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Abstract: A mathematical statement for the coupled stationary thermoelasticity is given on the
basis of a variational approach and the contact boundary problem is formulated to consider inho-
mogeneous materials. The structure of general representation of the solution from the set of the
auxiliary potentials is established. The potentials are analyzed depending on the parameters of the
model, taking into account the restrictions associated with additional requirements for the positive
definiteness of the potential energy density for the coupled problem in the one-dimensional case.
The novelty of this work lies in the fact that it attempts to take into account the effects of higher
order coupling between the gradients of the temperature fields and the gradients of the deformation
fields. From a mathematical point of view, this leads to a change in the roots of the characteristic
equation and affects the structure of the solution. Contact boundary value problems are formulated
for modeling inhomogeneous materials and a solution for a layered structure is constructed. The
analysis of the influence of the model parameters on the structure of the solution is given. The features
of the distribution of mechanical and thermal fields in the region of phase contact with a change in
the parameters, which are characteristic only for gradient theories of coupled thermoelasticity and
stationary thermal conductivity, are discussed. It is shown, for example, that taking into account the
additional parameter of connectivity of gradient fields of deformations and temperatures predicts the
appearance of rapidly changing temperature fields and significant localization of heat fluxes in the
vicinity of phase contact in inhomogeneous materials.

Keywords: second gradient theory; coupled thermoelasticity; fundamental solutions; contact bound-
ary problems; scale parameters; thermal resistance

1. Introduction

Currently, in connection with new requirements for the properties of structural materi-
als, for the conditions of their operation, as well as in connection with the development
of new technologies, which are characterized by high gradients of temperature and de-
formation fields, the attention to the related problems of the mechanics of deformable
bodies requires revision, since the associated effects can be significant, although, in the
traditional approach, they are usually ignored, i.e., changes in elastic deformation in the
case of classical unbound thermoelasticity do not affect the temperature distribution, and
vice versa.

One of the first attempts to eliminate this shortcoming of the classical uncoupled theory
when describing the dynamic behavior of structures can be found in [1]. However, in the
formulated theory of coupled thermoelasticity in [1], diffusion-type heat transfer models
were used, predicting infinite heat propagation rates, which contradicts experimental obser-
vations. Subsequently, these contradictions were removed as a result of the development
of a generalization of the theory of heat conduction [2–4]. The idea of studying connected
processes of thermodynamics of deformations and thermal conductivity problems led to
the development of a generalized model of hyperbolic thermal conductivity in [5–8].
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The physical nature of the relaxation time in the Maxwell–Cattaneo heat conduction
law was discussed in [9], where it was proposed to associate the relaxation time with the
viscoelastic properties of the media.

Further development of the study of coupled thermoelasticity and thermal conduc-
tivity on the basis of the generalized theory of thermal conductivity was obtained in
works [10,11] and others.

The importance of taking into account temperature gradient effects of a higher order
in comparison with classical models was noted in [12–14]. First of all, we should celebrate
the fundamental work of [15], where a unified procedure for constructing coupled gradient
models of thermodynamic processes of deformation for gradient and nonlocal materials
(constitutive relations, equations of motion, and initial boundary conditions) is consistently
presented using the thermodynamic restrictions extended to the cases of gradient media.
Taking into account the coupled effects of the deformation fields and temperatures is
traditionally of considerable interest for the applications. As an example, let us consider
the work [16], in which a coupled thermoelasticity mode was used to study the effect of
temperature relaxation on transient processes at the top of a semi-infinite crack. A special
Fourier model with one and two relaxation times was used for modeling. To describe
coupled processes of thermomechanics in inhomogeneous structures, a version of the
generalized gradient model with two scale parameters was formulated in [17].

In recent work [18], a coupled gradient thermoelasticity model and a dual-phase-lag
heat conduction model were used to study the processes of thermoelastic damping in
strain gradient microplates. Simular model is applied in [19] to study the thermal heat
problem of a homogeneous and isotropic long cylinder due to initial stress and heat source.
The possible elastic flexural waves in a thermoelastic semiconduction micro-beam are
studied in the work [20]. The coupling effects of the carrier field, temperature field, and
the elastic displacement field are considered. The strain gradient elasticity and the non-
Fourier the dual-phase-lag heat conduction model were incorporated into a generalized
thermoelastic model to take the small-scale effects into account for the thermoelastic
damping in microplates.

As a rule, the effects of coupling are limited by taking into account the coupling of
temperature fields with volumetric deformation and the corresponding dynamic effects
determined by the generalized laws of heat conduction [16–21], etc. In this connection, the
novelty of the present work lies in the fact that it attempts to take into account the effects of
higher order coupling between the gradients of the temperature fields and the gradients of
the deformation fields.

For inhomogeneous structures, when solving related problems, it is important to take
into account surface effects at the interface between different phases—the effects of thermal
resistance of the boundaries [22–24]. In this regard, in the work [25], it is shown that the use
of the gradient model of stationary thermal conductivity together with an extended version
of continuous adhesion makes it possible to model successfully the thermal resistance.

A new and fairly general coupled model of thermoelasticity and thermal conductivity
was proposed in [25,26], where a variational gradient model of a medium with a field of
defects—dilatation—was proposed. The model took into account the mutual influence
of elastic strain fields and defect fields determined by free dilatation. In turn, the defect
fields—free dilatations—are proposed to be interpreted as temperature deformations.

