
2

= exp

(
−EGT

n DnGn√
n − 1

2

3n−2
∑

j=1
log
(

1− 2
λn,j√

n

))
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By Maclaurin’s expansion:

log(1− x) = −x− x2

2
− x3

3
+ o
(

x3
)

, x → 0

Since max
n,j

∣∣λn,j
∣∣ is uniformly bounded and ∑3n−2

j=1 λn,j = tr
(

D̃n

)
= E

(
ZT

nD̃nZn

)
=

E
(

GT
nDnGn

)
, we can rewrite the expression for MYn(λ) as follows

MYn(λ) = exp

{
−EGT

n DnGn√
n + 1

2

3n−2
∑

j=1
(2

λn,j√
n + 4

λ2
n,j

2n ) + O( 1√
n )

}

= exp

{
1
n

3n−2
∑

j=1
λ2

n,j

}
exp

{
O( 1√

n )
}

Therefore, we can compute the limiting value of the first multiplier. By D̃n, definition:

3n−2
∑

j=1
λ2

n,j = tr(D̃2
n) = tr(((

√
ΣGn)

T Dn
√

ΣGn)
2
) = tr((DnΣGn)

2)

=
3n−2

∑
i=1

3n−2
∑

j=1
(DnΣGn)ij(DnΣGn)ji.

Note that equation above may be rearranged in the following way:

3n−2

∑
i=1

3n−2
∑

j=1
(DnΣGn)ij(DnΣGn)ji =

λ2
1

(4−22H)
2

n−1

∑
i=1

n−1
∑

j=1
ρ̂2

H(i− j) + λ1λ2

(4−22H)
2

n−1

∑
i=1

2n−1
∑

j=n

∼
ρH(j, k)

+
λ2

2

4(4−22H)
2

2n−1

∑
i=1

n
∑

j=1
ρ̂2

H(i− j) =
3
∑

k=1
I(k)n .

Therefore, to obtain a limiting expression for MYn(λ) it suffices to divide each sum by
n and to calculate the corresponding limits. A standard calculation shows:

1
n(4−22H)

2

n−1

∑
i=1

n−1
∑

j=1
ρ̂2(i− j)→ 1 + 2

(4−22H)
2

∞
∑

i=1
ρ̂2(k).

1
n

1
(4−22H)

2

n−1

∑
j=1

2n−1
∑

k=1
ρ̃2

H(j, k)→ 1
(4−22H)

2 ∑
m∈Z

ρ̃2
H(m).

Results obtained above imply that M(λ) = exp
{

1
2λ

TΣHλ
}

. Thus:

√
n

(
n−1(V B̂H

n,T − EV B̂H

n,T )

(2n)−1(V B̂H

2n,T − EV B̂H

2n,T)

)
d→ N (0; ΣH)

Application of Slutsky’s theorem provides the required result. �

Theorem 2. Let

Ĥn =
1
2
− 1

2 log 2
log

∑2n−1
k=1 (∆(2)

2n,kX)
2

∑n−1
k=1 (∆

(2)
n,k X)

2

 (10)

Then we can see that as n→ ∞ , Ĥn → H
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Moreover, we have:

2 log 2
√

n(Ĥ(1)
n − H)

d→ N
(
0, σ2

H
)

where
σ2

H =
3
2

Σ11 − 2Σ12 (11)

Proof. The estimator Ĥn can be rewritten as:

Ĥn = 1
2 −

1
2 log 2 [(2H − 1) log 1

2 + log
( 2n

T )
2H−1

V(2)X
2n,T

( n
T )

2H−1V(2)X
n,T

]

= H − 1
2 log 2 log

( 2n
T )

2H−1
V(2)X

2n,T

( n
T )

2H−1V(2)X
n,T

,

Using Theorem 1, the property of fractal Ornstein-Uhlenbeck and the Delta method,
we can obtain:

2 log 2
√

n(Ĥ(1)
n − H)

d→ N
(

0, σ2
H

)
, σ2

H =
3
2

Σ11 − 2Σ12

Σ11 = 2(1 +
2

(4− 22H)
2

∞

∑
j=1

ρ̂2
H(j)), Σ22 =

1
2

Σ11

Σ12 = Σ21 =
1

22H(4− 22H)
2 ∑

j∈Z
ρ̃2

H(j)

ρ̂H(j) =
1
2
[−6|j|2H−|j− 2|2H − |j + 2|2H + 4|j− 1|2H + 4|j + 1|2H ],

ρ̃H(j) =
1
2
[|j + 1|2H + 2|j + 2|2H − |j + 3|2H+|j− 1|2H − 4|j|2H−|j− 3|2H + 2|j− 2|2H ]

�

3.2. Alternative Estimators for the Hurst Parameter
3.2.1. MF-DFA

In this subsection we introduce two different methods for estimating the Hurst expo-
nent, as extracted from Kantelhardt et al. [30] and Gatheral et al. [13]. The first method is
the MF-DFA proposed by Kantelhardt et al. [30] and allows multi-fractility. The MF-DFA
has become a popular method to study the multi-fractal properties of various time series in
finance since it may be applied to non-stationary time series. The second is the qth-order
SF proposed by Gatheral et al. [13].

Let us consider the time series xi : i = 1, 2, . . . , N. Then, the MF-DFA involves
the following five steps (most of the following algorithm is extracted from Kantelhardt
et al. [30]):

(i) Compute the profile Y(i) as follows:

Y(i) =
i

∑
j=1

(
xj − x

)
where x denotes the mean of xi for the whole sample. Therefore, the profile Y(i) is the
cumulative sum of the return deviations from the sample mean.

(ii) Divide the profile Y(i) into Ns = int
(

N
s

)
non-overlapping segments of equal

length s, where s is referred to as the time scale. Since the length N of the series is often not
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a multiple of the considered time scale s, a short part at the end of the profile may remain.
In order not to disregard the short part at the end of the profile when N is not a multiple of
s, the same procedure is repeated starting from the opposite end. Therefore, there will be
2Ns segments for a given time scale s. It is recommended that the value of the time scale, s,
should satisfy 10 < s < N

4 .
(iii) Calculate the local trend for each of the 2Ns segments by a least-square fit of the

series. Then determine the following variance F2(v, s):

F2(v, s) ≡ 1
s

s

∑
i=1
{Y[(v− 1)s + i]− yv(i)}

2

For v = Ns + 1, Ns + 2, . . . , 2Ns. Here, yv(i) is the fitting polynomial in segment v.
The fitting polynomial captures the local trend. For example, let us consider segment v
that is part of the first Ns segments. This segment includes the profiles Y[(v− 1)s + i],
i = 1, 2, 3 . . . , s. The local trend of the profile for the segment can be captured by fitting the
following m-order polynomial:

Y[t] = α+ β1t + β2t2 + · · ·+ βmtm + ε, t = (v− 1)s + 1, . . . , vs + 1

Then, the fitting polynomial value yv(i) is given by:

yv(i) = α̂+ β̂1t + β̂2t2 + . . . + β̂mtm

where a “hat” above the parameters indicates the estimates obtained using the ordinary
least squares method. In this study, we use the first-order polynomial.

