

Article

The Study of the New Classes of m-Fold Symmetric bi-Univalent Functions

Daniel Breaz ¹ and Luminița-Ioana Cotîrlă ^{2,*}

- ¹ Department of Mathematics, University of Alba Iulia, 510009 Alba Iulia, Romania; dbreaz@uab.ro
- Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
- * Correspondence: luminita.cotirla@math.utcluj.ro

Abstract: In this paper, we introduce three new subclasses of m-fold symmetric holomorphic functions in the open unit disk U, where the functions f and f^{-1} are m-fold symmetric holomorphic functions in the open unit disk. We denote these classes of functions by $FS_{\Sigma,m}^{p,q,s}(d)$, $FS_{\Sigma,m}^{p,q,s}(e)$ and $FS_{\Sigma,m}^{p,q,s,h,r}$. As the Fekete-Szegö problem for different classes of functions is a topic of great interest, we study the Fekete-Szegö functional and we obtain estimates on coefficients for the new function classes.

Keywords: Fekete-Szegö problem; coeffcient bounds and coeffcient estimates; bi-univalent functions; bi-pseudo-starlike functions; m-fold symmetric; analytic functions

1. Introduction and Preliminary Results

Let $\mathcal A$ denote the family of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \tag{1}$$

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ and normalized by the conditions f(0) = 0, f'(0) = 1.

Let $S \subset \mathcal{A}$ denote the subclass of all functions in \mathcal{A} which are univalent in U (see [1]). In [1], the Koebe one-quarter theorem ensures that the image of the unit disk under every $f \in S$ function contains a disk of radius 1/4.

It is well known that every function $f \in S$ has an inverse f^{-1} , which is defined by

$$f^{-1}(f(z)) = z, z \in U$$

and

$$f(f^{-1}(w)) = w, |w| < r_0(f), r_0(f) \ge 1/4,$$

where

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2 a_3 + a_4)w^4 + \dots$$
 (2)

A function $f \in \mathcal{A}$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let Σ denote the class of all bi-univalent functions in U given by (1).

The class of bi-univalent functions was first introduced and studied by Lewin [2] and it was shown that $|a_2| < 1.51$.

The domain D is m-fold symmetric if a rotation of D about the origin through an angle $2\pi/m$ carries D on itself.

We said that the holomorphic function f in the domain D is m-fold symmetric if the following condition is true: $f(e^{\frac{2\pi i}{m}}z) = e^{\frac{2\pi i}{m}}f(z)$.

Citation: Breaz, D.; Cotîrlă, L.-I. The Study of the New Classes of m-Fold Symmetric bi-Univalent Functions. *Mathematics* **2022**, *10*, 75. https://doi.org/10.3390/math10010075

Academic Editor: Juan B. Seoane-Sepúlveda

Received: 7 December 2021 Accepted: 24 December 2021 Published: 27 December 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Mathematics 2022, 10, 75 2 of 11

A function is said to be m-fold symmetric if it has the following normalized form:

$$f(z) = z + \sum_{k=1}^{\infty} a_{mk+1} z^{mk+1}, z \in U, m \in \mathbb{N} \cup \{0\}.$$
 (3)

The normalized form of f is given as in (3) and the series expansion for $f^{-1}(z)$ is given below (see [3]):

$$g(w) = f^{-1}(w) = w - a_{m+1}w^{m+1} + [(m+1)a_{m-1}^2 - a_{2m+1}]w^{2m+1} - [\frac{1}{2}(m+1)(3m+2)a_{m+1}^3 - (3m+2)a_{m+1}a_{2m+1} + a_{3m+1}]w^{3m+1} + \dots$$
(4)

We can give examples of m-fold symmetric bi-univalent functions: $\left\{\frac{z^m}{1-z^m}\right\}^{\frac{1}{m}}$; $\left[-log(1-z^m)\right]^{\frac{1}{m}}$; $\frac{1}{2}log(\frac{1+z^m}{1-z^m})^{\frac{1}{m}}$.

The important results about the m-fold symmetric analytic bi-univalent functions are given in [3–7].

The Fekete-Szegö problem is the problem of maximizing the absolute value of the functional $|a_3 - \mu a_2^2|$.

Fekete-Szegö inequalities for different classes of functions are studied in the papers [8–14].

Many authors obtained coefficient estimates of bi-univalent functions in the articles [2,14–25].

Definition 1. Let $f \in A$ be given by (1) and $0 < q < p \le 1$. Then, the (p,q)-derivative operator for the function f of the form (1) is defined by

$$D_{p,q}f(z) = \frac{f(pz) - f(qz)}{(p-q)z}, z \in U^* = U - \{0\}$$
(5)

and

$$(D_{p,q}f)(0) = f'(0) \tag{6}$$

and it follows that the function f is differentiable at 0.