As a result, a coupled gradient two-parameter model of thermoelasticity and thermal
conductivity was constructed, in which scale effects are determined, both in mechanical
processes and in processes of stationary thermal conductivity, and the coupleness of these
processes is determined by the coupleness of elastic deformation fields and temperature
deformation fields in the version of the gradient generalization of the Mindlin model for
dilatation model of defects. It is shown that the model is fully consistent with thermoelas-
ticity and thermal conductivity, since, in particular, it describes both the gradient version of
thermoelasticity and gradient thermal conductivity.
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In a recent paper [27], a generalization of the variational model considered earlier
in [25,26] was proposed, in which a more complete gradient one-parameter model of
the interphase layer (not only the dilatation gradient model) for a medium with a defect
field, the free dilatation field, is used to describe mechanical processes (field of thermal
deformations), and also a non-classical version of the model of adhesive interactions is
introduced, which allows modeling of thermal resistance. The study of the structures of
general solutions for the proposed connected model and the features of the fundamental
solutions obtained for this problem are analytically given in [27].

In this work, the general solution of the coupled stationary problem of thermoelasticity
and thermal conductivity is constructed in the form of an expansion in fundamental
solutions characteristic of a coupled formulation, taking into account the constraints on the
model parameters associated with positive definiteness. Such representations are new and
are used for the first time for a qualitative analysis of possible solutions to contact problems.
In particular, we will study the structure of the general solution and the features of the
deformed state and thermal fields depending on the coupled parameters, scale parameters,
and the parameter responsible for thermal barrier effects.

Let us consider the variational statement of the coupled problem [27], where the
gradient model of the interphase layer is introduced for a medium with defect fields
(thermal strains) and a model of surface interactions is taken into account [25]:

2UV = 2µεijεij + λθ2 + l2
e /µ(LijRj)(LijRj) + 2SθT + 2Pθ,kT,k+

+kV l2
T∆T∆T + kV T,kT,k + aTT

2UF = Rs
.
T

.
T

where LijRj = µRi,jj + (µ + λ)Rj,ji, λ and µ are the Lamé elastic parameters, l2
T ,l2

e are the
scale parameters that define the gradient effect for the temperature and elastic gradient
effect consequently, kV is the thermal conductivity coefficient, S determines the coefficient
of thermal expansion, P defines the coupled thermomechanical effects, Rs defines the
thermal resistance effects on the surface [25], and

.
T = T,ini = ∂T/∂n.

Using the procedure of integration by parts, we write down the condition for the
Lagrangian to be stationary: δL = δA− δ(UV + UF), A =

∫
V

PV
i RidV +

∫
F

PF
i RidF. As a

result, the variational equality defining the mathematical model for the considered coupled
thermomechanical problem, presented in co-ordinate form, has the view:

δL =
=
∫
V
[PV

i + LijRj − l2
e ∆LijRj − (µ + λ)l2

e /µLjkRk,ij − P∆T,i + ST,i]δRi−

−(Sθ − Pθ,kk + kV l2
T∆∆T − kV∆T + aT)δT]dV−

+
∫
F

{
[PF

i − (2µεij + λθδij + STδij − l2
e (LikRk),j − (µ + λ)l2

e /µ(LjkRk),i − PT,ij)nj]+

+[l2
e (LikRk)nj + (µ + λ)l2

e /µ(LjkRk)ni + PT,jni],pδ∗pj

}
δRidF−

−
∫
F
[l2

e (LikRk)nj + (µ + λ)l2
e /µ(LjkRk)ni + PT,jni]njδ(Ri,pnp)dF−

−
∫
F
[kV l2

T∆T + Rs
.
T]δ

.
TdF−

∫
F
[(−kV l2

T∆T,k + kV T,k + Pθ,k)nkδT]dF−

−∑
∮
[l2

e (LikRk)nj + (µ + λ)l2
e /µ(LjkRk)ni + PT,jni]vjδRids = 0

(1)

Here, PV
i , PF

i are the efforts given in the volume V and on the surface of the body F.
Equation (1) is written for simplicity under the assumption that the surface is formed

by a family of planes, i.e., the effect of surface curvature is not taken into account.

2. Mathematical Statement of the Contact Problem of Coupled Thermoelasticity

Following (1), we write the system of governing equations corresponding to the
functional (1) (in the absence of volume forces and heat sources):
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L(R− (l2
e /µ)LR) +∇(ST − P∇2T) = 0, kV∇2(T − l2

T∇2T)− aT − Sθ + P∇2θ = 0, (2)

where L(·) = µ∇2(·)+ (µ+λ)∇div(·) is the Lamé operator and∇2(·) is the Laplace operator.
In an inhomogeneous medium consisting of different phases of materials (in a compos-

ite material), a system of contact conditions at the interphase boundaries for temperature is
added to Equation (2):

[T] =
[ .

T
]
= 0, [−κψ] + Rs

.
T = 0,

[
κ

.
φ + P

.
θ
]
= 0, (3)

where:
ψ = −l2

T∇2T, φ = T − l2
T∇2T, (4)

and for displacements:

[R] =
[ .
R
]
= 0, [−µu− (µ + λ)unn] = 0,

[
p(U)− p̂(u)− P(∇

.
T)− P(∇2T −

..
T)n + STn

]
= 0, (5)

where:
u = −(l2

e /µ)LR, U = R− (l2
e /µ)LR. (6)

Here, p(U) = ‖pi(U)‖ is the vector of surface stresses caused by the classical compo-
nent U of general displacements R, pi(U) = µ(Ui,j + Uj,i) + δijλ(Uk,k); p̂(u) = ‖ p̂i(u)‖ is
the vector of moment stresses on the interface caused by the action of the cohesive field u
(see [27]). It is determined through the tensor of cohesive moments mij = −µ(uinj + ujni)−
δijλ(uknk) in the form of a next differential invariant on a smooth surface of the body:

p̂i(u) =
∂mi(s)

