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Abstract: The paper aims to analyze how the different degrees of mathematical formalization can 

be worked in the study of probability at non-university educational levels. The model of 

algebraization levels for mathematical practices based on the onto-semiotic approach is applied to 

identify the different objects and processes involved in the resolution of a selection of probabilistic 

problems. As a result, we describe the possible progression from arithmetic and proto-algebraic 

levels of mathematical activity to higher levels of algebraization and formalization in the study of 

probability. The method of analysis developed can help to establish connections between 

intuitive/informal and progressively more formal approaches in the study of mathematics. 
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1. Introduction 

Today we are witnessing a debate in statistics education regarding the possibility of 

teaching different contents, such as statistical inference to students with limited 

knowledge of algebra or calculus through informal approaches [1–3]. A similar discussion 

is observed in relation to other mathematical topics, for which the recommendation is a 

stronger emphasis on understanding and solving problems [4] while avoiding 

unnecessary formalizations as well as learning computational algorithms, which are less 

relevant because of technology. 

In order to facilitate the understanding of the teaching contents, and according to  

students’ previous knowledge, the study of mathematics can be carried out with different 

degrees of formalization, which depend on the generalization, symbolization, and 

analytical computation processes; in other words, these different levels are linked to the 

use of algebraic concepts and processes. 

A contribution to this discussion is to admit the possibility of different formalization 

levels, i.e., various degrees of using algebra throughout the learning of mathematics. The 

view of algebra as the application of unknowns, equations, functions, parameters, or 

abstract structures, whose properties make it possible to operate with symbols, is 

restrictive since it conceals an essential feature of algebraic reasoning: that of 

generalization and progressive expression of generality. An extended view recognizes the 

presence of algebraic thinking even in the primary school mathematical activity [5,6]. In 

particular, the algebraic reasoning levels model [7,8] systematizes and completes such an 

extended view and enables to clarify the levels of mathematical formalization in the study 

of whatever content. 

In this paper, we center probability, because of the diversity of random situations 

that we have to face in our lives, and its necessity in the later study of inference. Due to 

this relevance, several curricular proposals [9,10] introduce probability in Primary 

Education, pursuing to achieve the probabilistic literacy needed for every citizen [11]. 

The aim of this paper is to analyze the algebraic activity required in the work with 

probability at non-university levels and to describe it using the levels proposed in the 
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algebraic reasoning model [7,8]. In this way, it is possible to define different degrees of 

formalization in the study of probability, depending on the algebraic reasoning level 

required in each of them, and to propose a sequence for introducing the fundamental 

ideas of probability at these educational stages. Furthermore, this study can also 

contribute to the discussion between the formal and informal teaching of probability and 

to the understanding of what is meant by formalization in the study of mathematics. This 

analysis helps define learning trajectories that take into account the connection between 

formal and informal mathematical work. 

The organization of the paper is as follows. After this introduction, the theoretical 

framework and method are described. Next, a series of problems centered on the classical 

meaning of probability, which introduces the fundamental stochastic ideas with a 

progression of algebraization levels, are analyzed. The fourth section includes a synthesis 

of the fundamental stochastic ideas in relation to the algebraization levels and their 

suggested distribution for the different educational stages. Finally, we reflect on the 

relevance of the type of analysis performed in order to progress from the 

intuitive/informal to the formal component in mathematical learning. 

2. Theoretical Framework and Method 

In this section, we synthesize the following foundations of the work: some notions of 

the Onto-semiotic Approach (OSA) to mathematical knowledge and instruction [12–14], 

different meanings of probability and fundamental stochastic ideas, and finally the 

algebraic reasoning model. 

2.1. Pragmatic Meaning and Onto-Semiotic Configuration 

The OSA assumes an anthropological conception of mathematics, which gives a 

central place to the notion of mathematical practice, as “any action or expression (verbal, 

graphical, etc.) carried out by someone to solve mathematical problems, communicate the 

solution obtained to others, and validate or generalize it to different contexts and 

problems” [12, p. 334]. Mathematics is also considered as a logically organized system of 

mathematical objects according to their nature and function in mathematical practices. 

These objects are classified into: problem-situations (tasks that induce mathematical 

activity); languages (terms and expressions, e.g., notations, symbols, graphical 

representations); concepts (mathematical entities that can be introduced by their 

definition); propositions (properties or statements about concepts); procedures 

(calculation techniques, operations, and algorithms), and; arguments (required to justify 

propositions or procedures). 

These objects are related to one another creating onto-semiotic configurations. 

Problem-situations are the raison d’être of mathematical activity; language constitutes the 

instrument of mathematical work and represents the other entities; arguments justify the 

procedures and propositions. In OSA, a distinction is made between extensive objects if 

they are involved in mathematical practice as a specific case, and intensive objects if 

appearing as a class or type of objects; these entities result from the corresponding 

mathematical processes of particularization and generalization, being relative to the 

situation under analysis. 

2.2. Pragmatic Meanings of Probability and Fundamental Stochastic Ideas. 

Different interpretations of the concept of probability (intuitive, classical, frequentist, 

subjective, and axiomatic) have been proposed throughout history and are currently used 

in teaching [15,16], which have been interpreted within OSA as pragmatic meanings [17]. 

The intuitive meaning of probability emerged in ancient times in association with 

games of chance and religious rituals, in situations requiring the expression of personal 

degrees of belief about the occurrence of particular events and the qualitative assignment 

of probabilities. 
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The classical meaning started to develop in the 13th century [18], although the first 

mathematical definition was proposed by De Moivre in 1718 and refined by Laplace in 

1814 as the ratio between the number of favorable cases to the number of possible cases, 

provided that all outcomes were equally probable [16]. This definition is circular and can 

only be applied in experiments with a finite number of equiprobable events. 