(iv) Average over all segments to obtain the q-th order fluctuation function as follows q 6= 0:

Fq(s) ≡
{

1
2Ns

2Ns

∑
v=1

[
F2(v, s)

]q/2
}1/q

The q-th order fluctuations are similar to q-th order moments. However, in the MF-
DFA, q can take negative values. The main purpose of using q-th order fluctuation has
to do with the power-law, mentioned in the next step, which allows us to distinguish a
multi-fractal model from a mono-fractal model. We are interested in how the generalized q
dependent fluctuation functions Fq(s) depend on the time scale s for different values of q.
Hence, we must repeat steps 2 to 4 for several time scales, s. It is apparent that Fq(s) will
increase with increasing s. Of course, Fq(s) depends on the DFA order m. By construction,
Fq(s) is only defined for s ≥ m + 2.

(v) Determine the scaling behavior of the fluctuation functions by analyzing log-log
plots Fq(s) versus s for each value of q. If the series xi are long-range power-law correlated,
Fq(s) increases, for large values of s, as a power-law:

Fq(s) ∼ sh(q)

It is clear from the equation above that F0(s) = lim
q→0

Fq(s) and, therefore, h(0) = lim
q→0

h(q),

cannot be determined using the averaging procedure. Therefore, for q = 0, a logarithmic
averaging procedure is employed as follows:

F0(s) ≡ exp

{
1

4Ns

2Ns

∑
v=1

ln F2(v, s)

}
∼ sh(0)

For each q (referred to as moment order), perform a linear regression of ln Fq(s) on
ln(s) for all s. The slope of the regression will be the estimator of the generalized Hurst
exponent h(q).
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3.2.2. The qth-Order SF Method

We also determined h(q) from the qth-order SF method used in Gatheral et al. [13]. In
the spirit of Gatheral et al. [13], we assume that discrete observations of the spot volatility
process, on a time grid with mesh ∆ on [0, T] are σ0, σ∆, . . . , σk∆, . . . , k ∈ {0, bT/∆c}. Set
N = bT/∆c, then for q ≥ 0, we can define

m(q, ∆) =
1
N

N

∑
k=1

∣∣∣log(σk∆)− log
(

σ(k−1)∆

)∣∣∣q
Under the assumption that the log-spot-volatility process is stationary and that a law

of large numbers holds, for some values of q we can see that qH has monofractual scaling
properties which imply that

m(q, ∆) ∼ C∆qH

As ∆ tends to zero and with constant of proportionality C.
Let β1 = log Kq. We further use the market data via the regression

log(m(q, ∆)) = β1 + β2log ∆ + ε (12)

which provides an estimator:

HqSF =
β2

q
(13)

For several orders of q, the regression of the slope in (12) against q reveals that the
different orders of q lead to the same estimate of H as the one obtained when q = 2.

3.2.3. Two Least Square Estimation Methods

To test the roughness of the spot volatility, we must estimate the Hurst exponents.
In fact, there exists a vast literature that describes different methods for estimating the
Hurst parameter of the fractional Brownian motion (fBm) including parametric estimation
methods, semi-parametric estimation and non-parametric estimation approaches. In this
paper, we adopt two types of estimators for the Hurst parameter, which are proven to be
strongly consistent and asymptotically normal.

Let Xt = log(σt) as in model (1), and denotes Mk(n) = 1
n−1 ∑n−2

i=0

(
X(i+2)∆ − 2X(i+1)∆

+Xi∆)
k, where n ∈ N+ − 1, k ∈ R+. The first estimator Ĥk of Hurst parameter H by the

least squares estimation method introduced by Berzin et al. [31], is calculated as follows

Ĥk = − 1
k

`
∑

i=1
zi log(Mk(ni))

= − 1
k

`

∑
i=1

zi log

(
1

ni−1

ni−2
∑

j=0

(
X(j+2)∆ − 2X(j+1)∆ + Xj∆

)k
)

,
(14)

where ni = rin, ri ∈ N∗, i = 1, . . . , ` and zi =
yi

∑`
i=1 y2

i
and yi = log(ri)− 1

`

`
∑

i=1
log(ri).

Let Mlog(n) = 1
n−1

n−2
∑

i=0
log
(∣∣∣X(i+2)∆ − 2X(i+1)∆ + Xi∆

∣∣∣). The second estimator H̃log

of H derived by the least square estimation method in Berzin et al. [31] is expressed as

H̃log = −
`
∑

i=1
zi Mlog(ni)

= −
`

∑
i=1

zi
1

ni−1

ni−2
∑

j=0
log
(∣∣∣X(j+2)∆ − 2X(j+1)∆ + Xj∆

∣∣∣).
(15)
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The estimator Ĥk is an asymptotically unbiased strongly consistent estimator of H,
and the estimator H̃log is an unbiased weakly consistent estimator of H. The asymptotic
distribution of estimators Ĥk and H̃log can be found in Berzin et al. [31].

From remark 3.12 and remark 3.15 of Berzin et al. [31], asymptotic theory for Ĥk and
H̃log there is a corollary. The estimator Ĥk is an asymptotically unbiased strongly consistent
estimator of H and the estimator H̃log is an unbiased weakly consistent estimator of H.
Furthermore, for k = 2ri = 2i−1 and i = 1, . . . , `, we have:

√
n
(

Ĥk − H
) d→ N

(
0, σ2

Ĥk

)
√

n
(

Ĥlog − H
)

d→ N
(

0, σ2
∼
H

2

log

)

where

σ2
Ĥk

=
(

6
log(2)

)2 1
`2(`2−1)2×2

`

∑
i<j;i,j=1

2−j(2i− (`+ 1))(2j− (`+ 1))×
+∞
∑

r=−∞
ρ2

1,2j−i(r) +
`
∑

i=1
2−i(2i− (`+ 1))2 +∞

∑
r=−∞

ρ2
H(r)

 (16)

σ2
H̃log

= ( 3
log(2) )

2 1
`2(`2−1)2 (2

`
∑

i<j;i,j=1
2−j+1(2i− (`+ 1))(2j− (`+ 1))

×
+∞

∑
p=1

(2p)!
(

1
p(2p−1)!!

)2 +∞
∑

r=−∞
ρ

2p
1,2j−i (r) +

`
∑

i=1
2−i+1(2i− (`+ 1))2

×
+∞

∑
p=1

(2p)!
(

1
p(2p−1)!!