∂s
+

∂mi(τ)

∂τ
, mi(s) = mijsj, mi(τ) = mijτj,

where s and τ can be any two directions orthogonal to each other and tangent to the
interphase surface. For plane (d = 0), cylindrical (d = 1), and spherical (d = 2) surfaces,
the vector p̂(u) can be calculated using a more simple formula:

p̂(u) =
∂(Tju)

∂xj
− ∂(Tu)

∂n
− d(Tu)

r
, Tj =

∥∥∥−µ
(

δklnj + δjlnk

)
− λδjknl

∥∥∥, T = ‖−µδkl − (µ + λ)nknl‖,

where r is the radius of a spherical or cylindrical surface. The components of the normal
vector in these representations are smoothly extended to some neighborhood of the surface.
Equations (2)–(6) are a consequence of functional (2) with variation of displacements
and temperature.

To finish the mathematical statement, let us introduce the conditions of the positive
definiteness of the functional (1):

(l2
e /µ)(2µ + λ)2kV − P2 > 0, aλ− S2 > 0. (7)

3. Characteristic Equation for Scale Parameters of the Gradient Model

The general solution of Equation (2) can be expressed (see [27]) in terms of auxiliary
potentials satisfying the Laplace and Helmholtz equations in the form of the representation
similar to the Papkovich–Neuber representation for the classical [28,29] and gradient [30]
theory of elasticity:

T =
2

∑
i=1

ψi +
le√
kκ

div

(
Ŝ

Ŝ2 − â
f0 +

(X3/α)(X3/α− 1)
P̂X3 − Ŝ

f∗
)

, (8)

R =
f0 − f

µ
+∇

((
â

â− Ŝ2

1
k
− 1

µ

)
rf0
2
− φ∗ + l2

e
div(f− f∗ − C0f0)

µ

)
, C0 =

Ŝ2

Ŝ2 − â
, (9)
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∇2f0 = 0, ∇2f− l−2
e f = 0, ∇2f∗ − l−2

e X3f∗ = 0, (10)

∇2ψi − l−2
e Xiψi = 0, φ∗ = le

√
kV
k

2

∑
i=1

P̂Xi − Ŝ
Xi(Xi/α− 1)

ψi, (11)

where Xi are the roots of the third-order characteristic equation:

X(X− αT)(X− α) + αT

(
α(P̂X− Ŝ)2

+ â(X− α)
)
= 0, (12)

and ψi i = 1, 2 are the potentials corresponding to these roots Xi, f∗ is the vector potential
corresponding to the root X3, which determines the gradient part of the solution in a
mechanical problem, f is the additional gradient potential, and f0 is the additional harmonic
potential for solution.

In Equations (8)–(11), we introduced the normalized and dimensionless parameters P̂,
Ŝ, â, α, and αT that are connected with the corresponding parameters of the functional (1)
by the next formulas through the initial parameters of the functional:

P̂ =
l−1
e P√
kkV

, Ŝ =
leS√
kkV

, â =
l2
e a
kV

, α =
1− 2ν

2(1− ν)
, αT =

(
le
lT

)2
, k = α−1µ. (13)

Note that the condition of positive definiteness (7) through the dimensionless parame-
ters takes the following form:

P̂2 <
1
α

, Ŝ2 < â(1− 2α) =
ν

1− ν
â, α =

1− 2ν

2(1− ν)
. (14)

The characteristic equation has three roots, one of which is continuously transformed
into Xi = 0, i = 1, 2, 3 at P̂, Ŝ, â→ 0 . It corresponds to the harmonic equation in the
classical formulation of the heat propagation process. The other two are continuously
transformed into X = αT and X = α. They are the scale parameters in the gradient
equations for the thermal and mechanical problems, respectively (see [25,27]).

In the limiting case P̂ = Ŝ = â = 0, the representation (9) turns into the Papkovich–
Neuber representation for the gradient theory of elasticity [30].

Note that the characteristic Equation (12) can have both real-valued or complex-valued
and conjugate roots, which are found using the Cardano formula:

X3 + (αTαP̂2 − αT − α)X2 + αT(α− 2αŜP̂ + â)X + αTα(Ŝ2 − â) = 0,

p = B− A2

3 , q = C + 2A3

27 −
AB
3 ,

A = αTαP̂2 − αT − α, B = αT(α− 2αŜP̂ + â), C = αTα(Ŝ2 − â),

X =
3

√
− q

2 +

√
q2

4 + p3

27 +
3

√
− q

2 −
√

q2

4 + p3

27 −
A
3 .

The nature of the roots is determined by a determinant D = (q/2)2 + (p/3)3. If
D < 0, then the third-order equation has three real roots. If D > 0, then the equation has
one real and two complex-valued and conjugate roots. If D = 0, then the equation has
either two real roots (one of which is double), or one real triple root X = −A/3.

The positive definiteness condition (14) selects on the plane of normalized param-
eters (P̂, Ŝ) a rectangular region with dimensions depending on the quantities â and ν,
depending on which several qualitatively different cases are distinguished in the behavior
of potentials (10), (11):

(a) If Xi > 0, then the potentials are determined by the Helmholtz equation with negative
coefficients and have an exponential behavior;

(b) If Xi = γi + iωi, then the potentials are determined by the Helmholtz equation
with complex coefficients and have a mixed behavior: they oscillate and grow or
fall exponentially.
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The analysis of the characteristic Equation (12) shows the following behavior of the
roots Xi. For real roots, the case Xi ≤ 0 in the characteristic Equation (12) cannot be realized
if we take into account the positive definiteness condition (14). Zero root in Equation (12) is
possible only if Ŝ = â = 0. For a sufficiently small value of the parameter â and the coupled
parameters P̂ and Ŝ, all roots of Equation (12) are real and positive. For a sufficiently
large value of the parameter P̂, for which the range of possible values expands at ν→ 0.5 ,
two roots become complex-valued and conjugate with the positive real part. The third root
is real and positive. At last, for a sufficiently large value of the parameter â, two roots in
Equation (12) are always complex-valued. The following statement is true.