We deduce from (2) that

$$D_{p,q}f(z) = 1 + \sum_{k=2}^{\infty} [k]_{p,q} a_k z^{k-1}$$
(7)

where the (p,q)-bracket number is given by

$$[k]_{p,q} = \frac{p^k - q^k}{p - q} = p^{k-1} + p^{k-2}q + p^{k-3}q^2 + \dots + pq^{k-2} + q^{k-1}, p \neq q$$

which is a natural generalization of the *q*-number.

Too
$$\lim_{p\to 1^-} [k]_{p,q} = [k]_q = \frac{1-q^k}{1-q}$$
, see [26,27].

Definition 2 ([28]). Let the function $f \in A$, where $0 \le d < 1$, $s \ge 1$ is real. The function $f \in L_s(d)$ of s-pseudo-starlike function of order d in the unit disk U if and only if

$$Re(\frac{z[f'(z)]^s}{f(z)}) > d.$$

Mathematics 2022. 10, 75 3 of 11

Lemma 1 ([1], p. 41). Let the function $w \in \mathcal{P}$ be given by the following series: $w(z) = 1 + w_1 z + w_2 z^2 + \dots$, $z \in U$, where we denote by \mathcal{P} the class of Carathéodory functions analytic in the open disk U,

$$\mathcal{P} = \{ w \in \mathcal{A} | w(0) = 1, Re(w(z)) > 0, z \in U \}.$$

The sharp estimate given by $|w_n| \leq 2$, $n \in \mathbb{N}^*$ holds true.

2. Main Results

Definition 3. The function f given by (3) is in the function class $FS_{\Sigma,m}^{p,q,s}(d)(m \in \mathbb{N}, 0 < q < p \le 1, s \ge 1, 0 < d \le 1, (z, w) \in U)$ if:

$$\begin{cases} f \in \Sigma, \\ |arg(D_{p,q}f(z))^s| < \frac{d\pi}{2}, z \in U \end{cases}$$
 (8)

and

$$|arg(D_{p,q}g(w))^s| < \frac{d\pi}{2}, w \in U, \tag{9}$$

where g is the function given by (4).

Remark 1. *In the case when* m = 1 *(one-fold case) and* s = 1*, we obtain the class defined in* [29].

Remark 2. In the case when p = 1, we obtain $\lim_{q \to 1^-} FS^1_{\Sigma,1}(d) = FS_{\Sigma}(d)$, the class which was introduced by Srivastava et al. in [24].

We obtain coefficient bounds for the functions class $FS^{p,q,s}_{\Sigma,m}(d)$ in the next theorem.

Theorem 1. Let f given by (3) be in the class $FS_{\Sigma,m}^{p,q,s}(d) (m \in \mathbb{N}, 0 < q < p \leq 1, s \geq 1, 0 < d \leq 1, (z,w) \in U)$. Then,

$$|a_{m+1}| \le \frac{2d}{\sqrt{sd(m+1)[2m+1]_{p,q} - s(d-s)[m+1]_{p,q}^2}}$$
(10)

and

$$|a_{2m+1}| \le \frac{2d}{s[2m+1]_{p,q}} + \frac{2(m+1)d^2}{s^2[m+1]_{p,q}^2}.$$
 (11)

Proof. If we use the relations (8) and (9), we obtain

$$(D_{p,q}f(z))^s = [\alpha(z)]^d \tag{12}$$

and

$$(D_{p,q}g(w))^s = [\beta(w)]^d, (z, w \in U)$$
(13)

where the functions $\alpha(z)$ and $\beta(w)$ are in \mathcal{P} and are given by

$$\alpha(z) = 1 + \alpha_m z^m + \alpha_{2m} z^{2m} + \alpha_{3m} z^{3m} + \dots$$
 (14)

and

$$\beta(w) = 1 + \beta_m w^m + \beta_{2m} w^{2m} + \beta_{3m} w^{3m} + \dots$$
 (15)

It is obvious that

$$[\alpha(z)]^d = 1 + d\alpha_m z^m + (d\alpha_{2m} + \frac{d(d-1)}{2}\alpha_m^2)z^{2m} + \dots,$$

$$[\beta(w)]^d = 1 + d\beta_m w^m + (d\beta_{2m} + \frac{d(d-1)}{2}\beta_m^2)w^{2m} + \dots,$$