)2 +∞
∑

r=−∞
ρ

2p
H (r))

(17)

ρb,c(x) = 1
2(4−22H)

(bc)−H [−|x|2H + 2|x− b|2H − |x− 2b|2H

+2|x + c|2H − 4|x + c− b
∣∣2H + 2|x + c− 2b|2H−|x + 2c|2H

+2|x + 2c− b|2H−|x + 2c− 2b|2H ]

ρH(x) = −6|x|2H+4|x+1|2H−|x+2|2H−|x−2|2H+4|x−1|2H

2(4−22H)

3.3. Comparison of Asymptotic Variance of Hk, Hlog and Hn

In this subsection, we compare Hurst exponents according to the three variance Formulas
(11), (16) and (17). Although, in theory, Hk, Hlog and Hn can eventually converge to the true
value, in engineering practice, the value of `, p, r cannot be very large, which means that
there must be errors in the three Hurst exponent estimates under the condition of limited
computing resources. Therefore, we try to compare the advantages and disadvantages of the
three according to the asymptotic variance under different parameter values.

As can be seen from Table 1, with the increase in the number of `, Ĥk and Ĥlog have a
downward trend, but overall, the asymptotic variance of Ĥk is less than Ĥlog. From this
point of view, Ĥk is a better estimate.
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Table 1. Comparison of asymptotic variance of Hk and Hlog.

H. ` 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ĥk

2 61.43384 60.09544 58.74345 57.42546 56.19696 55.12336 54.28286 53.77096 53.7078
5 9.179444 9.099669 8.987028 8.86357 8.745652 8.646854 8.57992 8.558286 8.597588
10 2.973535 2.891396 2.820534 2.762025 2.716779 2.686191 2.672437 2.678699 2.709498

Ĥlog

2 165.8243 75.86426 74.52995 73.18453 71.87646 70.66238 69.6092 68.7972 68.32469
5 11.05752 10.97854 10.86696 10.74497 10.62911 10.53315 10.47013 10.45383 10.50042
10 3.51451 3.432525 3.361931 3.303832 3.259175 3.229411 3.216792 3.22461 3.257532

According to Figure 1 and Table 1, Hk is usually better than Hlog when the parameter
` has a limited value. The variance of Hk is small, but Hlog converges slightly faster with an
increase of `. In general, Hk is recommended in practice.
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Figure 1. Comparison of asymptotic variance of Hk and Hlog.

Next, given ` = 10, compare the asymptotic variance of Hn with that of Hk and Hlog.
Table 2 shows the change of H values from 0.1 to 1. It can be seen that as the value of H
increases, the error of Hn becomes smaller and smaller. When H > 0.4, the asymptotic
variance of Hn is smaller than Hk and Hlog.

Table 2. Comparison of asymptotic variance of Hn with Hk and Hlog.

`=10.

H 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ĥk 2.973535 2.891396 2.820534 2.762025 2.716779 2.686191 2.672437 2.678699 2.709498404

Ĥlog 3.51451 3.432525 3.361931 3.303832 3.259175 3.229411 3.216792 3.22461 3.257531806
Ĥn 4.055571 3.812466 3.552612 3.280313 3 2.716159 2.433252 2.155608 1.887306706

A similar situation is shown in Figure 2. Hn decreases as the value of H increases; after
0.4, the asymptotic variance of Hn is less than that of Hk and Hlog.
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4. Research on the Roughness of Truncated and Non-Truncated Spot Volatility of
Chinese A-Share Industry Indices Estimated by Five Hurst Exponents
4.1. Data Description

We collected Shanghai Composite Index and Shanghai Industrial Index series data
from the WIND High-frequency database. The sampling frequency was set at 5 min, which
allowed us to circumvent all the issues associated with micro-structure noise and thereby
focus on questions pertinent to this paper. For assets in the Chinese stock market, we
considered the Shanghai Composite Index (also named SSE Index), the most influential
index in China’s capital market, and the Shanghai Industrial Index series consisting of 10
primary industries.

The Shanghai Composite Index, published on 15 July 1991, is the first flagship index
reflecting the overall market trend in Shanghai. It includes all the stocks listed on the
Shanghai Stock Exchange, such as A shares and B shares, and is weighted by the total share
capital, representing the 30-year development process of China’s capital market. It is a
symbol of China’s capital market. The data set at our disposal ran from 1 January 2005
until 31 December 2020. We excluded weekends and holidays and kept only full trading
days, which resulted in 3888 days. Thus, we obtained 48 observations for every trading day
and obtained 186,624 observations for the SSE index. According to industry classification
standards, the Shanghai Industrial Index series consists of 10 primary industries, such as
the Energy Sector (SSE Energy), Raw Materials Sector (SSE Materials), Industrials Sector
(SSE Industrials), Consumer Discretionary Sector (SSE ConsDisc), Consumer Staples Sector
(SSE ConsStaples), Health Care Sector (SSE HealthCare), Financials Sector (SSE Financials),
Information Technology Sector (SSE InfoTechnology), Telecommunication Services Sector
(SSE TelecomSvc), and the Utilities Sector (SSE Utilities), which cover almost all samples of
the Shanghai stock market and represent the development process of the relating industries.
A detailed descriptions and interpretations for the ten indices are as follows:

1. Base date and base index. The base date of the Shanghai stock exchange industry
index series is 9 January 2009, and the base index is 1000.

2. Index sample stocks selection. The sample stock space of series of the Shanghai
industry index is composed of all sample stocks of Shanghai Index. Based on the inter-
national mainstream industry classification standards and the characteristics of China’s
listed companies, the listed companies are divided into 10 industries: energy, raw materials,
industry, optional consumption, main consumption, medicine and health, finance and real
estate, information technology, telecommunication business and public utilities.

3. Sample stock selection method. The stocks in the sample space are classified
according to the industry classification standard, and all the stocks in their respective
industries constitute the sample stocks of the corresponding industry index.
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4. Index calculation and correction. The industry index series of Shanghai stock
exchange adopts the Paasehe weighting method, and the weighted calculation formula is
as follows.

Index in the reporting period = adjusted market value of sample stock in the reporting
period/base period × 1000.

Specifically, adjust market value = stock price × adjusted capital stock. The adjusted
capital stock is the capital stock after adjusting the capital stock of the sample stock by
“grading and classifying”.

5. Sample stock adjustment. When the Shanghai Stock Index adjusts the sample stocks,
the industry index series of Shanghai stock index is adjusted accordingly. When the sample
company has a special event, which leads to the change of its industry ownership, the
sample stock of Shanghai stock exchange industry index series is adjusted accordingly.