Bernoulli’s demonstration of the first law of large numbers was the origin of the 

frequentist meaning of probability, in which probability is defined as the limit towards 

which the relative frequency of an event tends when repeating the experiment a large 

number of times. Although this definition extends the probability calculation to 

experiments with non-equiprobable events, it does not allow us to obtain the true value 

of the probability, but only an estimate of the same; moreover, it requires the 

independence of successive trials that should be performed under identical conditions 

[16,17]. 

By means of Bayes’ theorem, the value of the (a priori) probability for an event could 

be revised on the basis of new data to transform it into an a posteriori probability. At the 

beginning of the 20th century, mathematicians such as Finetti or Ramsey relied on this 

theorem to define probability as a degree of belief based on personal experience [16]. With 

this, the field of application is broadened, but probability loses its objective character as it 

is conditioned by a given system of knowledge [19]. 

The controversy over the problems described for the various meanings of probability 

was resolved with the development of the axiomatic theory [19]. Starting from set theory, 

Kolmogorov defined probability as a measurable function that fulfilled some axioms and 

that allowed the development of all the results known at the time on probability 

calculation. These axioms are satisfied in the above definitions of probability and thus 

were accepted by the different statistical schools [17]. 

In addition to the idea of probability itself, Heitele [20] suggested that the 

mathematical study of probability requires consideration of specific fundamental 

stochastic ideas, which are frequently present in random situations and can be taught with 

different degrees of formalization. These ideas are: 

• The set of all possibilities (sample space), the events, and their elementary operations 

(complementary, union, intersection). 

• Equidistribution, which allows assigning probability for equiprobable events. 

• The sum and product rules in the calculation of probabilities. 

• Independence and dependence of events as well as conditional probability. 

• Compound experiment, its sample space, conditional and compound probability. 

• Elementary combinatorics is applied in the construction of the sample space and 

calculation of probabilities. 

• Random variable, mathematical expectation, and distribution of the random 

variable. 

• Convergence and law of large numbers. 

• Sampling and estimation. 

Consequently, the understanding of probability is achieved after a prolonged study 

process, which depends on the level of formalization, which should be adjusted to the 

type of students to whom it is directed. We will make operative this level of formalization 

by means of the Elementary Algebraic Reasoning (EAR) model. 

2.3. Algebraization Levels 

In the OSA framework, Elementary Algebraic Reasoning (EAR) is understood as the 

system of practices related to the resolution of tasks in which algebraic objects and 

processes are involved (symbolization, relationships, variables, unknowns, equations, 

patterns, generalization, modeling, etc.). The EAR model [7] employs as criteria to delimit 

the distinct levels of the types of objects, the generalization processes involved (or degree 
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of intension), and the analytical calculation that is brought into play in the corresponding 

mathematical activity. Based on these, the following levels are defined: 

• Level 0. Absence of algebraic reasoning. The person operates with intensive objects 

of first generality degree, using natural, numerical, iconic, and gestural languages. 

• Level 1. The properties of operations and the relational meaning of the equal sign are 

recognized, and the concept of equivalence emerges. A general rule is identified in 

functional tasks. 

• Level 2. Symbolic representations are used to represent intensive objects linked to 

contextual information; equations of the form Ax + B = C (A, B, C ϵ ℝ) are solved. In 

functional tasks, a general rule is recognized, but operations with variables are not 

performed. 

• Level 3. Established forms of algebraic reasoning appear. Symbols are used 

analytically, without reference to contextual information. Operations with 

indeterminates or variables are performed; equations of the type Ax + 𝐵 = Cx + D (A, 

B, C, D ϵ ℝ) are solved. 

Godino et al. [8] have proposed three new levels, resorting to the use and treatment 

of parameters, which are linked to families of equations and functions. The language used 

in these levels is symbolic and the symbols are managed analytically, without referring to 

contextual information. 

• Level 4. Variable parameters and coefficients are used to specify families of equations 

and functions, implying discrimination of the domain and range of parametric 

functions. Operations with variable coefficients are implicated, but not with 

parameters. 

• Level 5. This level describes the mathematical activity in which analytical (syntactic) 

computations involving parameters in conjunction with other variables are carried 

out. 

• Level 6. The highest level of generality is the work with algebraic structures (such as 

vector space or group) or the function algebra (addition, subtraction, division, 

multiplication, and composition of generic functions), which are topics started in 

high school. 

The algebraization levels are defined in terms of the objects and processes that are 

required and emerge in the mathematical activity carried out by a given subject when 

solving a specific task. They are not assigned to the tasks themselves, which can be solved 

in different ways, being able to bring into play a different algebraic activity, nor are they 

assigned to the individuals, who can develop solutions that involve objects or processes 

corresponding to different algebraization levels for the same problem-situation (The 

theory of algebrization levels developed in several articles by Godino and collaborators 

[7,8] is not presented as a "theory of levels of cognitive development" of subjects, but has 

a local character, referring to the mathematical activity carried out in a specific task. This 

does not mean that it would not be possible to complete this theory with new criteria and 

instruments for assigning subjects a level of cognitive development in the algebra domain.) 

The study of the algebraization levels in probability tasks performed in this paper will 

allow teachers to become aware of their progressive degrees of epistemic and cognitive 

complexity, as well as to plan the study of this content in a suitable way. 