Mathematics 2022, 10, 75 4 of 11

$$(D_{p,q}f(z))^s = 1 + s[m+1]_{p,q}a_{m+1}z^m$$

+(s[2m+1]_{p,q}a_{2m+1} + $\frac{s(s-1)}{2}[m+1]_{p,q}^2a_{m+1}^2)z^{2m} + \dots$

and

$$(D_{p,q}g(w))^s = 1 - s[m+1]_{p,q}a_{m+1}w^m \\ - s[2m+1]_{p,q}a_{2m+1}w^{2m} + (s(m+1)[2m+1]_{p,q}a_{m+1}^2 + \frac{s(s-1)}{2}[m+1]_{p,q}^2a_{m+1}^2)w^{2m} + \dots$$

If we compare the coefficients in the relations (12) and (13), we have

$$s[m+1]_{p,q}a_{m+1} = d\alpha_m, (16)$$

$$s[2m+1]_{p,q}a_{2m+1} + \frac{s(s-1)}{2}[m+1]_{p,q}^2a_{m+1}^2$$

$$= d\alpha_{2m} + \frac{d(d-1)}{2}\alpha_{m'}^{2} \tag{17}$$

$$-s[m+1]_{p,q}a_{m+1} = d\beta_m, (18)$$

$$-s[2m+1]_{p,q}a_{2m+1}+(s(m+1)[2m+1]_{p,q}+\frac{s(s-1)}{2}[m+1]_{p,q}^2)a_{m+1}^2$$

$$=d\beta_{2m} + \frac{d(d-1)}{2}\beta_m^2. (19)$$

We obtain from the relations (16) and (18)

$$\alpha_m = -\beta_m \tag{20}$$

and

$$2s^{2}[m+1]_{p,q}^{2}a_{m+1}^{2} = d^{2}(\alpha_{m}^{2} + \beta_{m}^{2})$$
(21)

Now, from the relations (17), (19) and (21), we obtain that

$$s(s-1)d[m+1]_{p,q}^{2}a_{m+1}^{2} + (m+1)sd[2m+1]_{p,q}a_{m+1}^{2}$$
$$-(d-1)s^{2}[m+1]_{p,q}^{2}a_{m+1}^{2} = d^{2}(\alpha_{2m} + \beta_{2m}).$$

We have

$$a_{m+1}^2 = \frac{d^2(\alpha_{2m} + \beta_{2m})}{s[m+1]_{p,q}^2(s-d) + (m+1)sd[2m+1]_{p,q}}.$$
 (22)

If we apply Lemma 1 for the coefficients α_{2m} and β_{2m} , we have

$$|a_{m+1}| \le \frac{2d}{\sqrt{(m+1)sd[2m+1]_{p,q} - (d-s)s[m+1]_{p,q}^2}}.$$

If we use the relations (17) and (19), we obtain the next relation

$$2s[2m+1]_{p,q}a_{2m+1} - s(m+1)[2m+1]_{p,q}a_{m+1}^{2}$$

$$= d(\alpha_{2m} - \beta_{2m}) + \frac{d(d-1)}{2}(\alpha_{m}^{2} - \beta_{m}^{2}).$$
(23)

It follows from (20), (21) and (23) that

$$a_{2m+1} = \frac{(m+1)d^2(\alpha_m^2 + \beta_m^2)}{4s^2[m+1]_{p,q}^2} + \frac{d(\alpha_{2m} - \beta_{2m})}{2s[2m+1]_{p,q}}.$$
 (24)

Mathematics 2022, 10, 75 5 of 11

If we apply Lemma 1 for the coefficients α_m , α_{2m} , β_m , β_{2m} , we obtain

$$|a_{2m+1}| \le \frac{2d}{[2m+1]_{p,q}s} + \frac{2d^2(m+1)}{s^2[m+1]_{p,q}^2}.$$

Remark 3. For one-fold case m = 1 and s = 1 in Theorem 1, we obtain the results obtained in [29].

Remark 4. For a one-fold case and p = 1, we have

$$\lim_{q\to 1^{-}} FS_{\Sigma,1}^{q,1}(d) = FS_{\Sigma}(d),$$

the results of Srivastava et al. [24].

Definition 4. The function f given by (3) is in the class $FS_{\Sigma,m}^{p,q,s}(e) (0 \le e < 1, 0 < q < p \le 1, s \ge 1, (z,w) \in U, m \in \mathbb{N})$ if the following conditions are satisfied:

$$\begin{cases} f \in \Sigma, \\ \mathcal{R}\{(D_{p,q}f(z))^s\} > e, z \in U \end{cases}$$
 (25)

$$\mathcal{R}\{(D_{p,q}g(w))^s\} > e, w \in U, \tag{26}$$

where the function g is defined by Relation (4).