The data set at our disposal run from 1 January 2010 until 31 December 2020, which
results in 2673 days by keeping only full trading days. Thus, we obtain 48 observations for
every trading day and obtain 128,304 observations for each industrial index.

4.2. Non-Truncated Spot Volatility

Ignoring the effects of jumps in the prices, we can apply the non-truncated estimator
of Equation (2) to extract spot volatilities using the 5 min high-frequency data. The esti-
mation procedure calculating with ∆n = 5/240 and kn = 96 results in 1944 estimates of
non-truncated spot volatility for the SSE Index and 1337 estimates of non-truncated spot
volatilities for each industrial index. To give a brief insight into the properties of the 11
indices, Table 3 reports summary statistics for non-truncated spot volatility, where Std.Dev
denotes standard derivation. Index abbreviations are given in the first column. The second
to sixth columns contain some basic descriptive statistics for the indices, including the
mean, minimal, median, maximal and standard deviation of the spot volatility estimates.
Moreover, both skewness and kurtosis are presented in the last two columns of Table 3.

Table 3. Descriptive statistics for the non-truncated spot volatility and its logarithm.

stat_non_trunc Mean Min Max Median Std.Dev Skewness Kurtosis

Panel A: Non-truncated Spot Volatility

SSE index 0.00022 9.05 × 10−6 0.00484 0.00010 0.00037 5.61360960 47.7565
SSE Energy 0.00025 1.48 × 10−5 0.00613 0.00014 0.00045 6.96110970 69.8107

SSE Materials 0.00026 1.74 × 10−5 0.00810 0.00014 0.00051 8.30235757 95.8771
SSE Industrials 0.00023 1.02 × 10−5 0.00787 0.00010 0.00052 8.19252067 90.0560
SSE Cons Disc 0.00021 9.85 × 10−6 0.00648 0.00011 0.00041 8.81983563 106.233

SSE Cons Staples 0.00020 1.14 × 10−5 0.00659 0.00012 0.00037 9.56348181 128.357
SSE Health Care 0.00019 7.73 × 10−6 0.00603 0.00011 0.00035 8.82946172 113.921
SSE Financials 0.00021 1.04 × 10−5 0.00562 0.00011 0.00038 6.87344218 67.1841

SSE Info Technology 0.00031 2.28 × 10−5 0.00727 0.00018 0.00048 7.08361470 76.6140
SSE Telecom Svc 0.00034 2.38 × 10−5 0.00934 0.00018 0.00061 7.56650831 79.6772

SSE Utilities 0.00017 1.13 × 10−5 0.00587 7.65 × 10−5 0.00040 7.96280129 83.3764

Panel B: Logarithm of non-truncated spot volatilities

SSE index −9.0228 −11.6127 −5.3299 −9.1544 1.04418 0.48284956 2.92738
SSE Energy −8.8034 −11.1212 −5.0932 −8.8651 0.93912 0.56099374 3.72217

SSE Materials −8.7734 −10.959 −4.8149 −8.8504 0.92463 0.64137993 3.95554
SSE Industrials −9.0030 −11.4906 −4.8435 −9.1269 0.95747 0.87836819 4.56345
SSE Cons Disc −8.9992 −11.5282 −5.0387 −9.0412 0.92581 0.50655449 4.08381

SSE Cons Staples −8.9353 −11.3815 −5.0212 −8.9969 0.82634 0.65934088 4.71016
SSE Health Care −9.0657 −11.7707 −5.11096 −9.0936 0.94631 0.29717300 3.91282
SSE Financials −8.9995 −11.4702 −5.1811 −9.0533 0.96055 0.43924226 3.75374

SSE Info Technology −8.4958 −10.689 −4.9236 −8.5761 0.87165 0.45663801 3.65189
SSE Telecom Svc −8.4808 −10.645 −4.6731 −8.5727 0.86341 0.78021763 4.49018

SSE Utilities −9.3710 −11.3898 −5.1368 −9.4783 0.98057 0.94548892 4.67285
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Panel A of Table 3 shows that mean values of the non-truncated spot volatility range
from 0.0002 to 0.0003 for all indices. SSE TelecomSvc displays the highest standard deviation
(i.e., 0.00061). Considering skewness and kurtosis, the SSE Index achieves the lowest values
while the highest values are obtained for SSE ConsStaples. None of the series seems to be
symmetric. Moreover, all the time series have positive skewness, which implies that the
distributions have a long right tail.

As stated in Da Fonseca and Zhang [21], taking the logarithm has the well-known effect
of reducing the discrepancies between variables and makes distributions closer to normal
distributions. Panel B of Table 3 shows that skewness of the logarithm of non-truncated spot
volatilities are much smaller, and the kurtosis are closer or a little bigger than 3.

The main reason for positive skewness and high kurtosis might be comprised of the
effect of jumps which we don’t filter in the data. Therefore, we next considered the case
when there are jumps in the asset prices.

4.3. Truncated Spot Volatility

To consider the effect of jumps, we estimate the spot volatility using the truncated
estimator of Equation (3) with kn = 96, ∆n = 5/240 and vn =

√
∆n/250. Table 4 provides

the basic descriptive statistics for the truncated spot volatility. As shown in Panel A of
Table 4, the mean values and standard deviations of the truncated spot volatility indexes
are all around 0.0001–0.0002. These positive values for the skewness of the spot volatility
indexes indicate that all the spot volatility indexes are skewed right. The values for the
kurtosis of the spot volatility indexes are always greater than 3, which indicates a heavy-
tailed distribution. By taking the logarithm, Panel B of Table 4 shows that the skewness
of the logarithm of truncated spot volatility of all the indices are near the expected value
of zero, and the kurtosis of the logarithm of truncated spot volatility of all the indices are
near the expected value of 3. Hence, the values of skewness and kurtosis of the logarithm
of truncated spot volatility indexes are acceptable ranges for being normally distributed,
which would make the Hurst parameter estimators maintain their good properties.

4.4. Hurst Exponent Estimation

By using the derived logarithm of non-truncated and truncated spot volatility series of
the Composite Index and the 10 industrial indices data in the Chinese stock market, we cal-
culated the Hurst parameter using the four Hurst parameter estimators, Hn,Hk,Hlog, HqSF
in Section 2.

When we calculate the estimator HqSF from (13) by the qth-order SF method, we
should refine how the regression slope β2 from regression (12) depends on the order q.
By the mono-fractal scaling properties, we suppose β2 ∼ Hq, which leads us to a similar
estimate of the Hurst exponent by (13).