Theorem 1. For any values of the connection parameters satisfying the positive definiteness
condition (14), the condition Xi > 0 is satisfied for the real roots of the characteristic Equation (12).

Proof. Let us represent the characteristic Equation (12) to the form:

X3 + AX2 + BX + C = 0

with the coefficients A = αTαP̂2 − αT − α, B = αT(α − 2αŜP̂ + â), C = αTα(Ŝ2 − â).
Using the positive definiteness condition (14), we find that A < 0 and C < 0. Let us
show that, under these conditions, B > 0. Indeed, the smallest value of B is attained at
P̂ = 1/

√
α, Ŝ =

√
â(1− 2α) and turns out to be equal B = αT

(
α− 2

√
(1− 2α)

√
αâ + â

)
.

Since 1− 2α = ν/(1− ν) ≤ 1, giving out the full square, we getB > 0. �

Next, we lead Equation (12) to the form X(X2 + B) = −AX2 − C and consider the
case when X is real. Then, taking into account that −AX2 − C > 0 and X2 + B > 0, we
find that X > 0. The theorem is proved.

Note that the numerical calculations show that, for all parameters satisfying the
positive definiteness condition (14) and for all roots of characteristic Equation (12), both
real-valued or complex-valued, the condition ReXi > 0 is satisfied. It is a somewhat
stronger statement than was proved in Theorem 1.

4. One-Dimensional Solutions for Two-Phase Structures

Let us consider one-dimensional solutions of the equations of gradient coupled ther-
moelasticity in two-phase medium with materials having characteristics µ1, α1, k(1)V , P̂1, Ŝ1,

â1, l(1)e , α
(1)
T at x < 0, and µ2, α2, k(2)V , P̂2, Ŝ2, â2, l(2)e , α

(2)
T at x > 0. Under these conditions,

the general solution (8)–(11) is determined by four potentials f (0)x , fx
∗, ψ1, ψ2 depending on

one variable x and satisfying ordinary second-order differential equations in the general
case with complex-valued coefficients:

f (0)x
′′ = 0, f ∗x

′′ − l−2
e X3 f ∗x = 0, ψ

′′
1 − l−2

e X1ψ1 = 0, ψ
′′
2 − l−2

e X2ψ2 = 0, (15)

Rx =

(
â

â− Ŝ2

1
k
+

1
µ

)
f (0)x
2

+

(
â

â− Ŝ2

1
k
− 1

µ

)
x f ′x

(0)

2
− X3 f ∗x

µ
− le

√
kV
k

2

∑
i=1

P̂Xi − Ŝ
Xi(Xi/α− 1)

ψ′i , (16)

T =
le√
kkV

(
Ŝ

Ŝ2 − â
f ′x

(0)
+

(X3/α)(X3/α− 1)
P̂X3 − Ŝ

f ′x
∗
)
+ ψ1 + ψ2. (17)

It is easy to check that the potential fx is absent in the expansions (16)–(17). Indeed,
the potential fx, which is the projection of the potential f, could appear in the solution only
due to the expression for the displacement Rx, and is absent in (16) due to the fact that it
satisfies Equation (10), fx

′′ − l−2
e fx = 0.

In the case of complex-valued roots (case (b) from the above item), the roots are
ordered as follows: we assume that X1 and X2 are complex-valued and conjugate, and X3
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is real. Under these conditions all representations (16), (17) remain real-valued also in the
case of complex roots, since the potentials ψ1 and ψ2 are complex-valued and conjugate and
enter into Equations (16) and (17) as the sum of two complex conjugate numbers, which
provides a real combination.

Solutions of the differential Equation (15) can be written explicitly in each phase of
the material:

f (0)x = Ai(x/l(i)e ) + Bi, f ∗x = A∗i sh(x/s(i)3 ) + B∗i ch(x/s(i)3 ), s(i)k =

√
X(i)

k /l(i)e , (18)

ψ1 = Cich(x/s(i)1 ) + Dish(x/s(i)1 ), ψ2 = C∗i ch(x/s(i)2 ) + D∗i sh(x/s(i)2 ). (19)

Thus, for the one-dimensional case, the general solution of coupled thermoelasticity is
determined in each phase by eight real coefficients Ai, Bi, A∗i , B∗i , Ci, Di, C∗i , D∗i .

Contact conditions are formulated at the contact boundary x = 0 and take the follow-
ing form:

[Rx] =
[
R′x
]
= [−kux] =

[
kU′x + ST − PT′′

]
= 0, ux = −(l2

e /α)R
′′
x, Ux = Rx + ux, (20)

[T] =
[
T′
]
= [−kVψ] + RsT′ =

[
kVφ′ + PR

′′
x

]
= 0, ψ = −(l2

e /αT)T′′ , φ = T + ψ, (21)

Thus, the general solution of the equations of coupled thermoelasticity and stationary
thermal conductivity is determined in the one-dimensional case in each phase of the
material by eight real coefficients Ai, Bi, A∗i , B∗i , Ci, Di, C∗i , D∗i .