Remark 5. For m = 1 (one-fold case) and s = 1, we obtain the class of functions obtained in [29].

Remark 6. When p = 1, we obtain $\lim_{q \to 1^-} FS^1_{\Sigma,1}(e) = FS_{\Sigma}(d)$, the class which was introduced by Srivastava et al. in [24].

In the next theorem, we obtain coefficient bounds for the function class $FS_{\Sigma,m}^{p,q,s}(e)$.

Theorem 2. Let the function f given by (3) be in the function class $FS_{\Sigma,m}^{p,q,s}(e)$, $(m \in \mathbb{N}, 0 < q < p \le 1, s \ge 1, 0 \le e < 1, (z, w) \in U)$. Then,

$$|a_{m+1}| \le \min\left\{\frac{2(1-e)}{s[m+1]_{p,q}}, 2\sqrt{\frac{(1-e)}{s(s-1)[m+1]_{p,q}^2 + (m+1)s[2m+1]_{p,q}}}\right\}$$
(27)

$$|a_{2m+1}| \le \frac{2(1-e)(m+1)}{s(s-1)[m+1]_{p,q}^2 + (m+1)s[2m+1]_{p,q}} + \frac{2(1-e)}{s[2m+1]_{p,q}}.$$
 (28)

Proof. If we use Relations (25) and (26), we obtain

$$(D_{v,q}f(z))^s = e + (1 - e)\alpha(z)$$
(29)

and

$$(D_{p,q}g(w))^s = e + (1 - e)\beta(w), \quad z, w \in U,$$
 (30)

respectively, where

$$\alpha(z) = 1 + \alpha_m z^m + \alpha_{2m} z^{2m} + \alpha_{3m} z^{3m} + \dots$$

and

$$\beta(w) = 1 + \beta_m w^m + \beta_{2m} w^{2m} + \beta_{3m} w^{3m} + \dots$$

 $\alpha(z)$ and $\beta(w)$ are in \mathcal{P} .

Mathematics 2022, 10, 75 6 of 11

It is obvious that

$$e + (1 - e)\alpha(z) = 1 + (1 - e)\alpha_m z^m + (1 - e)\alpha_{2m} z^{2m} + \dots$$

and

$$e + (1 - e)\beta(w) = 1 + (1 - e)\beta_m w^m + (1 - e)\beta_{2m} w^{2m} + \dots$$

Already,

$$(D_{p,q}f(z))^{s} = 1 + s[m+1]_{p,q}a_{m+1}z^{m} + (s[2m+1]_{p,q}a_{2m+1} + \frac{s(s-1)}{2}[m+1]_{p,q}^{2}a_{m+1}^{2})z^{2m} + \dots$$

and

$$(D_{p,q}g(w))^{s} = 1 - s[m+1]_{p,q}a_{m+1}w^{m} - s[2m+1]_{p,q}a_{2m+1}w^{2m}$$
$$+(s(m+1)[2m+1]_{p,q}a_{m+1}^{2} + \frac{s(s-1)}{2}[m+1]_{p,q}^{2}a_{m+1}^{2})w^{2m} + \dots$$

From the relations (29) and (30), if we compare the coefficients, we obtain the following relations:

$$s[m+1]_{p,q}a_{m+1} = (1-e)\alpha_m, (31)$$

$$s[2m+1]_{p,q}a_{2m+1} + \frac{s(s-1)}{2}[m+1]_{p,q}^2a_{m+1}^2 = (1-e)\alpha_{2m}, \tag{32}$$

$$-s[m+1]_{p,q}a_{m+1} = (1-e)\beta_m, (33)$$

$$-s[1+2m]_{p,q}a_{2m+1}+(s[2m+1]_{p,q}(m+1)$$

$$+\frac{s(s-1)}{2}[1+m]_{p,q}^2)a_{m+1}^2 = (1-e)\beta_{2m}.$$
(34)

We obtain from Relations (31) and (33)

$$\alpha_m = -\beta_m \tag{35}$$

and

$$2s^{2}[m+1]_{p,q}^{2}a_{m+1}^{2} = (1-e)^{2}(\alpha_{m}^{2} + \beta_{m}^{2}).$$
(36)

We obtain now from Relations (32) and (34) the following relation:

$$s(s-1)[m+1]_{p,q}^{2}a_{m+1}^{2} + (m+1)s[2m+1]_{p,q}a_{m+1}^{2} = (1-e)(\alpha_{2m} + \beta_{2m}).$$
(37)