2.4. Method 

The characterization of the formalization levels in probability teaching, which can be 

used as a global reference for curriculum design, involves a macroscopic point of view 

that incorporates the background summarized in the previous sections. Furthermore, it 

also requires a microscopic analysis of prototypical examples of situations-problems, such 

as that proposed in Godino [21], in which the fundamental stochastic ideas and the 

different ways of addressing their resolution intervene in a critical way. 
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With this idea in mind, in the following section, we have selected and solved a 

number of problems that are graded according to the levels of Elementary Algebraic 

Reasoning (EAR) required in their resolution. To highlight these EAR levels, as well as the 

fundamental stochastic ideas involved in these problems, we perform a semiotic analysis 

of the practices that should be carried out to achieve the solution, and identify the 

concepts, procedures, propositions, and arguments used. All this enables us to define 

degrees of formalization in the study of probability and to establish hierarchical 

relationships between them according to their complexity and interdependence. 

3. Algebraization Levels in Probabilistic Reasoning 

The teaching of probability should start from the children’s intuitive ideas about 

chance and probability and culminate with the axiomatic approach, which introduces the 

work with algebraic structures. Following this principle, this section progressively 

introduces the algebraization levels for the study of probability, using examples of the 

classical meaning. 

The first notions of probability are acquired through experience with situations that 

require the quantification of uncertain events or the expression of degrees of belief in them 

[22]. The assignment of probabilities to events is performed qualitatively, using everyday 

language (“not very likely”, “very likely”) based on individual preferences. In some cases, 

the probabilities are ordered by their highest plausibility (“more likely”, “less likely”) and 

are only quantified in simple cases (“there are 2 more than”). Mathematical procedures 

are not systematically used. 

3.1. Arithmetic Level 

Random Experiment, Sample Space, Events, Probability 

Games of chance are a major context in which children can understand the 

characteristics of random situations by working out the classical meaning [15]. If a sample 

space, E consists of a finite number n of elementary events and there is no reason to 

assume that any of them can happen more frequently than the remainder, then the 

probability of each elementary event is 1/n. Thus, applying Laplace’s rule, the probability 

of an event composed of k elementary events is equal to k/n. 

In the EAR model, the arithmetic level is characterized by the implementation of 

arithmetic procedures of calculation on particular numbers and natural or numerical 

language. This level appears when solving the following prototypical problem of 

probability comparison (depending on the two urns' composition, the problem can be 

solved by strategies ranging from the comparison of favorable cases to the comparison of 

fractions [23]), which is analyzed in Table 1: 

Table 1. Algebraic reasoning level 0 solution to Problem 1. 

Mathematical Practices Mathematical Objects 

There are twice as many red 

marbles in box A as blue 

marbles, and less than twice 

as many in box B. Therefore, 

in box B the probability of 

drawing a blue marble is 

higher.  

Concepts: experiment, events, favorable and unfavorable 

cases, probability, double, ratio, sampling. 

Procedures: distinguishing and counting favorable and 

possible cases, computing the ratio of favorable and 

possible cases; comparing ratios. 

Propositions: Events are equiprobable, the probability of 

occurrence for an event depends on the ratio of favorable 

to unfavorable cases. 

Problem 1. There are 4 red marbles and 2 blue marbles in box A. Box B contains 6 red 

marbles and 4 blue marbles (Figure 1). To win a prize, one must remove a blue marble 
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from the box without looking inside it. Which box would you choose to make the 

extraction? 

 

Figure 1. Boxes composition in Problem 1. 

In the practices analyzed in Table 1, only particular numerical values (number of red 

and blue marbles in the boxes), arithmetic operations (doubling a quantity), and order of 

natural numbers intervene. The established correspondence strategy [23] leads to 

computing the ratio in one box (“twice as many red marbles as blue marbles”) and 

comparing it with the same ratio in the other box. Since neither algebraic objects nor 

algebraic processes are involved, the mathematical activity performed is classified as 

algebraization level 0, according to Godino et al. [7]. 

3.2. Proto-Algebraic Level 

When similar to problem 1, neither the number of favorable nor the number of 

unfavorable cases coincide, the probability comparison problem cannot be solved by 

comparing these values, so that proportional reasoning must be applied (proportional 

reasoning appears when solving situations that are characterized by two types of 

relationships (a) functional relationships that link different magnitudes and reflect the 

meaning of ratio, and (b) scalar relationships that link quantities of the same magnitude 

[24]). In problem 1, we can compare the ratio between the quantities “number of blue 

marbles” (favorable cases) and “number of red marbles” (unfavorable cases), or between 

“number of blue marbles” (favorable cases) and “number of marbles in the box” (possible 

cases). Another solution to this problem is using Laplace’s rule to determine the 

probability of success in each box in order to choose the one with the highest probability. 

Such a strategy, which is analyzed in Table 2, and is based on the comparison of the 

fractions determined by the favorable and possible cases, implies a proto-algebraic level 

1 mathematical activity, since intensive objects of second degree of generality (rational 

numbers), properties of the algebraic structure of ℕ and equality as equivalence intervene. 

Table 2. Algebraic reasoning level 1 solution to problem 1. 

Mathematical Practices Mathematical Objects 

Since there are two blue marbles and 

four red marbles in box A, the 

probability of getting a blue marble is 

2/6. Similarly, there are 4 blue and 6 

red marbles in box B, so that the 

probability of getting a blue marble in 

box B is 4/10. Then, the probability of 

drawing a blue marble in box B is 

4/10. Now, 2 × 10 = 20 < 24 = 6 × 4, and 

hence, 2/6 < 4/10. 

Thus, the probability of success is 

lower for box A than box B. 