By taking q = 1, 1.5, 2, 2.5, 3, 3.5 and conducting a linear regression of (12) for
∆ = 1, 2, 3, . . . , 100, Figure 3 shows the linear relationship of β2 and q based on logarithm
forms of both non-truncated spot volatility and truncated spot volatility for the Shanghai
Composite Index (SSE Index). Additional test results for the 10 industrial indices are shown
in Figures 4 and 5. All the figures illustrate the approximate linear relationship between β2
and q, which is consistent with the theoretical derivation in Gatheral et al. [13] and lead us
to a similar estimate of the Hurst parameter by (13).
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Table 4. Descriptive statistics for the truncated spot volatilities and their logarithms.

stat_trunc Mean Min Max Median Std.Dev Skewness Kurtosis

Panel A: Truncated spot volatilities

SSE index 0.00015 9.05 × 10−6 0.00093 9.38 × 10−5 0.00015 1.910627 6.71405
SSE Energy 0.00016 1.48 × 10−5 0.00089 0.00011 0.00014 2.162615 8.26727

SSE Materials 0.00016 1.74 × 10−5 0.00082 0.00012 0.00014 2.072311 7.87712
SSE Industrials 0.00014 1.02 × 10−5 0.00090 0.0001 0.00013 2.476477 9.72460
SSE Cons Disc 0.00013 9.85 × 10−6 0.00077 0.00010 0.00011 2.323363 9.81297

SSE Cons Staples 0.00014 1.14 × 10−5 0.00081 0.00011 0.00010 2.505865 11.2342
SSE Health Care 0.00013 7.73 × 10−6 0.00085 0.00010 0.00011 2.366167 10.4674
SSE Financials 0.00014 1.04 × 10−5 0.00102 0.00010 0.00013 2.684608 12.6908

SSE Info Technology 0.00021 2.28 × 10−5 0.00095 0.00016 0.00015 1.64547 5.96398
SSE Telecom Svc 0.00020 2.38 × 10−5 0.00100 0.00016 0.00014 1.889841 7.25645

SSE Utilities 0.00010 1.01 × 10−5 0.00086 7.26 × 10−5 0.00012 3.081249 13.9049

Panel B: Logarithm of truncated spot volatilities

SSE index −9.1803 −11.612 −6.9750 −9.2744 0.88871 0.197569 2.41616
SSE Energy −9.0321 −11.121 −7.0142 −9.0610 0.76953 0.124777 2.77233

SSE Materials −8.9674 −10.959 −7.1063 −8.9712 0.74074 0.099774 2.73774
SSE Industrials −9.1668 −11.490 −7.0048 −9.2100 0.76706 0.275856 3.15982
SSE Cons Disc −9.1697 −11.528 −7.1616 −9.1632 0.76327 −0.04621 3.00242

SSE Cons Staples −9.0922 −11.381 −7.1069 −9.1035 0.66098 0.002958 3.49107
SSE Health Care −9.2145 −11.770 −7.069 −9.1831 0.78518 −0.28041 3.35773
SSE Financials −9.1818 −11.470 −6.8844 −9.2013 0.79877 −0.00218 3.09299

SSE Info Technology −8.6952 −10.689 −6.9569 −8.7076 0.6935 −0.10739 2.91148
SSE Telecom Svc −8.6995 −10.645 −6.9032 −8.7227 0.65081 0.013933 3.01487

SSE Utilities −9.4973 −11.507 −7.0505 −9.5307 0.8180 0.394645 3.19111

Mathematics 2022, 10, x FOR PEER REVIEW 19 of 29 
 

 

SSE Telecom Svc −8.6995 −10.645 −6.9032 −8.7227 0.65081 0.013933 3.01487 
SSE Utilities −9.4973 −11.507 −7.0505 −9.5307 0.8180 0.394645 3.19111 

4.4. Hurst Exponent Estimation 
By using the derived logarithm of non-truncated and truncated spot volatility series 

of the Composite Index and the 10 industrial indices data in the Chinese stock market, 
we calculated the Hurst parameter using the four Hurst parameter estimators, 𝐻 ,𝐻 ,𝐻 , 𝐻  in Section 2. 

When we calculate the estimator 𝐻  from (13) by the qth-order SF method, we 
should refine how the regression slope 𝛽  from regression (12) depends on the order q. 
By the mono-fractal scaling properties, we suppose β ∼ Hq, which leads us to a similar 
estimate of the Hurst exponent by (13). 

By taking q = 1, 1.5, 2, 2.5, 3, 3.5 and conducting a linear regression of (12) for ∆ = 1,2,3, … ,100, Figure 3 shows the linear relationship of 𝛽  and q based on logarithm 
forms of both non-truncated spot volatility and truncated spot volatility for the Shanghai 
Composite Index (SSE Index). Additional test results for the 10 industrial indices are 
shown in Figures 4 and 5. All the figures illustrate the approximate linear relationship 
between 𝛽  and q, which is consistent with the theoretical derivation in Gatheral et al. 
[13] and lead us to a similar estimate of the Hurst parameter by (13). 

 
Figure 3. β  against q based on logarithm forms of both non-truncated spot volatility and 
truncated spot volatility for the Shanghai Composite Index (SSE Index). 

Figure 3. β2 against q based on logarithm forms of both non-truncated spot volatility and truncated
spot volatility for the Shanghai Composite Index (SSE Index).



Mathematics 2022, 10, 1619 19 of 26Mathematics 2022, 10, x FOR PEER REVIEW 20 of 29 
 

 

 
Figure 4. β  against q based on the logarithm of non-truncated spot volatility for the 10 industrial 
indices. 

 
Figure 5. β  against q based on the logarithm of truncated spot volatility for the 10 industrial 
indices. 

For all the indices, we can calculate the Hurst exponents by the five different Hurst 
exponent estimators using both non-truncated spot volatility and truncated spot 
volatility in logarithm forms. From the Hurst exponent estimation results listed in Table 
5, we can see the Hurst exponents are all less than 0.5 for all the indices, no matter which 
Hurst exponent estimator we adopt, and whether or not price jumps are filtered. The 
results in Table 5 indicate the roughness in the log-volatility of the Composite Index and 
the 10 industrial indices in the Chinese stock market, consistent with findings in the 
literature, such as Gatheral et al. [13], Livieri et al. [14], Da Fonseca and Zhang [21] and 
Takaishi [23]; Bennedsen et al. [11]. Our study provides further evidence of the 
roughness in spot volatility. 

  

Figure 4. β2 against q based on the logarithm of non-truncated spot volatility for the 10 industrial indices.

Mathematics 2022, 10, x FOR PEER REVIEW 20 of 29 
 

 

 
Figure 4. β  against q based on the logarithm of non-truncated spot volatility for the 10 industrial 
indices. 

 
Figure 5. β  against q based on the logarithm of truncated spot volatility for the 10 industrial 
indices. 