The eight contact conditions (20), (21) are written in the terms of eight physical
quantities defined by the displacements and temperature on the interphase boundary
χ1 = Rx, χ2 = R′x, χ3 = −kux, χ4 = kU′x + ST − PT′′ , χ5 = T, χ6 = T′, χ7 = −kVψ, and
χ8 = kVφ′ + PR′′ . These values are defined by Equations (16)–(19) and are written from
the set of coefficients Ai, Bi, A∗i , B∗i , Ci, Di, C∗i , D∗i for contacted phases of the material
as follows:

Rx =

(
âi

âi−Ŝ2
i

1
ki
+ 1

µi

)
Bi
2 −

X(i)
3

µi
B∗i −

√
k(i)V
ki

(
P̂iX

(i)
1 −Ŝi√

X(i)
1 (X(i)

1 /αi−1)
Di +

P̂iX
(i)
2 −Ŝi√

X(i)
2 (X(i)

2 /αi−1)
D∗i

)
,

R′x = 1
l(i)e

(
âi

âi−Ŝ2
i

Ai
ki
−
√

X(i)
3 X(i)

3
µi

A∗i −
√

k(i)V
ki

(
P̂iX

(i)
1 −Ŝi

X(i)
1 /αi−1

Ci +
P̂iX

(i)
2 −Ŝi

X(i)
2 /αi−1

C∗i

))
,

−kux = −(X(i)
3 /αi)

2
B∗i − l(i)e

√
kik

(i)
V

(√
X(i)

1 (P̂iX
(i)
1 −Ŝi)

X(i)
1 −αi

Di +

√
X(i)

2 (P̂iX
(i)
2 −Ŝi)

X(i)
2 −αi

D∗i

)
,

kU′x + ST − PT′′ = 1
l(i)e

(
Ai − 2

√
X(i)

3 (X(i)
3 /αi)(X(i)

3 /αi − 1)A∗i

)
,

T = 1√
kik

(i)
V

(
Ŝi

Ŝ2
i −âi

Ai +

√
X(i)

3 (X(i)
3 /α

i
)(X(i)

3 /αi−1)

P̂iX
(i)
3 −Ŝi

A∗1

)
+ Ci + C∗i ,

T′ = 1
l(i)e

(
X(i)

3 (X(i)
3 /αi)(X(i)

3 /αi−1)

P̂iX
(i)
3 −Ŝi

B∗i√
kik

(i)
V

+
√

X(i)
1 Di +

√
X(i)

2 D∗i

)
,

−kVψ =

√
k(i)V
ki

√
X(i)

3 (X(i)
3 /α

(i)
T )(X(i)

3 /αi)(X(i)
3 /αi−1)

P̂iX
(i)
3 −Ŝi

A∗i +
k(i)V

α
(i)
T

(
X(i)

1 Ci + X(i)
2 C∗2

)
kVφ′ + PR

′′
x = − k(i)V

l(i)e

(
X(i)

3 (X(i)
3 /αi)

(
(X(i)

3 /αi−1)(X(i)
3 /α

(i)
T −1)

P̂iX
(i)
3 −Ŝi

+ P̂i

)
B∗i√
kik

(i)
V

−,

−
√

X(i)
1

(
X(i)

1 /α
(i)
T − 1 + P̂i(P̂iX

(i)
1 −Ŝi)

X(i)
1 /αi−1

)
Di −

√
X(i)

2

(
X(i)

2 /α
(i)
T − 1 + P̂i(P̂iX

(i)
2 −Ŝi)

X(i)
2 /αi−1

)
D∗i

)
.

Based on the positive definiteness of functional (1), it can be argued that the exis-
tence and uniqueness of the solution takes place for the formulated connected boundary
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value problem of determining the displacements and temperature by the boundary values
χ = ‖χk‖T , k = 1, 2, . . . 8. So, we make the following statement.

Theorem 2. For any values of the connection parameters satisfying the positive definiteness
condition (14), the system of equations Tihi = χ connecting the boundary values of the
quantities Rx, R′x, −kux, kU′x + ST − PT′′ , T, T′, −kVψ, kVφ′ + PR′′ and the coefficients
hi =

∥∥Ai, Bi, A∗i , B∗i , Ci, Di, C∗i , D∗i
∥∥T from representations (18), (19) for the potentials of the

general solution is nondegenerate.

5. Transition Matrix

The contact Equations (20) and (21) determine the solution of the contacted problem in
a two-phase medium. They can be presented in the matrix form in terms of the real vector
of coefficients of representations (18), (19) for the potentials of the general solution:

T1(µ1, α1, k(1)V , P̂1, Ŝ1, â1, l(1)e , α
(1)
T , Rs)h1 = T2(µ2, α2, k(2)V , P̂2, Ŝ2, â2, l(2)e , α

(2)
T , 0)h2, (22)

where hi =
∥∥Ai, Bi, A∗i , B∗i , Ci, Di, C∗i , D∗i

∥∥T , i = 1, 2 are the real vectors that are found using
representations (18), (19) from the potentials of the general solution.

As a result, using the transition matrix, formulated on the interface in contacted
boundary problem (22), we can present formally a solution in the second phase based on
the solution given in the first phase:

T12 = T−1
2 T1.

With the aid of the transition matrix T12, we can evaluate the influence of the interface
on the general solution of the problem.