Concepts: chance, chance games, favorable and 

unfavorable cases, probability 

Procedures: distinguishing and counting favorable 

and possible cases, applying Laplace’s rule, 

comparing fractions. 

Propositions: Events are equiprobable, the 

probability of occurrence for an event depends on 

the number of elements; a fraction is smaller than 

another if the product of its numerator by the 

denominator of the second fraction is smaller than 

the product of its denominator by the numerator 

of the second fraction. 

Arguments: based on equiprobability of events, 

Laplace’s rule, and properties of fractions. 
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3.2.1. Compound Experiment, Compound Probability 

In secondary school, we introduce compound experiments, whose handling implies 

a higher complexity, since they involve combinatorial principles in the enumeration of the 

sample space. In urn problems, a distinction is made between sampling with or without 

replacement, which entails the independence or dependence of simple experiments, as we 

see in problem 2. 

Problem 2. There are two blue balls and four red balls in a box. Two balls are drawn one 

after another, noting the color of the first ball and returning it to the urn, before drawing 

the second one. What is the probability of obtaining two blue balls? What happens if both 

balls are drawn simultaneously from the urn? 

In the practices included in Table 3, properties and calculation with fractions and 

equality as equivalence are involved, so that the mathematical activity has a proto-

algebraic level 1 character. The product rule enables the solution of compound probability 

problems if the experiments are independent. In dependent experiments, we generalize 

by making use of conditional probability. 

Table 3. Algebraic reasoning level 1 solution to Problem 2. 

Mathematical Practices. Mathematical Objects 

We are dealing with a compound experiment. In the 

first part, a sampling with replacement is performed, 

with the result of the second extraction being 

independent of the first. Since there are two blue 

marbles and four red marbles in the box, the 

probability of obtaining a blue marble is 
2

6
= 

1

3
; 

𝑃 ( 1𝑠𝑡 𝑏𝑙𝑢𝑒 𝑏𝑎𝑙𝑙) =
1

3
; 𝑃 (2𝑛𝑑 𝑏𝑙𝑢𝑒 𝑏𝑎𝑙𝑙) =

1

3
;  

Therefore, the probability that the two balls are blue 

is P (2 blue balls)= 
1

3
×
1

3
=

1

9
. 

The second experiment depends on the first one and 

the probability of obtaining the blue ball is modified. 

As 𝑃 (2𝑛𝑑 𝑏𝑎𝑙𝑙 𝑏𝑙𝑢𝑒) =
1

5
 then  𝑃 (2 𝑏𝑙𝑢𝑒 𝑏𝑎𝑙𝑙𝑠) =

1

3
×
1

5
=

1

15
 

Concepts: Experiment. Favorable 

and possible cases. Compound 

experiment, compound 

probability, independence, 

dependence, conditional 

probability, sampling with and 

without replacement. 

Procedures: calculation of simple 

and compound probabilities. 

Product of fractions. 

Propositions: Sampling with 

replacement assumes 

independence of trials. 

3.2.2. Random Variable, Fair Game, Expectation 

In a compound experiment, the cartesian product of the sample spaces of the simple 

experiments gives the sample space. As an example, let us consider the following problem 

in which, in addition, the ideas of a random variable, distribution, and mathematical 

expectation are implicit: 

Problem 3. We roll two dice and add up the scores. What score would you bet on to have 

the best chance of winning? 

The description of the sample space associated with the experiment in a two-way 

table (Table 4) requires a representation/interpretation process of a higher level of 

generality (set of numbers pairs, classified in rows and columns). 

Table 4. Sample space corresponding to Problem 3. 

 Dice 2 

Dice 1 1 2 3 4 5 6 
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1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 

2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 

3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 

4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 

5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 

6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) 

From this table, we determine the sum of pairs and the probability distribution of the 

variable “sum of two dice”. Three different objects correspond to each value of the 

variable “sum of two dice” in Table 5: in the second column, the possible outcomes of the 

experiment are assigned; in the third column are the number of favorable cases, and; in 

the fourth column, the probability of obtaining each variable value. 

Table 5. Probability distribution for the sum of two dice. Algebraic level 2. 

Sum Posible Casess 
Favourable 

Cases 
Probability 

2 (1,1) 1 1/36 

3 (1,2), (2,1) 2 2/36 

4 (1,3), (2,2), (3,1) 3 3/36 

5 (1,4), (2,3), (3,2), (4,1) 4 4/36 

6 (1,5), (2,4), (3,3), (4,2), (5,1) 5 5/36 

7 (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) 6 6/36 

8 (2,6), (3,5) (4,4), (5,3), (6,2) 5 5/36 

9 (3,6), (4,5), (5,4), (6,3) 4 4/36 

10 (4,6), (5,5), (6,4) 3 3/36 

11 (5,6), (6,5) 2 2/36 

12 (6,6) 1 1/36 

Total  36  

A probability table serves as an icon for these relationships structure and allows us 

to gain knowledge about the probability distribution’s characteristics and shape. Thus, we 

observe that the mode of the variable is 7, therefore, we should bet on 7, since its 

probability of 6/36 is the highest. This functional aspect, and not using alphanumeric 

symbols which are characteristic of consolidated algebraic reasoning (level 3), lead to 

assigning proto-algebraic level 2 to the mathematical activity involved in the solution. 

As we mentioned before, the probability is raised from situations linked to games of 

chance. In these problems, a random variable that takes at least two different values (the 

profit assigned to each player if he/she wins) is implicitly considered. This set of values 

with their probabilities constitutes the probability distribution of the random variable, 

whose mean is known as the mathematical expectation. For a fair game, it will be 

necessary to equalize the winning expectations, i.e., the products of the prize awarded 

and the probability of winning for each player. Thus, the first step in deciding whether a 

game is fair is to compare the winning probabilities of the different players. This is the 

context of problem 4. 