For all the indices, we can calculate the Hurst exponents by the five different Hurst 
exponent estimators using both non-truncated spot volatility and truncated spot 
volatility in logarithm forms. From the Hurst exponent estimation results listed in Table 
5, we can see the Hurst exponents are all less than 0.5 for all the indices, no matter which 
Hurst exponent estimator we adopt, and whether or not price jumps are filtered. The 
results in Table 5 indicate the roughness in the log-volatility of the Composite Index and 
the 10 industrial indices in the Chinese stock market, consistent with findings in the 
literature, such as Gatheral et al. [13], Livieri et al. [14], Da Fonseca and Zhang [21] and 
Takaishi [23]; Bennedsen et al. [11]. Our study provides further evidence of the 
roughness in spot volatility. 

  

Figure 5. β2 against q based on the logarithm of truncated spot volatility for the 10 industrial indices.

For all the indices, we can calculate the Hurst exponents by the five different Hurst
exponent estimators using both non-truncated spot volatility and truncated spot volatility in
logarithm forms. From the Hurst exponent estimation results listed in Table 5, we can see the
Hurst exponents are all less than 0.5 for all the indices, no matter which Hurst exponent esti-
mator we adopt, and whether or not price jumps are filtered. The results in Table 5 indicate
the roughness in the log-volatility of the Composite Index and the 10 industrial indices in the
Chinese stock market, consistent with findings in the literature, such as Gatheral et al. [13],
Livieri et al. [14], Da Fonseca and Zhang [21] and Takaishi [23]; Bennedsen et al. [11]. Our
study provides further evidence of the roughness in spot volatility.



Mathematics 2022, 10, 1619 20 of 26

Table 5. Hurst parameter estimates for the logarithm of spot volatilities.

Index
Log (Non-Truncated

Spot Volatility) Log (Truncated Spot Volatility)

Hk Hlog HqSF Hn MF-DFA Hk Hlog HqSF Hn MF-DFA

SSE index 0.27 0.22 0.09 0.27 0.22 0.27 0.17 0.16 0.19 0.26
SSE Energy 0.33 0.28 0.06 0.33 0.23 0.33 0.22 0.05 0.24 0.26

SSE Materials 0.26 0.25 0.28 0.26 0.22 0.26 0.27 0.09 0.26 0.26
SSE Industrials 0.29 0.26 0.18 0.29 0.20 0.29 0.18 0.21 0.15 0.27
SSE Cons Disc 0.23 0.18 0.16 0.23 0.25 0.23 0.25 0.20 0.23 0.28

SSE Cons Staples 0.20 0.17 0.25 0.20 0.22 0.20 0.23 0.13 0.23 0.21
SSE Health Care 0.22 0.21 0.11 0.22 0.27 0.22 0.20 0.22 0.17 0.34
SSE Financials 0.23 0.24 0.27 0.23 0.15 0.23 0.21 0.11 0.20 0.23

SSE Info Technology 0.33 0.33 0.21 0.32 0.18 0.33 0.29 0.23 0.29 0.23
SSE Telecom Svc 0.37 0.38 0.10 0.37 0.21 0.37 0.31 0.21 0.30 0.25

SSE Utilities 0.27 0.22 0.09 0.27 0.22 0.27 0.33 0.15 0.28 0.26

5. Discussion

It is well-known that the constant volatility of Black and Scholes [1] is neither consistent
with real volatility data nor consistent with implied volatility surfaces. Consequently,
several popular stochastic volatility models driven by standard Brownian motions have
been introduced in past decades to reproduce the stylized facts of time series observed
for both the historical volatility and the implied volatility. Moreover, in order to take
into account an apparent presence of long memory in the volatility process, Comte and
Renault [6] first proposed a stochastic volatility model driven by fractional Brownian
motion (fBm) with H > 1/2. Recently, prompted by new insights from realized volatility
data, Gatheral et al. [13] and Bennedsen et al. [11] introduced rough volatility models
driven by fBm with H < 1/2. Using absolute moments estimation and realized volatility
as a proxy of true volatility, Gatheral et al. [13] estimate the Hurst exponent and found that
it is close to 0.14 for both the log-volatility of the SP500 and the NASDAQ, together with
other major indices. Moreover, the estimation of the Hurst exponent H is robust across time,
scales and markets. More empirical studies of the log-volatility for thousands of stocks (see,
e.g., Bennedsen et al. [11]) and implied volatility (see, e.g., Livieri et al. [14]) confirm the
roughness of the volatility.

Since the spot volatility is of importance in several applications, including derivatives
pricing, high-frequency trading, and risk management, it is t natural to assess whether spot
volatility has a rough property, that is, to determine whether the spot volatility is rough.

Many publications consider the roughness of realized volatility and implied volatility.
Gatheral et al. [13] showed the volatility roughness of SP500 index, Livieri et al. [14]
showed that implied volatility is rough, too. Takaishi [23] studied Bitcoin and verified
the roughness of volatilities in Bitcoin. Da Fonseca and Zhang [21] found the volatility of
volatility is also rough. Bennedsen et al. [11] found the roughness of logarithmic volatility of
thousands of stocks. There is much evidence showing the roughness of volatility in different
sectors and markets (see Guennoun et al. [32], Funahashi and Kijima [33], Neuenkirch and
Shalaiko [34]). However, spot volatility is still a problem, especially the comparison of
truncated and non-truncated spot volatility. This paper fills the gaps in previous works.

Following the important work of Gatheral et al. [13], this study aims to provide further
evidence of the roughness of logarithm spot volatility in the Chinese financial market.
Using the non-parametric estimator proposed by Fan and Wang [28], this paper introduces
a non-parametric spot volatility estimator for the fractional volatility model of (1) for
all H ∈ (0, 1). Using five different Hurst exponents, MF-DFA, qth-order SF, two Hurst
estimations using the least square estimation method provided by Berzin et al. [31] and
a new Hurst exponent by changing frequency method, this paper analyzed roughness
of the log-realized volatility of 10 industrial indices in the Chinese financial market. We
found that h(q) calculated by five different Hurst exponents were all less 0.5. These results
confirm the roughness of log-spot volatility.
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Moreover, we propose a new Hurst estimation Hn by changing the data frequency
method. This performs better when H > 0.4 in the perspective of asymptotic variance.

