. mathematics

Article

Some New Hermite-Hadamard-Fejér Fractional Type
Inequalities for h-Convex and Harmonically h-Convex
Interval-Valued Functions

Humaira Kalsoom ', Muhammad Amer Latif >*, Zareen A. Khan >* and Miguel Vivas-Cortez *

check for

updates
Citation: Kalsoom, H.; Latif, M. A.;
Khan, Z.A.; Vivas-Cortez, M. Some
New Hermite-Hadamard-Fejér
Fractional Type Inequalities for
h-Convex and Harmonically
h-Convex Interval-Valued Functions.
Mathematics 2022, 10, 74. https://
doi.org/10.3390/ math10010074

Academic Editor: Janusz Brzdek

Received: 30 November 2021
Accepted: 23 December 2021
Published: 26 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China; humaira87@zju.edu.cn or
humairakalsoom@zjnu.edu.cn

Department of Basic Sciences, King Faisal University, Hofuf 31982, Al-Hasa, Saudi Arabia

Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University,
P.O. Box 84428, Riyadh 11671, Saudi Arabia

Escuela de Ciencias Fisicas y Matematicas, Facultad de Ciencias Naturales y Exactas, Pontificia Universidad
Catolica del Ecuador, Sede Quito 17-01-2184, Ecuador; MJVIVAS@puce.edu.ec

Correspondence: mlatif@kfu.edu.sa or m_amer_latif@hotmail.com (M.A.L.); zakhan@pnu.edu.sa (Z.A.K.)

Abstract: In this article, firstly, we establish a novel definition of weighted interval-valued fractional
integrals of a function Y using an another function #({). As an additional observation, it is noted
that the new class of weighted interval-valued fractional integrals of a function Y by employing an
additional function 9({) characterizes a variety of new classes as special cases, which is a generaliza-
tion of the previous class. Secondly, we prove a new version of the Hermite-Hadamard-Fejér type
inequality for h-convex interval-valued functions using weighted interval-valued fractional inte-
grals of a function Y according to another function 9(¢). Finally, by using weighted interval-valued
fractional integrals of a function Y according to another function #(¢), we are establishing a new
Hermite-Hadamard-Fejér type inequality for harmonically /-convex interval-valued functions that is
not previously known. Moreover, some examples are provided to demonstrate our results.

Keywords: weighted interval-valued fractional operators; h-convex interval-valued functions;
h-harmonically convex interval-valued functions; weighted interval-valued Hermite-Hadamard
type inequality

1. Introduction

Mathematicians use convex functions in many fields, such as optimization and ad-
vanced analysis. Convex functions offer several unique qualities, such as a unique mini-
mum on an open set if strictly convex. Moreover, convex functions have identical qualities
even when the spatial dimension is not finite, and as a result, they are instances of function-
als in variation methods. In the theory of probability, a convex function obtained through
the use of a random variable is constrained above by the expected value. Numerous
inequalities are established for convex functions, but the Hermite-Hadamard inequality is
the most well-known from the relevant literature. A function Y : [¢1, 2] C R — R s called
convey, if for all 1, ¢, € Iand { € [0, 1], then

Y(Clh+(1-0)t) <IY(h)+ (1-0)Y(6). 1

An famous mathematical inequality in the field of convex functional analysis is the
Hermite-Hadamard integral inequality. It has an intriguing geometric representation
and a wide variety of significant applications. According to the remarkable inequality, if
considering a convex function Y:I— Rand ¥, 0 € I with {1 < {,, then
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C. Hermite [1] presented inequality (2) in 1893, and J. Hadamard [2] explored it. If Y
is concave, these inequalities are true in the reversed direction. Numerous mathematicians
have concentrated their attention on the Hermite-Hadamard inequality because of its
superiority and integrity in the field of mathematical inequalities. For key improvements,
extensions, and applications of the Hermite-Hadamard uniqueness theorem and basic
convex function definitions, for key details, please see [3-5] and references therein.