From Lemma 1 for the coefficients α_m , α_{2m} , β_m , β_{2m} , we obtain that

$$|a_{m+1}| \le 2\sqrt{\frac{1-e}{(m+1)s[2m+1]_{p,q} + s(s-1)[m+1]_{p,q}^2}}.$$

If we use Relations (32) and (34) to find the bound on $|a_{2m+1}|$, we obtain the following relation:

$$-s(1+m)[1+2m]_{p,q}a_{m+1}^2 + 2s[1+2m]_{p,q}a_{2m+1} = (1-e)(\alpha_{2m} - \beta_{2m}), \tag{38}$$

or equivalently

$$a_{2m+1} = \frac{(1-e)(\alpha_{2m} - \beta_{2m})}{2s[2m+1]_{p,q}} + \frac{(m+1)}{2}a_{m+1}^2.$$
(39)

From Relation (36), if we substitute the value of a_{m+1}^2 , we obtain

$$a_{2m+1} = \frac{(1-e)(\alpha_{2m} - \beta_{2m})}{2s[2m+1]_{p,q}} + \frac{(m+1)(1-e)^2(\alpha_m^2 + \beta_m^2)}{4s^2[m+1]_{p,q}^2}.$$
 (40)

Mathematics 2022, 10, 75 7 of 11

Now, if we apply Lemma 1 for the coefficients α_m , α_{2m} , β_m , β_{2m} , we obtain

$$|a_{2m+1}| \le \frac{2(1-e)}{s[2m+1]_{p,q}} + \frac{2(m+1)(1-e)^2}{s^2[m+1]_{p,q}^2}.$$

From Relations (37) and (39) applying Lemma 1, we obtain

$$|a_{2m+1}| \le \frac{2(m+1)(1-e)}{s(s-1)[m+1]_{p,q}^2 + (m+1)s[2m+1]_{p,q}} + \frac{2(1-e)}{s[2m+1]_{p,q}}.$$

Remark 7. For one fold case (m = 1) and s = 1 in Theorem 2, we obtain the results given in [29].

Remark 8. For a one-fold case, in Theorem 2, choosing p = 1, $q \to 1^-$, we obtain the following corollary.

Corollary 1. [24] Let the function $f \in FS_{\Sigma}(e)$, $(s = 1, 0 \le e < 1, (z, w) \in U)$ be given by (1). Then,

 $|a_2| \le \sqrt{\frac{2(1-e)}{3}}$

and

$$|a_3| \le \frac{(1-e)(5-3e)}{3}.$$

In the following theorems, we provide the Fekete-Szegö type inequalities for the functions of the families $FS_{\Sigma,m}^{p,q,s}(d)$ and $FS_{\Sigma,m}^{p,q,s}(e)$.

Theorem 3. Let f be a function of the form (3) in the class $FS_{\Sigma,m}^{p,q,s}(d)$. Then,

$$|a_{2m+1} - \sigma a_{m+1}^2| \le \begin{cases} \frac{2d}{s[2m+1]_{p,q}}, |t(\sigma)| \le \frac{1}{s[2m+1]_{p,q}} \\ 4sd|t(\sigma)|, |t(\sigma)| \ge \frac{1}{s[2m+1]_{p,q}}, \end{cases}$$
(41)

where

$$t(\sigma) = \frac{d(m+1-2\sigma)}{2s[m+1]_{p,q}^2(s-d) + 2s(m+1)d[2m+1]_{p,q}}.$$

Proof. We want to calculate $a_{2m+1} - \sigma a_{m+1}^2$.

For this, from Relations (22) and (24), where we know the values of the coefficients a_{m+1}^2 and a_{2m+1} :

$$a_{m+1}^2 = \frac{d^2(\alpha_{2m} + \beta_{2m})}{s[m+1]_{p,q}^2(s-d) + (m+1)sd[2m+1]_{p,q}},$$

$$a_{2m+1} = \frac{(m+1)d^2(\alpha_m^2 + \beta_m^2)}{4s^2[m+1]_{p,q}^2} + \frac{d(\alpha_{2m} - \beta_{2m})}{2s[2m+1]_{p,q}},$$

it follows that

$$\begin{split} a_{2m+1} - \sigma a_{m+1}^2 &= \\ d[\alpha_{2m}(\frac{1}{2s[2m+1]_{p,q}} + \frac{d(m+1-2\sigma)}{2s[m+1]_{p,q}^2(s-d) + 2s(m+1)d[2m+1]_{p,q}}) \\ + \beta_{2m}(\frac{d(m+1-2\sigma)}{2s[m+1]_{p,q}^2(s-d) + 2sd(m+1)[2m+1]_{p,q}} - \frac{1}{2s[2m+1]_{p,q}})]. \end{split}$$