It should be noted that the one-dimensional analogue of the Eshelby problem [31–33],
implemented for coupled gradient thermoelasticity, also leads to the algebraic Equation (22),
in which the transition matrix connects the stress–strain state of a homogeneous deforma-
tion at infinity with the stress state of a composite two-phase rod. Condition (22) allows us
to reduce formally the problem of constructing a contact problem to an algebraic problem
using the general representation (18), (19) for the temperature and displacement potentials:

A∗1 = B∗1 , C1 = D1, C∗1 = D∗1 , A∗2 = −B∗2 , C2 = −D2, C∗2 = −D∗2 . (23)

Returning to the one-dimensional problem, we note that, to implement the solution, an
additional condition should be formulated on the coefficients, which, for example, ensure
the finiteness of deformations at both ends of the two-phase structure. We can set the
amount of this deformation at one of the ends of this rod. For the Eshelby problem, this
limiting condition of a given deformation at the left end of the bar uniquely determines
the value of the coefficient from Equation (16). To ensure the uniqueness of the solution, it
is also necessary to eliminate the displacement of the inhomogeneous structure as a solid
as a whole, since the contact conditions (20) determine displacements up to a constant.
As a result, we can obtain the following two additional relations for the coefficients from
representations (18), (19) for the one-dimensional Eshelby problem:

1

l(1)e

â1

â1 − Ŝ2
1

A1

k1
= δ, B1 = 0. (24)

Conditions (23), (24) define in Equation (22) exactly eight degrees of freedom and a
nonzero right-hand side, which gives a correct system of the linear equations for determin-
ing all coefficients in the representation (18), (19) that uniquely solve the Eshelby problem
with a given deformation on the left end of the bar.

The transition matrix makes it possible to relate formally the solutions for various
phases in contact problems by reducing the contact problem to an algebraic problem and
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is useful for the implementation of boundary value problems of coupled thermoelasticity
and thermal conductivity for periodic structures and for more common inhomogeneous
structures with finite numbers of phases.

6. Eshelby’s Problem in Case â = Ŝ = 0

In a particular case â = Ŝ = 0, characteristic Equation (12) has one zero root X3 = 0
and two other real and positive ones X1, X2 for a sufficiently small value of the connection
parameter P̂. On the other hand, the complex-valued and conjugate roots can appear for
the characteristic Equation (12) for a sufficiently large value of the parameter P̂. The general
solution (8)–(11) contains two harmonic potentials f0 and f∗, which are transformed in
the linear functions for the considered one-dimensional case. Thus, in this case, in the
Eshelby problem, outside the contact zone, states with a nonzero temperature gradient
corresponding to a given nonzero heat flux are possible.

For a one-dimensional problem, in the case when â = Ŝ = 0, we can consider divf∗

as a harmonic potential, if we are following Equation (9). Thus, in this case, the degree of
freedom is not lost.

As a result, we get a representation for displacements and for temperature in the case
â = Ŝ = 0 in the following form:

Rx =

(
1
k
+

1
µ

)
f (0)x
2

+

(
1
k
− 1

µ

)
x f ′x

(0)

2
+ le

√
kV
k

P̂
(

φ∗′ −
ψ′1

X1/α− 1
− ψ′2

X2/α− 1

)
, (25)

T = φ∗ + ψ1 + ψ2, φ∗ = − le
√

kkV

P̂α
divf∗. (26)

The representations of the potentials (10), (11) f (0)x , φ∗, ψ1, ψ2 in each phase of the
material are written from real coefficients and have the following form:

f (0)x = Ai(x/l(i)e ) + Bi, φ∗ = A∗i + B∗i (x/l(i)e ), (27)

ψ1 = Cich(x/s(i)1 ) + Dish(x/s(i)1 ), ψ2 = C∗i ch(x/s(i)2 ) + D∗i sh(x/s(i)2 ), s(i)k =

√
X(i)

k /l(i)e . (28)

In the case of complex-valued and conjugate roots in the characteristic equation, the
representation (25)–(28) preserves real form.

The system of equations of coupled gradient thermoelasticity for the problem of
a two-phase structure is determined directly from Equations (20)–(22) using the limit
transition X3 → 0 .

Let us introduce the conditions for the existence of a uniform deformation and a tem-
perature gradient at infinity, |x| → ∞ , for a two-phase structure, excluding exponentially
growing solutions (23):

C1 = D1, C∗1 = D∗1 , C2 = −D2, C∗2 = −D∗2 . (29)

For the Eshelby problem, these conditions determine the value of the coefficients A1
and B∗1 .

1

l(1)e

A1

k1
= δ1,

1

l(1)e

B∗1 = γ (30)

where γ = T′ = const is the temperature gradient.
Note that the equilibrium equations are written with respect to the semiclassical

stresses kU′x + ST − PT′′ for each phase of the structure. It is easy to see that the contact
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equilibrium condition [kU′x + ST − PT′′ ] = 0 immediately leads to equality k1δ1 = k2δ2, if
we take into account that:

(kU′x + ST − PT′′ )i =
1

l(i)e

(
Ai − 2

√
X(i)

3 (X(i)
3 /αi)(X(i)

3 /αi − 1)A∗i

)
−→
X(i)

3 →0

=
Ai

l(i)e

where x → ∞, A2/k2 = δ2, x → −∞ (x < 0), A1/k1 = δ1 .
Thus, the following statement has place.

Theorem 3. If â = Ŝ = 0, the solution of the Eshelby problem for the coupled gradient thermoelas-
ticity can have non-zero temperature gradient and non-zero strain at both ends of the two-phase
structure, which satisfy to equilibrium equation k1δ1 = k2δ2. In particular, zero deformation in the
model of coupled gradient thermoelasticity can be realized only simultaneously at both ends of the
structure (condition of free edges).