6. Conclusions

Volatility is very important in many aspects of the financial field. First, implied
volatility is the key in option pricing relative to the realized volatility, and a model of
realized volatility can be used to improve the option pricing effectiveness. Second, volatility
is a way to measure risk. With the continuous development of the financial market, financial
assets such as stocks, futures, bonds and foreign exchange are constantly enriched. No
matter the kind of financial asset, price risk is always one of the core risks. The most direct
manifestation of the sharp rise and fall of prices is the rise of volatility, so how to measure
and predict volatility is a very important problem. Therefore, modeling and prediction of
volatility is the answer to the basic problem of the financial risk, and its significance is self-
evident. Third, volatility is an indicator of financial supervision on micro market behavior.
Financial market supervision often faces a dilemma: on the one hand, we should encourage
financial innovation, but innovation often brings new problems, such as new market risks or
new institutional arbitragers. On the other hand, we should not be too conservative, otherwise
it is easy to suppress market vitality and solidify market ecology; then we may lose the fairness
of the market. With the popularity of financial big data, regulators have more micro-detailed
data, which provides the possibility for fixed-point and local supervision. So how to mine and
depict the behavior of market participants from massive data is an important problem. Macro
and micro financial behaviors, related to the banker, money laundering, financial crises, credit
default, and so on, have effects on market price. When the market price changes dramatically,
this reflects volatility. Therefore, the volatility can become a tool and a starting point for
supervision in the era of financial big data.

Since volatility modelling is so important, this section summarizes the contributions
of studies of roughness of volatility, which is one its most important properties. First,
we propose a Hurst estimation Hn by changing the data frequency method. Second, we
prove the asymptotic variance of Hn and that of two Hurst estimations provided by Berzin
et al. [31], and do simulations to find the advantages of Hn that Hn that work better than
those of Berzin et al. [31] when H > 0.4. Third, since much literature verifies the roughness
of volatility (including volatility of the SP500 index by Gatheral et al. [13], implied volatility
of options by Livieri et al. [13], volatility of bitcoin by Takaishi [23], volatility of volatility
by Da Fonseca and Zhang [21], and volatility of many stocks by Bennedsen et al. [11]),
we fill a gap that verifies the roughness of truncated and non-truncated spot volatility by
four different Hurst exponent estimations: Hn, Hk, Hlog, HqSF. We find that truncated spot
volatility has a stronger roughness than that of non-truncated spot volatility.

This study also suggests several important directions for future research. The estimator
methods of constructing the estimators and their asymptotic properties essentially depend
on observations. The first suggestion is to include estimation error and microstructure
noise into the analysis. The second suggestion is to construct a unified volatility model that
correctly accounts for, if possible, all the stylized facts observed in the real data, such as
volatility clustering, multi-fractality, roughness, mean-reversion and persistence. Another
direction for future research is to discuss the pricing and hedging of volatility options in
some rough volatility models. In such cases, efficient Monte Carlo methods and asymptotic
approximations for computing option prices and hedge ratios should be employed, which
might provide insight into the robustness of the results obtained herein.
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Appendix A

Proof of Lemma 1. We give brief derivations here.
From (1), for all H ∈ (0, 1), we have

Xt =
(
1− e−αt)m + X0e−αt + v

∫ t
0 e−α(t−s)dBH

s
=
(
1− e−αt)m + X0e−αt + vBH

t − αve−αt ∫ t
0 eαsBH

s ds
=
(
1− e−αt)m + X0e−αt + X̃

(A1)

where X̃t = νBH
t − ανe−αt

∫ t
0 eαsBH

s ds
Thus, Xt is normal distribution with mean

(
1− e−αt)m + X0e−αt. For the sake of

convenience, we first consider the covariance of X̃t and X̃s. Using the well known result,
RH(s, t) = 1

2 (|t|
2H + |s|2H − |t− s|2H), supporting t > s > 0, the covariance function of, X̃t

and X̃s is given by:

cov(X̃t, X̃s) = E[(−ανe−αt ∫ t
0 eαuBH

u du + νBH
t )(−ανe−αs ∫ s

0 eαvBH
v dv + νBH

s )]

= − αν2

2 e−αt ∫ t
0 eαu(u2H + s2H − |u− s|2H)du

− αν2

2 e−αs ∫ s
0 eαv(v2H + t2H − |v− t|2H)dv + ν2

2 (t
2H + s2H − |t− s|2H)

+ α2ν2

2 e−αt−αs
∫ t

0

∫ s
0 eαu+αv(u2H + v2H − |u− v|2H)dudv= ν2

2

10
∑

n=1
In

(A2)

with

I1 = −αe−αt ∫ t
0 eαus2Hdu, I2 = −αe−αt ∫ t

0 eαuu2Hdu, I3 = αe−αt ∫ t
0 eαu|u− s|2Hdu

I4 = −αe−αs ∫ s
0 eαvt2Hdv, I5 = −αe−αs ∫ s

0 eαvv2Hdv, I6 = αe−αs ∫ s
0 eαv(t− v)2Hdv

I7 = t2H + s2H − (t− s)2H , I8 = α2e−αt−αs ∫ t
0 eαvdv

∫ s
0 eαuu2Hdu

I9 = α2e−αt−αs ∫ s
0 eαudu

∫ t
0 eαvv2Hdv

I10 = −α2e−αt−αs
∫ t

0

∫ s
0 eαu+αv|u− v|2Hdudv

The first two integrals are equal to:

I1 = s2H(e−αt − 1
)

and I2 = −e−αt
∫ t

0
u2Hdeαu = −t2H + 2He−αt

∫ t

0
eαuu2H−1du

By changing variables and integration by parts, we can obtain:

I3 = αe−αt ∫ s
0 eαu(s− u)2Hdu + αe−αt ∫ t

s eαu(u− s)2Hdu
= αe−αt+αs ∫ s

0 e−αzz2Hdz + αe−αt+αs ∫ t−s
0 eαzz2Hdz

= −e−αt+αs
(

e−αss2H − 2H
∫ s

0 e−αzz2H−1dz− eα(t−s)(t− s)2H

+2H
∫ t−s

0 eαzz2H−1dz
)

= −e−αts2H + (t− s)2H + 2He−αt+αs ∫ s
0 e−αzz2H−1dz

−2He−αt+αs ∫ t−s
0 eαzz2H−1dz.