Mathematics 2022, 10, 75 8 of 11

According to Lemma 1 and after some computations, we obtain

$$|a_{2m+1} - \sigma a_{m+1}^2| \le \begin{cases} \frac{2d}{s[2m+1]_{p,q}}, |t(\sigma)| \le \frac{1}{s[2m+1]_{p,q}} \\ 4sd|t(\sigma)|, |t(\sigma)| \ge \frac{1}{s[2m+1]_{p,q}}. \end{cases}$$

Theorem 4. Let f be a function of the form (3) in the class $FS_{\Sigma,m}^{p,q,s}(e)$. Then,

$$|a_{2m+1} - \sigma a_{m+1}^2| \le \begin{cases} \frac{2(1-e)}{s[2m+1]_{p,q}}, |t(\sigma)| \le \frac{1}{2s[2m+1]_{p,q}} \\ 4s(1-e)|t(\sigma)|, |t(\sigma)| \ge \frac{1}{2s[2m+1]_{p,q}} \end{cases}, \tag{42}$$

where

$$t(\sigma) = \frac{(1 - 2\sigma + m)}{2s(s-1)d[m+1]_{p,q}^2 + 2s(m+1)[2m+1]_{p,q}}.$$

Proof. We will compute $a_{2m+1} - \sigma a_{m+1}^2$, using the values of the coefficients a_{m+1}^2 and a_{2m+1} given in Relations (37) and (39).

It follows that

$$\begin{split} a_{2m+1} - \sigma a_{m+1}^2 \\ &= (1-e)[\alpha_{2m}(\frac{1}{2s[2m+1]_{p,q}} + \frac{1-2\sigma+m}{2s(s-1)d[m+1]_{p,q}^2 + 2(m+1)s[2m+1]_{p,q}}) \\ &+ \beta_{2m}(\frac{(1+m-2\sigma)}{2s(s-1)d[m+1]_{p,q}^2 + 2s(m+1)[2m+1]_{p,q}} - \frac{1}{2s[2m+1]_{p,q}})]. \end{split}$$

According to Lemma 1 and after some computations, we obtain

$$|a_{2m+1} - \sigma a_{m+1}^2| \le \begin{cases} \frac{2(1-e)}{s[2m+1]_{p,q}}, |t(\sigma)| \le \frac{1}{2s[2m+1]_{p,q}} \\ 4s(1-e)|t(\sigma)|, |t(\sigma)| \ge \frac{1}{2s[2m+1]_{p,q}} \end{cases}$$

Definition 5. Let $h, r : U \to \mathbb{C}$ be analytic functions and $\min\{Re(h(z)), Re(r(z))\} > 0$, where $z \in U, h(0) = r(0) = 1$.

A function f given by (3) is said to be in the class $FS_{\Sigma,m}^{p,q,s,h,r}$, where $s \ge 1, 0 < q < p \le 1$, $m \in \mathbb{N}$ if the conditions are satisfied:

$$\left(D_{p,q}f(z)\right)^{s} \in h(U), z \in U \tag{43}$$

and

$$(D_{p,q}g(w))^s \in r(U), w \in U, \tag{44}$$

where the function g is given by (4).

We obtain coefficient bounds for the functions class $FS_{\Sigma,m}^{p,q,s,h,r}$ in the following theorem.

Theorem 5. Let the function f given by (3) be in the class $FS_{\Sigma,m}^{p,q,s,h,r}$. Then,

$$|a_{m+1}| \le \min\left\{\sqrt{\frac{|h_1'(0)|^2 + |r_1'(0)|^2}{2s^2[m+1]_{p,q}^2}}, \sqrt{\frac{|h_2''(0)| + |r_2''(0)|}{s(s-1)[m+1]_{p,q}^2 + s(m+1)[2m+1]_{p,q}}}\right\}; \quad (45)$$

Mathematics 2022. 10, 75 9 of 11

$$|a_{2m+1}| \leq \min\left\{\frac{(|h'(0)|^2 + |r'(0)|^2)(m+1)}{4s^2[m+1]_{p,q}^2} + \frac{|h''(0)| + |t''(0)|}{2s[2m+1]_{p,q}}, \frac{|h''(0)| + |r''(0)|}{2s[2m+1]_{p,q}} + \frac{(m+1)(|h''(0)| + |r''(0)|)}{2s[2m+1]_{p,q} + (s-1)[m+1]_{p,q}^2}\right\}.$$
(46)