Fractional calculus is currently focused on the research of so-called fractional order
integral and derivative functions over real and complex domains and their applications.
The use of arithmetic from classical analysis in fractional analysis is critical for achieving
more realistic findings in the solution of many problems. Numerous mathematical models
are properly handled by differential equations of fractional order. A fractional mathematical
model has more general and accurate findings than classical mathematical models, because
they are specific examples of fractional order mathematical models. In classical analysis,
integer orders aren’t a good model for nature. Fractional computation, on the other hand,
lets us look at any number of orders and come up with much more quantitative objectives.
Concerning several publications that deal with fractional integral inequalities using various
forms of fractional integral operators. The reader who is interested might like to refer
to [6-27] and references therein.

However, interval analysis is a remarkable example of set-valued analysis, which is
the research of sets following both mathematical analysis and basic topology as a technique
for dealing with interval uncertainty, which can be present in many statistical or computer
models of deterministic real-world behaviors. The Archimedes method, which is used
to calculate the circumference of a circle, is a historical example of an interval enclosure.
In [28], Moore, who is credited with being the first person to apply intervals in computer
mathematics, published the first book on interval analysis in 1966, which is still in print
today. After his book was published, many scientists began investigating the theory and
applications of interval arithmetic, prompting him to issue a second edition. The use
of interval analysis has become increasingly popular in recent years, thanks to its many
practical applications in a wide range of fields that are very interested in ambiguous data.
A wide range of applications can be found in computer graphics, experimental physics,
computational physics, error analysis, and robotics. The interested reader is advised to
consult the citations [29-32] and the references therein for the most important details.

2. Interval Calculus

Throughout this section, we will present the used notation as well as some basic
knowledge of interval analysis and its applications. Considering the space of all closed
intervals of R denoted by Ry and Q as a bounded element of R}, we have the representation

~

Q=[17]={{er:y <i<7}

where 7,7 € R and y < 7. This is the length of the = b, ﬂ that may be expressed as
L (@) =7 — 7. The values y and 7 are referred to as the left and right ends of the interval

0, respectively. As a result, the interval Q is said to be degenerate when 7 = Y =4g-In
this case, we use the mathematical expression O=q=1g q). Another way to express this
is to say that Q is positive if 7 is greater than zero or that Q is negative if 7 is less than
zero. The sets of all closed positive and negative intervals of R are represented by R} and
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R}, respectively. The Pompeiu-Hausdorff distance is defined as the distance between the
intervals @ and 7A'

(@) = (7). [67)) = ol

7

71} ®)

In mathematics, the metric space (R, d) is recognized to be a complete metric space
(see, [8]). R

Specifically, its absolute value is denoted by the symbol |Q|, and mathematically it is
defined as follows:

Furthermore, given the intervals 0 and 7A', the definitions of basic interval arithmetic
techniques are as follows:

9] = mox{s

O+T=[y+27+7)
O-T = {1—?7—@
0-T= [minl;l\,maxlj] where If = {k;l?VQWZ ’

0/T = [min Y, max ]7] where V = {1/§fl/§/7/§r7/Z} and0 ¢ 7.
The interval Q is scalar multiplied by

[111/ 177], n>0;

~

19 =117 =1 {0}, n=0

[777/ 171}, n <0,

where 7 € R.
The interval Q is the inverse

~

-Q0:=(-1)2=[-7% -1,

where y = —1.
The subtraction is denoted by the symbol

Q-T=0+(-T)=l-o7-

Consequently, — Q is not an additive inverse for @, so, @ — Q £ 0.
The definitions of operations result in a large number of algebraic characteristics,
which allow R; to be a quasilinear space (see, [9]).

(1) (Associativity of addition) (Q+T)+S = O+ (T +8) forall 9,7,S € Ry,

(2) (Additivity element) Q+0=040=Qforall 0 e Ry,

(3) (Commutativity of addition) O+T =T+ Qforall O, T € Ry,

(4) (Cancellation law) 0+8=T+8=0="Tforall 0,7,8 € Ry,

(5) (Associativity of multiplication) (O -7)-8S = Q- (T -S) forall 0,7,S € Ry,
(6) (Commutativity of multiplication) Q- T=T-Oforall 0,7 € Ry,

(7)  (Unity element) Q-1=1-Qforall O € Ry,

(8) (Associativity law) A(7Q) = (Ay)Q forall O € Ryand all A, 7 € R,

(9) (First distributivity law) A(Q +T) = AQ + AT forall ,7 € Ryandall A € R,
(10) (Second distributivity law) (A +#4)Q = AQ +yQ forall Q € Ryand all A, 5 € R.
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In addition to all these features, the distributive law is not always true for intervals.
As anexample, Q = [2,3],7 = [4,5] and S = [—4, —1].