Problem 4. Alice and Paul are playing a game using a box with marbles. Alice has 4 red 

marbles and 2 blue marbles in her box. Pablo keeps in his box 6 red marbles and 4 blue 

marbles. Paul wins 50 cents each time he draws a red marble. How much should Alice 

win each time she draws a blue marble to make the game fair? 

In problem 4, the ideas of a random variable and mathematical expectation appear 

implicitly. As shown in Table 6, the solution requires both computing the probabilities of 
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success by each player and recognizing the inverse proportionality relationship between 

the winning expectation and the amount received. This means posing and solving an 

equation in which the unknown (winnings of a player) is cleared in one member of the 

equation. Thus, according to Godino et al. [7], a proto-algebraic activity of algebraization 

level 2 is developed. 

Table 6. Algebraic reasoning level 2 solution to problem 4. 

Mathematical Practices Mathematical Objects 

As Alice wins whenever she draws a blue marble 

and Paul wins whenever he draws a red marble, 

the probabilities of each of them winning are: 

𝑃(”Alice wins”) =
2

6
=
1

3
;  𝑃(”Paul wins”) =

6

10

=
2

5
 

If x is the amount Alice must win when she gets 

the blue marble, and Paul wins 50 cents when it is 

red, for the game to be fair, it must follow that 

P(“Alice wins” ) × x = P(“Paul wins” )×50 

That is, 
1

3
𝑥 =

2

5
× 50, where 

1

3
𝑥 = 20, and so x = 

60. That is, Alice must earn 60 cents each time the 

marble is blue. 

Concepts: chance, fair play, favorable 

and possible cases, probability, 

random variable, mathematical 

expectation. 

Procedures: calculation of 

probabilities, equalization of expected 

winnings of the players, formulation, 

and resolution of the inverse 

proportionality equation. 

Propositions: Profits and probabilities 

are inversely proportional. 

Arguments: The game is fair if the 

players have the same expected profit. 

3.3. Algebraic Level 

The assignment of a strictly algebraic level (level 3) to a practice requires the use of 

symbolic-literal language and an analytical/syntactic operation with such language [7]. To 

exemplify this, Problem 5 is analyzed. 

Problem 5. There are 4 red marbles and 2 blue marbles in box A. In box B there are 6 red 

marbles and 4 blue marbles (Figure 2). How would you distribute 8 red marbles so that 

the probability of getting a blue marble is the same in both boxes? 

 

Figure 2. Boxes in Problem 5. 

In an arithmetic solution, we could reason as follows: We can distribute the 8 red 

marbles, by placing 2 in box A to make 6 red marbles, and 6 in box B resulting in 12 red 

marbles. In this way, there would be three times as many red marbles as blue marbles in 

both boxes and, therefore, there would be an equal probability of drawing blue marbles. 

Another solution with a higher algebraization level that permits generalizing the 

result to other compositions of favorable and possible cases in the boxes is provided in 

Table 7. Here, the equations have been posed symbolically and a substitution technique is 

applied to solve them; therefore, the reasoning corresponds with an algebraization level 

3, according to the EAR model [7]. 

Table 7. Algebraic reasoning level 3 solution to Problem 5. 

Mathematical Practices Mathematical Objects 

Let a be the number of red marbles that are 

placed in box A, and b the number that is added 

Concepts: experiment, favorable and 

possible cases, probability, ratio, 
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to box B. To have the same probability of 

drawing a blue marble, the following must be 

satisfied: 
2

2 + 4 + 𝑎
=

4

4 + 6 + 𝑏
⟹ 

2(10 + 𝑏) = 4(6 + 𝑎)
 
⇔ 20 + 2𝑏 = 24 + 4𝑎 

 
⇔2𝑏 = 4 + 4𝑎

 
⇔𝑏 = 2 + 2𝑎 

Since the number of marbles to be distributed is 

8, 𝑎 + 𝑏 = 8;  𝑏 = 8 − 𝑎. So, 
8 − 𝑎 = 2 + 2𝑎

 
⇔6 = 3𝑎

 
⇔𝑎 = 2 

Hence, we should add 2 red marbles to box A 

and the remaining marbles to box B. 

Procedures: applying Laplace’s rule, 

posing a system of equations, and 

substituting to solve the equation Ax + 

B = Cx + D. 

Propositions: The red marbles 

(unfavorable cases) should be 

distributed so that the number of blue 

marbles is directly proportional to the 

number of total marbles. 

Arguments: Based on the definition of 

probability and the proportionality 

relationship. 

3.4. Meeting Parameters for the Fist Time 

In probability, it is characteristic to use general distributions that are determined by 

one or several parameters, such as the binomial distribution B(n,p), which is studied in 

high school. Given a random experiment and an event A, with probability p, we say that 

there is success if the experiment results in A, otherwise we speak of it as failure. In n 

independent repetitions of the experiment, the number of successes is a random variable 

X, with integer values between 0 and n, which follows a binomial distribution of 

parameters n (number of trials) and p (probability of success in each one). This is the 

context of problem 6. 

Problem 6. Consider the experiment consisting of rolling two dice and adding their scores. 

What is the probability of getting the sum 7 a given number of times in n repetitions of 

the experiment? 