Proof. In Relations (43) and (44), the equivalent forms of the argument inequalities are

$$(D_{p,q}f(z))^s = h(z), \tag{47}$$

and

$$(D_{v,q}g(w))^s = r(w), \tag{48}$$

where h(z) and r(w) satisfy the conditions from Definition 5, and have the following Taylor–Maclaurin series expansions:

$$h(z) = 1 + h_1 z + h_2 z^2 + \dots (49)$$

$$r(w) = 1 + r_1 w + r_2 w^2 + \dots (50)$$

If we substitute (49) and (50) into (47) and (48), respectively, and equate the coefficients, we obtain

$$s[m+1]_{p,q}a_{m+1} = h_1; (51)$$

$$s[2m+1]_{p,q}a_{2m+1} + \frac{s(s-1)}{2}[m+1]_{p,q}^2a_{m+1}^2 = h_2;$$
(52)

$$-s[m+1]_{p,q}a_{m+1} = r_1; (53)$$

$$-s[2m+1]_{p,q}a_{2m+1} + (s(m+1)[2m+1]_{p,q} + \frac{s(s-1)}{2}[m+1]_{p,q}^2)a_{m+1}^2 = r_2.$$
 (54)

We obtain that

$$h_1 = -r_1 \tag{55}$$

and

$$h_1^2 + r_1^2 = 2s^2[m+1]_{p,q}^2 a_{m+1}^2$$
(56)

from Relations (51) and (53).

Adding Relations (52) and (54), we obtain that

$$a_{m+1}^{2}\{s(s-1)[m+1]_{p,q}^{2}+s(m+1)[2m+1]_{p,q}\}=h_{2}+r_{2}. \tag{57}$$

Now, from (56) and (57), we obtain

$$a_{m+1}^2 = \frac{h_1^2 + r_1^2}{2s^2[m+1]_{p,q}^2}$$
 (58)

$$a_{m+1}^2 = \frac{h_2 + r_2}{s(s-1)[m+1]_{p,q}^2 + s(m+1)[2m+1]_{p,q}}.$$
 (59)

We obtain from Relations (58) and (59) that

$$|a_{m+1}|^2 \le \frac{|h_1'(0)|^2 + |r_1'(0)|^2}{2s^2[m+1]_{p,q}^2}$$

and

$$|a_{m+1}|^2 \le \frac{|h_2''(0)| + |r_2''(0)|}{s(s-1)[m+1]_{p,q}^2 + s(m+1)[2m+1]_{p,q}}.$$

So, we obtain the estimate on the coefficient $|a_{m+1}|$ as in (45).

Mathematics 2022, 10, 75 10 of 11

Next, substracting (54) from (52), we obtain the following relation:

$$2s[2m+1]_{p,q}a_{2m+1} - s(m+1)[2m+1]_{p,q}a_{m+1}^2 = h_2 - r_2.$$
(60)

Substituting the value of a_{m+1}^2 from (58) into (60), it follows that

$$a_{2m+1} = \frac{h_2 - r_2}{2s[2m+1]_{p,q}} + \frac{(m+1)(h_1^2 + r_1^2)}{4s^2[m+1]_{p,q}^2}.$$

Therefore,

$$|a_{2m+1}| \le \frac{(|h'(0)|^2 + |r'(0)|^2)(m+1)}{4s^2[m+1]_{p,q}^2} + \frac{|h''(0)| + |t''(0)|}{2s[2m+1]_{p,q}}.$$

Upon substituting the value of a_{m+1}^2 from (59) into (60), it follows that

$$a_{2m+1} = \frac{h_2 - r_2}{2s[2m+1]_{p,q}} + \frac{(m+1)(h_2 + r_2)}{\{(s-1)[m+1]_{p,q}^2 + (m+1)[2m+1]_{p,q}\}2s}.$$

So, it follows that

$$|a_{2m+1}| \le \frac{|h''(0)| + |r''(0)|}{2s[2m+1]_{p,q}} + \frac{(m+1)(|h''(0)| + |r''(0)|)}{2s\{(m+1)[2m+1]_{p,q} + (s-1)[m+1]_{p,q}^2\}}.$$

3. Conclusions

As future research directions, the symmetry properties of this operator, the (p,q)-derivative operator, can be studied.