()

(T+8) =012,

whereas

0-T+90-8§=]0,12].

Definition 1 ([9]). We represent the gh-difference between Q and T as the interval M such that

Q=T+M,
go,T=Me] o
M=Q+(-T).
It appears to be unquestionable that
Qo T = — f ~ _
YOy =8| ifL(Q) <L(T).

Particularly, if T = € R is a constant, we have
@@glf-: [1_67_4
Additionally, another set property is the inclusion of C, which is defined by

OCT +=y<land7<C.

3. Integral for Interval-Valued Functions

For a description of the fundamental ideas and definitions of interval analysis. see [11].
The concept of integral for interval-valued functions is discussed in this section. The
following concepts must be understood before the definition of integral can be presented:
Y is an interval-valued function of [¢1, {,], if it gives each a nonempty interval { € [¢1, /5]

~

() = [Y©), V@)
A division of the numbers [y, £,] is any finite ordered subset ofA P that has the form
Pity=0<l o <lm= L.
It is possible to define the mesh of a partition P as
mesh(P) = max{Cy — y_1:d = [1,m]}.
The collection of all partitions of [(1, (] is denoted as 73([61,62]) Suppose that

P (8,1, 0y]) istheset of all P € P([¢y,£,]) with property mesh(P) < 8. Select an arbitrarily
large point &; from the interval [(;_1, 4], (d = [1,m]) and now the sum is

S(Y,P,é) = Z (&a)[Ca — Cal,

where Y. : [£1,£2] = Ry. We refer to this as S(Y, P, §) is a Riemann sum of Y matching to
P e P, L]).
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Definition 2. Let Y : [¢1,42] — Ry be an interval Riemann integrable ((ZR)-integrable) on
[61, 03], if A € Ry then for any € > 0 and if 6 > 0, then we have

d(S(Y,ﬁ,(S'),A) <e

or every Riemann sum S of Y corresponding to each P € P(doté, [¢1,¢5)) and in addition to
being independent of the q; € [Cq_1,C4) ¥d = [1,m). This is referred to as the A is said the
(ZR)-integral of Y on [¢1,€5] and is indicated by

A= (IR) / " @

b

In this case, the collection of all functions that are (ZR)-integrable on [¢1, {5] will be
designated by the symbol ZR (4, 4,])-

The theorem that follows establishes a relationship between (ZR)-integrable and
Riemann integrable (R-integrable function ):

Theorem 1. Suppose that an interval-valued function Y : [£1, £2] — Rpand Y () = Y(©),Y(©)]
Y € IR (1, 5)) #X(E), V(D) € Rje, 1) and

=)

4

Ve = () [ ¥t (R) [ Vo],

b

where R (¢, 1,]) repreant§ the set .of R—iﬁtegmble functions on the right side of the equation.
It is clear that if Y(0) C G(Q) YV { € [6q, o], then

4

b o .
(@R) [ V@ c @r) [7G@)a
1 1
Definition 3. Let Y : [¢1, (5] — R; be an interval-valued function and Y € IR ((ty,0,))- S0, L7+

1
is left-side and 1 is the right-sided interval Riemann-Liouville fractional integrals with order
2
v > 0, which is proved in [10]

¢
Y0 = 777 @R) [E =07 Wi, L5 0
b
1 ri
V@) = 5y (TR) / (k — &) W(x)dk, ¢ < bo.
¢

respectively. Here, T'(v) is the Gamma function and I;LY(C ) = Ig,Y(é ) =Y(0).
1 2
In [11], Zhao et al. gave a definition of interval h-convex functions as follows:

Definition 4. Suppose that a function h : [0,1] — R and Y : [(1, (5] — R} is called h-convex
interval function, moreover the behavior of function Y be like that Y € IR ((ey,0,]), If for all

71, 70 € [0y, €] and { € [0,1], we have
Y(Cm+ (1= §)m) 2 h(Q)Y(m) +h(1 - )Y (m2).

I. G. Macdonald provided the definition below in [12]:
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Definition 5. Let G : [(1,{,] — [0,00) is a function and it is symmetric with respect to % if
Gl + by —x) = G(x),forall « € [{q,0s].