Note that, to make the solution unique and correct, we must also fix the value
of the coefficients Bi and A∗i in one of the phases of the material, since the contact
conditions (20) and (21) determine the displacements and temperature in this case up to
two constants. This arbitrariness is eliminated by introducing the conditions:

B1 = A∗1 = 0. (31)

7. Results and Discussions

Let us show some results of the solutions obtained for the coupled gradient thermoelas-
ticity and stationary thermal conductivity for a specific layered system with the following
parameters: µ1 = 1.356MPa, α1 = 0.1379 (corresponds to ν1 = 0.42)k(1)V = 0.8kJ/(m · K2),

µ2 = 2.5MPa, α2 = 0.1667 (ν2 = 0.4), k(2)V = 1kJ/(m · K2), â1 = â2 = 0.1, l(1)e = l(2)e = 0.03,

α
(1)
T = α

(2)
T = 1, Rs = 0, and with a given deformation δ = 1% at the left end of the

considered structure. We will vary the parameters Ŝ and P̂, assuming at the beginning that
Ŝ1 = Ŝ2 = −0.05.

In this case, a specific temperature field and quite specific deformations for the second
phase, which are determined by relations (22) and (16), (18–19) are realized for the equi-
librium structure. Note that, if the coupled parameters tend to zero, then the problems of
thermoelasticity and stationary thermal conductivity are completely separated, and their
solutions correspond to the gradient equilibrium case or the classical representation if the
gradient parameters are equal to zero.

We try to show the influence of the coupled parameter P̂ on the distributions of the
temperature, displacement, and deformation. Results of calculations are submitted on
Figures 1 and 2 for the parameters P̂1 = P̂2 = 1 and P̂1 = P̂2 = 2 consequently. Note that,
for the case P̂1 = P̂2 = 2, the characteristic Equation (12) contains complex-valued roots
and real roots for P̂1 = P̂2 = 1.

Figures 1 and 2 show that, on average, the displacement and temperature fields change
insignificantly over the fragment under consideration, while the deformations change
significantly in a qualitative sense. The change of parameter P̂1 = P̂2 changes insignificantly
the local temperature field, but changes significantly the local temperature flux fields
(Figure 2a). Note that the gradient theory ensures the continuity of total deformations, but
the “semiclassical” part of the deformations breaks at the point of phase contact for all
connectivity parameters (see Figure 3).

In Figure 4 the Eshelby problem is calculated for the same parameters as in Figure 1,
but with positive Ŝ1 = Ŝ2 = 0.05. Figure 5 shows the dependences for temperatures at the
different parameters Ŝ, Ŝ1 = Ŝ2 = −0.05,−0.04,−0.03,−0.01 and P̂1 = P̂2 = 1. Figure 6
shows the same dependences for P̂1 = P̂2 = 0.
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Figure 1. Distributions of displacement, temperature, and deformation along the bar in the problem
of coupled gradient thermoelasticity for a two-phase bar with δ = 1% at the left edge and P̂1 = P̂2 = 1;
(a) displacement Rx (solid line) and temperature T (dashed line); (b) deformation R′x.

Figure 2. Distribution of displacement, temperature, and deformation along the bar in the problem
of coupled gradient thermoelasticity in the case of complex roots, P̂1 = P̂2 = 2; (a) displacement Rx

(solid line) and temperature T (dashed line); (b) deformation R′x.

Figure 3. Distribution of classical deformation U′x along the bar in the problem of coupled gradient
thermoelasticity: (a) P̂1 = P̂2 = 1; (b) P̂1 = P̂2 = 2.
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Figure 4. Distribution of displacement, temperature, and deformation along the bar in the problem of
coupled gradient thermoelasticity for a two-phase bar with δ = 1% at the left end and with positive
Ŝ = 0.05; (a) displacement Rx (solid line) and temperature T (dashed line); (b) deformation R′x,
P̂1 = P̂2 = 1.

The curves of Figure 4 demonstrate a significant dependence of the mechanical
and thermal fields on the connectivity parameter S. Comparison of the results shown
in Figures 1 and 4 shows that both the displacement fields and especially the temperature
fields can vary significantly with the change in the coupled parameter S. These conclusions
confirm the dependences shown in Figure 5, obtained for different values of the parameter
S associated with the coefficient of thermal expansion. Comparison of the dependences
shown in Figures 5 and 6 indicates that the coupled parameters P change, which changes
the form of the roots of the characteristic Equation (12), and hence the form of fundamen-
tal solutions, which have a special effect on the possible anomalous distribution of local
thermal fields in the phase contact zone.

Figure 5. Distribution of temperature with various Ŝ and P̂1 = P̂2 = 1; 1—Ŝ1 = Ŝ2 = −0.05;
2—Ŝ1 = Ŝ2 = −0.04; 3—Ŝ1 = Ŝ2 = −0.03; 4—Ŝ1 = Ŝ2 = −0.01.

Note that, for the considered case of loading, far from the area of contact between the
phases, actually isothermal processes with zero temperature flux are realized; however, in
the vicinity of the contacts, significant local heat fluxes arise (see Figures 1–3).
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Figure 6. Distribution of temperature with various Ŝ and P̂1 = P̂2 = 0; 1—Ŝ1 = Ŝ2 = −0.05;
2—Ŝ1 = Ŝ2 = −0.04; 3—Ŝ1 = Ŝ2 = −0.03; 4—Ŝ1 = Ŝ2 = −0.01.

The analysis of the Equations (17)–(19) for nonzero roots of the characteristic equation
(which takes place for â 6= 0) shows that the temperature in the Eshelby problem for the
deformed two-phase fragment can only have a constant value far from the contact zone.
This value of temperature is uniquely related to the deformation field.

The follow statement can be formulated.