Author Contributions: Conceptualization, D.B. and L.-I.C.; Data curation, L.-I.C.; Investigation, L.-I.C.; Methodology, D.B. and L.-I.C.; Project administration, D.B. and L.-I.C.; Resources, D.B. and L.-I.C.; Validation, D.B. and L.-I.C.; Visualization, D.B.; Writing—review and editing, D.B. and L.-I.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the referees for their careful reading and helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA, 1983; ISBN 0-387-90795-5.
- 2. Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [CrossRef]
- 3. Srivastava, H.M.; Sivasubramanian, S.; Sivakumar, R. Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. *Tbil. Math. J.* **2014**, *7*, 1–10. [CrossRef]
- 4. Altinkaya, Ş.; Yalçin, S. On some subclasses of m-fold symmetric bi-univalent functions. *Commun. Fac. Sci. Univ. Ank. Ser. Math. Stat.* **2018**, *67*, 29–36.
- 5. Eker, S.S. Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions. Turk. J. Math. 2016, 40, 641–646. [CrossRef]
- 6. Hamidi, S.G.; Jahangiri, J.M. Unpredictability of the coefficients of m-fold symmetric bi-starlike functions. *Int. J. Math.* **2014**, 25, 1450064. [CrossRef]

Mathematics 2022, 10, 75 11 of 11

7. Sakar, F.M.; Guney, M.O. Coefficient estimates for certain subclasses of m-fold symmetric bi-univalent functions defined by the q-derivative operator, Konuralp. *J. Math.* **2018**, *6*, 279–285.

- 8. Bucur, R.; Andrei, L.; Breaz, D. Coefficient bounds and Fekete-Szegö problem for a class of analytic functions defined by using a new differential operator. *Appl. Math. Sci.* **2015**, *9*, 1355–1368.
- 9. Catas, A. On the Fekete-Szegö problem for certain classes of meromorphic functions using p,q-derivative operator and a p,q-wright type hypergeometric function. *Symmetry* **2021**, *13*, 2143. [CrossRef]
- 10. Dziok, J. A general solution of the Fekete-Szegö problem. Bound Value Probl. 2013, 98, 13. [CrossRef]
- 11. Fekete, M.; Szegö, G. Eine bemerkung über ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [CrossRef]
- 12. Kanas, S. An unified approach to the Fekete-Szegö problem. Appl. Math. Comput. 2012, 218, 8453–8461. [CrossRef]
- 13. Páll-Szabó, A.O.; Oros, G.I. Coefficient Related Studies for New Classes of Bi-Univalent Functions. *Mathematics* **2020**, *8*, 1110. [CrossRef]
- 14. Wanas, A.K.; Cotirla, L.I. Initial coefficient estimates and Fekete–Szegö inequalities for new families of bi-univalent functions governed by (p q)-Wanas operator. *Symmetry* **2021**, *13*, 2118. [CrossRef]
- 15. Altinkaya, Ş.; Yalçin, S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. *C. R. Math. Acad. Sci. Paris* **2015**, *353*, 1075–1080. [CrossRef]
- 16. Breaz, V.D.; Catas, A.; Cotîrlă, L. On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function; Analele Universitatii Ovidius Constanta: Constanta, Romania, 2022.
- 17. El-Deeb, S.M.; Bulboacă, T.; El-Matary, B.M. Maclaurin Coefficient Estimates of Bi-Univalent Functions Connected with the q-Derivative. *Mathematics* **2020**, *8*, 418. [CrossRef]
- 18. Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. *Anal. Math.* **2017**, *43*, 475–487. [CrossRef]
- 19. Jahangiri, J.M.; Hamidi, S.G. Faber polynomial coefficient estimates for analytic bi-Bazilevic functions. *Mat. Vesnik* **2015**, *67*, 123–129.
- 20. Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 22–27 May 1992; pp. 157–169.
- 21. Pommerenke, C. Univalent Functions; Vanderhoeck and Ruprecht: Gottingen, Germany, 1975; p. 376.
- 22. Sivasubramanian, S.; Sivakumar, R.; Kanas, S.; Kim, S.-A. Verification of Brannan and Clunie's conjecture for certain sub-classes of bi-univalent functions. *Ann. Polon. Math.* **2015**, *113*, 295–304. [CrossRef]
- 23. Srivastava, H.M.; Altinkaya, Ş.; Yalçin, S. Hankel Determinant for a Subclass of Bi-Univalent Functions Defined by Using a Symmetric q-Derivative Operator. *Filomat* **2018**, 32, 503–516. [CrossRef]
- 24. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. *Appl. Math. Lett.* **2010**, 23, 1188–1192. [CrossRef]
- 25. Wanas, A.K.; Alb Lupas, A. Applications of Horadam Polynomials on Bazilevic Bi- Univalent Function Satisfying Subordinate Conditions. *J. Phys. Conf. Ser.* **2019**, 1294, 032003. [CrossRef]
- 26. Corcino, R.B. On *p*, *q*-binomial coefficients. *Integers* **2008**, *8*, 16.
- 27. Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. arXiv 2013, arXiv:1309.3934.
- 28. Babalola, K.O. On λ-pseudo-starlike function. J. Class. Anal. 2013, 3, 137–147. [CrossRef]
- 29. Cotirla, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [CrossRef]