In [13], Zhao et al. gave a definition of interval h-harmonically convex functions
as follows:

Definition 6. Let /1 : [0,1] — R* be a non-negative function. We say that Y : [¢1, (] — R is
interval h-harmonically convex function or that Y € IR ([t,,0,)), if for all 71, 712 € [£q, ] and
¢ € 10,1], we have

v T 702 o s
Y(M) 2 h(1=2)Y(m1) +h(E)Y(m2).

In [14] Latif et. al. gave the following definition.

Definition 7. A function Y : [¢1,£,] C R\{0} — R is said to be harmonically symmetric with
respect to 206 if
o))
K H + E — K

U1+
In [15], according to Fejér proposal the Hadamard inequality can be generalized in the
following ways:

K € [51,62].

Theorem 2. Let Y : [¢1, (2] — R bea convex function such that {1 < lp. Alsolet G : [¢1,42] — R
be a positive, integrable and symmetric to %. Then the following inequality holds:

v(922) Mo < [ v@o@a < T Poow @

4 b

The inequality (4) is well-known in literature as in the Fejér-Hadamard inequality.

The main objective of this paper is to establish a new definition of weighted interval-
valued fractional integrals of a function Y using an another function ¢(¢). Moreover, we
prove a new version of the Hermite-Hadamard-Fejér type inequality for harmonically
h-convex and h-convex interval-valued functions by applying weighted interval-valued
fractional integrals of a function Y according to another function ¢(¢). Finally, new exam-
ples are calculated to verify our results, Figures 1 and 2 are shown the graphical behavior
of our results.

V¢
15 N

1.0

0.5

Figure 1. The plot of the function Y = [Y, Y].
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Figure 2. The plot of the function Y = [Y, Y].

4. Auxiliary Results

In this section, we will define weighted left-side and right-side interval-valued frac-
tional integrals of a function Y according to another function 9(¢). Moreover, we will prove
weighted symmetric interval-valued functions for h-convex and harmonically /#-convex
interval-valued functions.

Definition 8. let Y : [(1, (5] — R} bean interval-valued function such that Y({) = [Y(), Y({)]
and Y € IR ey 0,))- Let w = [1, 2] — R be non-negative, integrable and symmetric weighted
functions. If & is increasing and positive function from [{1, () onto itself such that its derivative
8 is continuous on ({1, 0), then the weighted left-side and right-side interval-valued fractional

integrals of the function Y, respectively, are given as

o | | .
(wIE?Y) (€) = [éff,])(m) Afﬂ’(x)(ﬁ@)—ﬁ(x)) Ywwde, ()

w()] 1 2 N
<ngzL§Y) (6) = “E%(IR) /; ' (1) (9(%) — 8(0)) " Y (k) w(x)dr, ®)
v >0, [w(@)]™ = 7 and w(l) #0.

Corollary 1.
(i) Let a function Y according to another function 9(C) be an interval-valued function on Ry such

~

that Y(Z) = [X(2),Y(§)] and Y € IRy, 1,))- Then, we have
(w5 = [ 7510750

and B
(+Z22) @) = [oZ 50 T3 0) |

(ii) Putting w({) = 1, the operators (5) and (6) reduce to the interval-valued fractional integrals
of Y with regard to the function 9({) as follows:



Mathematics 2022, 10, 74

8 of 22

withv > 0.
(iii)  Putting 9({) = {, the operators (5) and (6) reduce to the weighted interval-valued fractional
integrals of Y as follows:
(AR "\ [w(g)]71 /C A At 8
(wzqy) (©) =7 TR, (¢ =%)"Y (x)w(x)dx,

w(O)]! 2 o1
(WI%Y> ()= [IE%(IR) /; (x—=2) 1Y(K)w(1c)d1c,

v>0,[w)] = ﬁ and w(Z) # 0.
(iv) Putting w({) = 1 and 0({) = {, the operators (5) and (6) reduce to the interval-valued
Riemann-Liouville fractional integrals of Y as follows:

<IZ+Y) Q) = I“(lz;)(IR) /; (= K)U_lY(K)dK >0,

(3) @) = 15 @R [ -0 Neax E <

Lemma 1 ([16]). Let w : [¢1,¢3] — (0,00) be an integrable function and symmetric weighted

function with respect to leez , then
(i) for each « € [0,1], we have

K 2—-x 2—-x K
w(2€1+ 5 52)—’60( 5 51+2€2). (7)