Mathematics 2022, 10, 1619 23 of 26

Similarly, we can have:

I4 = t2H(e−αs − 1), I5 = −s2H + 2He−αs ∫ s
0 eαvv2H−1dv

I6 = αe−αs+αt ∫ t
t−s e−αzz2Hdz = −e−αs+αt ∫ t

t−s z2Hde−αz

= −e−αst2H + (t− s)2H + 2He−αs+αt ∫ t
t−s e−αzz2H−1dz

I8 = e−αt−αs(eαt − 1
) ∫ s

0 u2Hdeαu =
(
1− e−αt)s2H − 2He−αs(1− e−αt) ∫ s

0 eαuu2H−1du
I9 = (1− e−αs)t2H − 2He−αt(1− e−αs)

∫ t
0 eαvv2H−1dv

Then, we consider the term I10, which can be represented as:

I10 = −α2e−αt−αs
∫ s

0

∫ v
0 eαu+αv(v− u)2Hdudv

−α2e−αt−αs
∫ s

0

∫ s
v eαu+αv(u− v)2Hdudv

−α2e−αt−αs
∫ t

s

∫ s
0 eαu+αv(v− u)2Hdudv

= −2α2e−αt−αs
∫ s

0

∫ v
0 eαu+αv(v− u)2Hdudv

−α2e−αt−αs
∫ t

s

∫ s
0 eαu+αv(v− u)2Hdudv

= I1
10 + I2

10

Using the change of variables u − v = z, the change of order of integration, and
integration by parts, we obtain:

I1
10 = −2α2e−αt−αs ∫ s

0 e2αv ∫ v
0 e−αzz2Hdzdv

= −2α2e−αt−αs ∫ s
0 e−αzz2H ∫ s

z e2αvdvdz
= −2α2e−αt−αs ∫ s

0 e−αzz2H e2αs−e2αz

2α dz
= −αe−αt+αs(∫ s

0 e−αzz2Hdz−
∫ s

0 eαuu2Hdu
)

= e−αts2H − 2He−αt+αs ∫ s
0 e−αzz2H−1dz + e−αts2H − 2He−αt−αs ∫ s

0 eαuu2H−1du

Now, we consider I2
10, First we deal with the case of t > 2s. Using the change of

variables u− v = z in the inner integral, changing the order of integration, and integrating
with respect to v, we obtain:

I2
10 = −α2e−αt−αs

∫ t

s

∫ v
v−s e−αz+2αvz2Hdzdv

= −α2e−αt−αs(

∫ s

0

∫ z+s
s e−αz+2αvz2Hdvdz +

∫ t−s

s

∫ z+s
z e−αz+2αvz2Hdvdz

+

∫ t

t−s

∫ t
z e−αz+2αvz2Hdvdz)

= −α2e−αt−αs(
∫ s

0 e−αzz2H e2α(z+s)−e2αs

2α dz
+
∫ t−s

s e−αzz2H e2α(z+s)−e2αz

2α dz +
∫ t

t−s e−αzz2H e2αt−e2αz

2α dz)
= −α

2 e−αt+αs ∫ t−s
0 eαzz2Hdz− −α

2 e−αt−αs ∫ t
s eαzz2Hdz− −α

2 e−αt+αs ∫ s
0 e−αzz2Hdz

+−α
2 e−αs+αt ∫ t

t−s e−αzz2Hdz
= e−αst2H − e−αts2H − He−αs+αt ∫ t

t−s e−αzz2H−1dz + He−αt+αs ∫ s
0 e−αzz2H−1dz

−He−αt−αs ∫ t
s eαzz2H−1dz + He−αt+αs ∫ t−s

0 eαzz2H−1dz− (t− s)2H
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Similarly, one can verify that the above formula follows in the case of s < t < 2s.
Finally, summing up all the terms, we obtain:

Cov(Xt, Xs) = Cov
(

X̃t, X̃s

)
= Hν2

2 (−e−αt+αs ∫ t−s
0 eαzz2H−1dz + eαt−αs ∫ t

t−s e−αzz2H−1dz
−e−αt−αs ∫ t

s eαzz2H−1dz + e−αt+αs ∫ s
0 e−αzz2H−1dz

+2e−αt−αs ∫ t
0 eαzz2H−1dz)

(A3)

Moreover, using (A3), for all H ∈ (0, 1), we have:

VarXt = VarX̃t = Hν2
∫ t

0
z2H−1(e−αz + e−α(2t−z))dz (A4)

Which implies (4). �

Proof of Lemma 2. From (A1), we can easily obtain:

E[Xt] = m(1− e−αt) + X0e−αt (A5)

Moreover, using (4) in Lemma 1, we have:

Var[Xt] = Hν2
∫ t

0
z2H−1(e−αz + e−α(2t−z))dz→ HΓ(2H)

α2H (A6)

where α > 0 as t→ ∞ .
Since the random variable Xt has normal distribution, we can obtain (5) using (A5)

and (A6). Now, we consider (6). For convenience, we assume t ≥ s ≥ 0 and p = 2. Thus,
we show that

E(Xt − Xs)
2 ≤ C|t− s|2H (A7)

Using the fact Xt = X0 + α
∫ t

0 (m− Xs)ds + νBH
t , we obtain:

|Xt − Xs|≤|αm(t− s)|+ α
∫ t

s
|Xu|du + ν

∣∣∣BH
t − BH

s

∣∣∣ (A8)

Therefore, using (5), we obtain:

E(Xt − Xs)
2 ≤ 3

∣∣αm(t− s)|2 + 3
∣∣α|2E(∫ t

s |Xu|du)
2
+ 3ν2E

(
BH

t − BH
s
)2

≤ 3
∣∣αm(t− s)|2 + 3

∣∣α|2(t− s)
∫ t

s E|Xu|2du + 3ν2(t− s)2I

≤ C|t− s|2

Thus, (A7) is proved. Since Xt − Xs has a normal distribution, (6) follows from (A7) in
the standard way. �

Proof of Lemma 3. First, using (5) and (A6), one can easily check the condition

E
[
σ2

t ]= E[e2Xt
]
= e2E[Xt ]+2Var[Xt ] ≤ C

Which implies:
sup

0≤t≤T

∣∣∣σ2
t

∣∣∣ = Op(1) (A9)

From (A9), we can see that the second condition of A1 in Hypothesis 1 is satisfied.
Since ey is a continuous function of y and Xt is H − ε Hölder continuous with any small ε,
using Lemma 2 and (A9), we have:

E
∣∣∣σt − σs|= E|eXt − eXs |= E|eXs

(
eXt−Xs − 1

)∣∣∣ ≤ eXs(eC|t−s|pH−1) ≤ C|t− s|pH (A10)
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Which implies sup{|σs − σt|, |s− t| ≤ a} = OP(a1/2| log(a)|1/2). Hence the condition
of A1 in Hypothesis 1 is satisfied. For the condition A2 in Hypothesis 1, using (A10), we obtain:

sup|
∫ ti

ti−1

(σ(s)− σ(ti−1))dWs|
2
≤ 2 log(n)sup|

∫ ti

ti−1

(σ(s)− σ(ti−1))
2ds| ≤ C log(n)

n2

Which implies A2 in Hypothesis 1. �

Proof of Proposition 1. From Lemma 3, we can see that assumptions A1 and A2 of σt in
Hypothesis 1 are satisfied for the volatility process in (1). From the definition of Mn, we
can see that Mn has the same asymptotic distribution as sup

0≤t≤T

∣∣σ2
t
∣∣. Hence, we can obtain

the desired results. �
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