Theorem 4. Suppose that â 6= 0 and, on the left edge of the layered structure for x < 0 , only the
deformation δ = δ1 is given, then the solution for the displacement fields and temperature of the
layered system are determined by the Equations (16) and (17) and show that:

1- Far from the contact zone for x > 0 , a homogeneous deformed equilibrium state with
deformation δ2 , determined by the parameters of the model, is realized;

2- Far from the contact zone, an isothermal process is realized, which is characterized by a
constant temperature equal to T1,2 = −leδ1,2[

√
k/kV(Ŝ/â)]1,2.

When â 6= 0 , solving the Eshelby problem, the solution for coupled thermoelasticity and
stationary thermal conductivity has a nonzero strain value δ at infinity and the temperature value
T0 is associated with this strain by the equation T0 = −leδ

√
k/kV(Ŝ/â). Moreover, there are

no solutions with linear asymptotic of the temperature at infinity (i.e., with a nonzero limiting
temperature gradient).

The proof follows directly from Equalities (16) and (17) after passing to the limit for
|x| → ∞ .

Consider a solution for a two-phase fragment with parameters â = Ŝ = 0 when
thermal loading occurs. In this case, the solution is represented by relations (25)–(31). As
an example, Figure 7 shows the variant of calculating the Eshelby problem for the coupled
gradient thermoelasticity and stationary thermal conductivity with the same parameters
as was considered early in Figure 1, only at â = Ŝ = 0, with a given temperature gradient
γ = 1K/m and δ = 0 at the left end of the bar.

As we can see, in this case, the displacement almost does not change and has a
constant value at infinity (since zero deformation is obtained at both ends of the bar), and
the temperature is close to a linear function. For the complex-valued roots, the solution
exhibits similar behavior.
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Figure 7. Distribution of the displacement, temperature, and its gradient in a particular case â = Ŝ = 0
in the problem of coupled gradient thermoelasticity at zero deformation at the left end for a two-phase
bar; (a) temperature T (solid line) and displacement Rx (dashed line); (b) temperature gradient T′.

Note also that Equation (25) implies the equality of stresses far from the phase contact,
since the temperature does not enter into this equation for |x| → ∞ (see Theorem 3).

The solutions constructed in Sections 4 and 5 provide the connection between homo-
geneous states in the left and right phases of the material. It is analogous to the Eshelby
tensor in various methods for evaluating the effective characteristics of composite materials
(see [34]). Solutions presented here can also be used to evaluate effective characteristics. In
this case, the left-hand phase of the material is treated as a matrix in which a homogeneous
state is specified, and the right-hand phase of the material is treated as an inclusion in
which this homogeneous state is calculated based on the solution of the Eshelby problem.

The influence of the thermoresistant parameter Rs on the solution of the problem
of coupled gradient thermoelasticity is of great interest. Figure 8 shows the temperature
dependence on the normalized parameter of thermal resistance R̂s = Rs/(l(2)e k(2)V ) in the
case â = Ŝ = 0 with the same parameters as in Figure 7.

Figure 8. Distribution of the temperature T with various values of the normalized thermal resistance
R̂s in a particular case â = Ŝ = 0 in the problem of coupled gradient thermoelasticity for a two-phase
bar; 1—R̂s = 0, 2—R̂s = 1.6, 3—R̂s = 1.7, 4—R̂s = 1.73.

8. Conclusions

The article provides an analytical solution to the coupled problem of thermoelasticity
through harmonic and Helmholtz potentials (in the form of an expansion in fundamental
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solutions), the structure of which is determined by the scale parameters and coupled pa-
rameters of the model. In this solution, in addition to the classical coupled thermoelasticity
and the well-known generalizations associated with the consideration of the scale effects of
deformation fields, the possible effects of the connectedness of deformation gradients and
temperature gradients are also taken into account.

The characteristic numbers that determine the structure of fundamental solutions in
general representation are investigated. It is shown that the positive definiteness conditions
formulated for the potential energy density of the considered coupled thermoelasticity
problem exclude the possibility of the appearance of purely imaginary roots, i.e., there
can be no purely oscillating components of the solution. Nevertheless, the consideration
of the additional parameter of connectivity of the gradient fields of deformations and
temperatures predicts the appearance of rapidly changing temperature fields and significant
localized fields of heat fluxes in the vicinity of phase contact in inhomogeneous materials

A transition matrix that determines the relationship between solutions in contacting
phases of inhomogeneous structures and provides a formal construction of an algebraic
problem corresponding to contact problems for an inhomogeneous material is constructed.
On the other hand, the Eshelby matrices connecting homogeneous states far from the contact
zone make it possible to assert that, in the general case, these states are not independent.
When a homogeneous strain field is specified, the obtained solution predicts a gradient
temperature field in the connected problem, which reflects the localization of temperatures
and heat fluxes in the vicinity of the phase contact. It is shown that, under certain conditions,
when one of the roots of the characteristic equation is equal to zero, a solution that allows
setting a homogeneous field of heat fluxes far from the contact zone and describing the
localization of deformation fields in the vicinity of the phase contact due to connectivity
effects takes place. As a result, the obtained solution makes it possible to study a possible
new class of thermomechanical effects that can be realized in the region of phase contact in
an inhomogeneous material.

The simulation results presented above are illustrative and demonstrate the possibility
of modeling inhomogeneous structures taking into account the coupled effects. Never-
theless, it was found that significant localized heat fluxes can appear in the phase contact
area, which largely depend on the model connectivity parameters (Figures 5 and 6) and on
the thermal resistance characteristics (Figure 8). Strongly localized heat flux fields, if we
follow the Zener thermomechanical damping model [35], allow, for example, the design of
inhomogeneous structures with high damping properties.
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