This first approach to parameters in determining the probability of success in k trials 

of the n repetitions, described in Table 8, is a level 4 in the EAR model [8]. The use of 

parameters encourages the reification of formulas and algebraic expressions, and it is a 

way of generalization by determining families of objects (probability distributions, in our 

case) that can be modeled and represented by a common structure [25]. 

Table 8. Algebraic reasoning level 4 solution to Problem 6. 

Mathematical practices Mathematical objects 

Since the trials are independent, the probability of 

obtaining the sum of 7 in each trial remains constant 

at 5/36. When repeating the experiment n times, if in 

the first k, “sum 7” (E) was obtained and in the 

following (n k) “different sum of 7” (F), the 

probability is: 

𝑃 (𝐸, 𝐸, . . . , 𝐸⏞      ,

𝑘 𝑡𝑖𝑚𝑒𝑠

𝐹, 𝐹, . . . , 𝐹⏞      
𝑛−𝑘 𝑡𝑖𝑚𝑒𝑠

) = 

= 𝑃(𝐸) ∙ 𝑃( 𝐸) ∙ . . .∙ 𝑃(𝐸)⏞              
𝑘 𝑡𝑖𝑚𝑒𝑠

∙ 𝑃(𝐹) ∙ 𝑃( 𝐹) ∙ . . .∙ 𝑃(𝐹)⏞              
𝑛−𝑘 𝑡𝑖𝑚𝑒𝑠

 

= (
5

36
)
𝑘

∙ (
29

36
)
𝑛−𝑘

 

The probability of obtaining k times the sum 7 (E) 

and (n k) times the sum 7 (F), is the same in any 

ordering of successes (E) or failures (F) 

(commutative property of the product). 

Concepts: compound experiment, 

independence events, probability, 

combinations, parameters. 

Procedures: Computing the 

probability of success using 

Laplace’s rule; computing the 

composite probability with the 

product rule. Finding the number of 

combinations of n elements taken 

from k in k. 

Propositions: The probability of 

success is constant in each 

experiment. The probability of 

obtaining k-successes in n-trials is 

the same for any arrangement of 

these; the number of combinations 
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To compute the probability of getting the sum 7 in k 

throws, just multiply by the number of possible 

orderings of successes and failures, i.e., by the 

number of combinations of n elements taken k at a 

time. 𝑃(k sums 7 in n trials) = (𝑛
𝑘
) ∙ (

5

36
)
𝑘

∙ (
29

36
)
𝑛−𝑘

 

of n elements taken from k in k 

is (𝑛
𝑘
). 

Arguments: Based on the 

independence of simple 

experiments, the product rule, and 

combinatorial techniques. 

In particular, the situation described in problem 6 can be generalized to a binomial 

distribution B(n,p) of parameters n and p, whose probability distribution is: 

𝑃(X = 𝑘) = (
𝑛
𝑘
) 𝑝𝑘 (1 − 𝑝)𝑛−𝑘 k = 1, … n.  

3.5. Operations with Parameters 

Computational operations with parameters appear in high school textbooks in the 

study of normal distribution and statistical inference. Once continuous random variables 

and the concepts of density function and distribution have been covered, the normal 

distribution of parameters μ and σ, N(μ,σ) is introduced, which is a continuous random 

variable with a density function: 

  𝑓(𝑥) =
1

𝜎√2𝜋
𝑒
−
(𝑥− 𝜇)2

2𝜎2 , for each 𝑥𝜖ℝ. 

This distribution is studied, among other reasons, because of its applications in 

biological and psychological phenomena or in error theory. The distribution function of a 

continuous random variable 𝑋 is a real-variable function given by an integral: 

𝐹(𝑥) = 𝑃((−∞ ≤ 𝑋 ≤ 𝑥]) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

−∞

  

(In fact it is an improper integral not studied in high school.) 

From it, probabilities of the variable in intervals are computed: 

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎) = ∫ 𝑓 (𝑥)𝑑𝑥
𝑏

𝑎

  

However, since the normal density function lacks a primitive, its distribution 

function has no explicit expression, and so numerical methods are used to obtain its 

values. In practice, students can either use a calculator that provides the values of the 

distribution function F(x) given x, or a statistical table of the normal distribution N(0,1). 

This requires employing the properties of the normal distribution to conclude that if 𝑋 is 

a normal variable N(μ, σ), then 𝑍 =
𝑋−𝜇

𝜎
 is a normal variable 𝑁(0,1). 

Problem 7.  Determine in terms of μ and σ, the 90% percentile in a normal distribution 

N(μ,σ). 

Obtaining the percentile in a normal distribution N(μ, σ) as proposed in problem 7, 

requires operating with the parameters (Table 9) which are characteristic of the 

algebraization level 5 [8]. 

Table 9. Algebraic reasoning level 5 solution to problem 7. 

Mathematical practices Mathematical objects 

The 90% percentile is the value P90 

such as: 𝑃 (𝑋 ≤ 𝑃90) = 0,9 

Concepts: random variable, density function, 

normal distribution, percentile, standard normal 

distribution.  
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In the normal 𝑁(0,1) table we 

observe:𝑃 (𝑍 ≤ 1,28) = 0,9, 

where Z = 
𝑋−𝜇

𝜎
. Then 

𝑃 (
𝑋−𝜇

𝜎
≤ 1,28).=.0,9; 

𝑃 (𝑋 − 𝜇 ≤ 1,28 𝜎).=.0,9 = 𝑃 (𝑋 ≤ 𝜇 +

1,28 𝜎), 

then 𝑃90.=.𝜇 +  1,28 𝜎. 

Procedures: operations with parameters, using 

the 𝑁(0,1) table, typification, and inverse 

operation 

Propositions: Any linear combination of a normal 

random variable is also a normal random 

variable. Typifying the normal distribution leads 

to the 𝑁(0,1). 

Arguments: Based on the properties of the 

normal distribution and the calculus of 

probabilities. 

This algebraization level 5 also appears in the approximation of the binomial 

distribution by a normal distribution. Thus, the De Moivre-Laplace Theorem ensures that 

the probability that the binomial distribution B(n, p) converges to a normal distribution 

𝑁(𝑛𝑝,√𝑛𝑝(1 − 𝑝)) can be higher than a certain value, for a sufficiently high n, a good 

approximation being accepted when 𝑛𝑝 ≥ 5 and 𝑛(1 − 𝑝) ≥ 5.  (The theorem's 

complexity arises from the fact that it involves a succession of distributions (B (n, p), with 

n varying, whose limit is not an ordinary functional limit, but a stochastic convergence.) 

3.6. Working with Algebraic Structures 

Although the problems discussed so far can be solved by means of the classical 

meaning of probability, in this section we will discuss other problems that are included in 

the axiomatic meaning. Since this meaning encompasses all the previous ones, this section 

can be considered an extension of the study of classical probability to a higher level of 

abstraction. 

Kolmogorov proposed a satisfying axiomatic for probability, considering that the 

sample space associated with a random experiment is determined by the set Ω of all 

possible outcomes associated with the experiment (sample points) and a σ-algebra of 

events A over that sample space (i.e., a class of subsets of Ω closed for numerable unions, 

contrary and containing the empty set). He defined probability as a function of sets P: A 

→ℝ satisfying three axioms: 

P1 (Non-negativity) 𝑃(𝐴) ≥ 0, for every 𝐴 ∈ A. 

P2 (Certain event) 𝑃(Ω) = 1. 

P3 (σ-additivity) For every sequence {𝐴𝑖} of mutually incompatible events, 𝐴𝑖 ∩ 𝐴𝑗 =

∅, for every 𝑖 ≠ 𝑗 , 𝑃(⋃ 𝐴𝑖) =
∞
𝑖=1 ∑ 𝑃(𝐴𝑖)

∞
𝑖=1 . 

These axioms allow to deduce the rules of probability calculation, but not the way to 

assign a probability to non-equiprobable elementary events [15]. However, in a random 

experiment with a finite sample space Ω, assuming that all elementary events are 

equiprobable, the function P: P(Ω) →ℝ is defined by 

𝑃(𝐴) =
#𝐴

#Ω
 (#𝐴 denotes the cardinal of event 𝐴), fulfilling the previous axioms. This 

leads to the Laplace rule for the assignment of classical probabilities. 

Less formally, Kolmogorov’s axiomatics is introduced in high school and probability 

is defined in some texts as an application of each event in the interval [0,1]. Some 

properties that facilitate the resolution of problems when the probability of specific events 

in a sample space is known and the probability of others in the same space is to be 

determined are derived from the axioms. The proof of these propositions requires 

students to activate interpretation, unitarization, materialization, reification, and 

representation processes with intensive objects so that the degree of abstraction is higher 

than necessary in their application. Problem 8 discusses an example of an activity taken 

from a high school textbook. 

Problem 8. Let A and B be two events. Consider the event C: “only happens to one of 

them”. Prove that P(C)= P(A)+ P(B) − 2P (A∩ 𝐵) [26, p. 360]. 
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Table 10 shows that in order to solve problem 8, the event C “only one of the two 

occurs” must be interpreted by operations on the events A and B, so that “A occurs and B 

does not occur” is given by 𝐴 ∩ �̅� and “B occurs and A does not occur” is �̅� ∩ 𝐵. 

Table 10. Algebraic reasoning level 6 solution to problem 8. 

Mathematical practices Mathematical objects 

Considering 𝐶 = (𝐴 ∩ �̅�) ∪ (�̅� ∩ 𝐵), 

𝐴 = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ �̅�) and 

𝐵 = (𝐴 ∩ 𝐵) ∪ (�̅� ∩ 𝐵), 
Using the additive property of probability; 

𝑃(𝐶) = 𝑃(𝐴 ∩ �̅�) + 𝑃(�̅� ∩ 𝐵), 
𝑃(𝐴) = 𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴 ∩ �̅�), 

𝑃(𝐵) = 𝑃(𝐴 ∩ 𝐵) + 𝑃(�̅� ∩ 𝐵), 

Then: 𝑃(𝐶) = 𝑃(𝐴 ∩ �̅�) + 𝑃(�̅� ∩ 𝐵) 

= (𝑃(𝐴) − 𝑃(𝐴 ∩ 𝐵)) + (𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)) 

= 𝑃(𝐴) + 𝑃(𝐵) − 2𝑃(𝐴 ∩ 𝐵). 

Concepts: sets, union, intersection, 

complementary, disjoint sets. 

Procedures: Operations with sets; 

operations with the probability function. 

Propositions: The union of an event and its 

complementary is the sample space. The 

intersection of an event and the 

complementary of another is equal to the 

difference between the first and the second. 

Probability is additive in disjoint events. 

In this sequence of practices, events are seen as unspecific sets of a particular space, 

as abstract objects in which operations are defined (union, intersection, opposite) that 

fulfill a system of specific properties; probability is an application that is defined on such 

sets that fulfill certain “rules” in relation to their operations. Therefore, the algebraization 

level is 6. 

4. Synthesis and Articulation of Algebraization Levels in the Study of Probability 

Table 11 presents a summary of the fundamental stochastic ideas, algebraic objects, 

and algebraization levels that appear in the problems analyzed. We observe that the same 

stochastic ideas can be worked with the different algebraic reasoning degrees when 

choosing appropriately the type of problem and method of resolution. This observation 

corroborates two assumptions of Heitele [20]: (a) The fundamental ideas appear in the 

majority of random situations; (b) It is possible to teach them with different degrees of 

formalization. In this sense, this research work also complements that of Heitele [20] by 

operationalizing its degrees of formalization through the six levels proposed in the 

algebraic reasoning levels model. 

Table 11. Synthesis of stochastic ideas and algebraic levels in the examples. 

Stochastic Fundamental Ideas 
Problem Examples 

P1 P2 P3 P4 P5 P6 P7 P8 

Probability, favorable, unfavorable and possible 

cases 
x x x x x x x x 

Random experiment, sample space, event x x x x x x x x 

Equidistribution, equiprobability, Laplace rule x x x x x    

Addition rule x x x x x x x x 

Dependence and independence  x x       

Compound experiment, joint probability  x x   x   

Combinatorics  x x   x   

Random variable, distribution, expectation   x x  x x  

Sampling x x       

Algebraic objects  

Numerical sets x x x x x    

Ratio, proportion x x x x x    

Alphanumerical symbols, equations   x x x x x x 
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Functions (distribution), representation   x x  x x  

Parameters      x x  

Operation with parameters       x  

Algebraic structures        x 

Algebraization levels  

Arithmetic 0 x    x    

Protoalgebraic 
1 x x       

2   x x     

Algebraic 

3     x    

4      x   

5       x  

6        x 

Although not all of the particular problems chosen always contain all the stochastic 

ideas, it is possible to vary most of them, to make them implicit, and also to change the 

problem to work at a different algebraization level. So, for example, in problem 2 one can 

assume that n balls are drawn with replacement and ask for the probability of getting a 

number x in red, which would lead to the random variable, (binomial) distribution, and 

use of parameters (level 4). 

This analysis also enables us to reflect on the algebraic reasoning levels implicit in 

working with probability in the curriculum [10,27]. In Primary Education, students begin 

to work intuitively and at an arithmetical level, in order to bring them closer to the random 

phenomena of their daily lives and expand their probabilistic language. Later they reach 

the calculation of probability as a quotient of favorable and possible cases in simple 

problems. By the end of this phase, students have worked on ratios and proportionality, 

which are closely related to some probabilistic content [28,29]. 

Once Compulsory Secondary Education (CSE; 12–16 year-olds) begins, students are 

expected to be able to make sense of the notions of ratio and proportion in proportional 

and inversely proportional magnitudes [30], which would allow them to work on fair 

games in which players have different probabilities of winning. The problems on 

compound experiments that are introduced in 3rd grade (14–15 year-olds) can be initially 

based on the tree diagram (one of the main tools in probability and combinatorics, 

according to Fischbein, [31]). By the end of secondary education, the formal study of 

combinatorics is included, in which calculation formulae parameters are involved, which 

implies algebraization level 4. 

Although the probability axioms can be discussed intuitively, their formal expression 

on the basis of Kolmogorov’s theory at algebraization level 6 is currently only worked on 

in high school (17–18 year-olds) and their study is very limited, by giving preference to 

work with extra-mathematical situations. In the same way, although random variables 

and probability distributions appear implicitly in CSE in the mathematical activity 

characteristic of proto or algebraic levels, the study of distribution models, such as the 

binomial or normal distribution in which algebraization levels 4 and 5 are applied, is 

reserved for high school. 

5. Final Reflections 

The algebraic reasoning model applied in this article helps to deepen the 

characterization of mathematics proposed by other authors, from the epistemological and 

learning processes points of view. Thus, Fischbein [32] considers mathematics: “(a) as a 

formal, deductive and rigorous body of knowledge, as presented in advanced textbooks; 

(b) mathematics as a human activity” (p. 231). He also suggests recognizing the 

interactions between the formal, algorithmic, and intuitive components of mathematics. 

Freudenthal [33] considers that mathematics should not be learned as a closed system 

but as an activity of mathematizing reality. Realistic Mathematics Education, developed 
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on his ideas, distinguishes between horizontal and vertical mathematization. In the 

former, students use mathematical tools to organize and solve real-life problems, which 

involve moving from the real world to the world of symbols. Vertical mathematics 

involves the reorganization of symbols, connecting concepts and strategies within the 

mathematical system. 

As we have demonstrated in this paper, OSA-based analysis of problem-solving 

reveals the presence of objects and processes characteristic of proto-algebraic levels, the 

recognition of which can help in the transition between intuitive, algorithmic, and formal 

components [32] and of the interactions between the horizontal and vertical component 

of mathematical activity [33]. Moreover, even within the formal study of mathematics, it 

is possible and useful to admit different degrees of generalization and formalization. 

This research work could be continued by analyzing the algebraic reasoning levels in 

activities involving the frequentist and subjective meanings of probability, not considered 

here due to space limitations, or for other curricular contents. The implications of this type 

of analysis for teacher training should also be studied. The different degrees of 

formalization in probabilistic reasoning should be taken into account in the training of 

teachers to teach probability and in instruments for the evaluation of such knowledge, 

such as the one developed by [34]. 

The examples described will help the teacher to analyze the degree of generality and 

formalization in the mathematical activity involved in solving probability problems and 

planning instructional processes. This analysis can serve for evaluating at what 

educational stage and in what way the study of probability can be approached with 

different algebraization levels, whilst also taking into account the probabilistic contents 

that are being worked on. 
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