(ii) For v > 0, we have

(lgl(wy:fw(woﬂ)) (67(02)) = (;Z{W)(woﬁ)) (671(0))

- (8

oy wom) (o) (22 ) o) (0710

Proof. (i) Suppose that { = %/ + 25—"62 with { € [¢1,0>] and k € [0,1] such that {1 + ¢, —
= 2%"52 + 5¢1. As a result, we may use the assumptions and the Definition 7, we can

get (7).
(ii) If w possesses the symmetry property, then

N

(wod) (k) = w(d(x)) = w(ly + b — ¥(x)), Vke [19*1(41),19*1(@)}.



Mathematics 2022, 10, 74

9 of 22

Hence, from above and setting 8({) = ¢; + ¢, — 8(x), it follows that

<0_1(W>+I”'ﬂ(wo z9)> )
1 07 1(4y) ¢ 97 -1 N (el
= 105) sty (2~ 00D o @ 0

o (%) . /
F(v) /19 ) (8(x) — £1) 1w(€1 + 0y — 0(x)) 0 (x)dx

“1(

_v/‘ 51) >(19(K)*51)0_1(60019)(1{)19’(1()(1;(

T
( woﬁ)) (67 (1)),

which yields the needed equality (8). [

1
1

Lemma 2 ([17]). IfY : [¢1,£2] — R is integrable and harmonically symmetric with respect to

20,4,
Tkt then

(i) for each x € [0,1], we have

2010, B 2010
w(;{€2+(2—x)£1) w(xel+(2—x)e2)' ©)

(ii) For v > 0, we have

(22 s o 0) (71 (5)) = gy om0 ((2)
{<I§’f(i&*52)*(w°hol9)> (ﬂfl (é»
+<W(ia:;;>zv'ﬁ(w°h°“> (ﬂ(f))] (10

1
2

and h(g) = 1, € [%,%}.

Proof. (1) Suppose thaté = 20,0 2 with g S [61,52] and x € [0 1] such that 71 =

wly+(2—x

a'h ¢
%. As a result, we may use the assumptions and the Definition 7, we can get (9).

(ii) If w possesses the symmetry property, then

woren=u(g5) (e ) e[ (E) ()]
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Hence, from above and setting 1o —_ 1 _tfollows that

90+ —b(x)

r() Jor (2 ( )
S1( 0+l v-1
“ 1 b (() (00-7) “’(g ¥ ;21 50)
ST R CRED R E IR

1 etE) /
= m [91(51+£2) (61 - 19(@) (wohoﬁ)(;()ﬁ (K)dK

T
- (I;'ﬂl(zlg;;) (thw)) <191<€11>>’

which yields the desired equality (10). O

5. Hermite-Hadamard-Fejér Fractional Type Inequalities for h-Convex

Interval-Valued Functions

In this section, we shall define some novel Hermite and Hadamard type inequalities
for h-convex interval-valued functions by using weighted fractional integrals on both sides

of the function Y defined by another function 8(¢).

Theorem 3. Let Y : [(1,(y] — R is a h-convex interval-valued function such that Y({) =

symmetric weighted function with respect to €1+[2

Y(0),Y(0)] and Y € IR([t,05])- Let w : [€1,€2] — R be an nonnegative, integrable and

If ¥ is an increasing and positive function

from [£1, {3) onto itself such that its derivative 19 is continuous on ({1, ¢y) and let a nonnegative

function h : [0,1] — R with h (%) # 0, then

1 o/l +4
zh@)y( )

ey I (wod) | (871 (¢ AL o9
<191(122) (w )>( ( 2)> ( (1*2) (w )>

x (671 (t))] ;wwz)(ﬂ (sg2) Tao (¥ oﬁ))(ﬂ &)

+ w(él) <wol9-z'v o

19

V() + V()] (e = )° L o (K, 2
: 2”1"(2)) ! /OK 1w(§f1+

) i

Proof. Since Y is a h-convex interval-valued function, we write

9 (11+£2)

K
2

7>+h( _

(Yo 0)) (07" (en))

2
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So, for my = 541 + %Ez and 71, = 2%"51 + 5o, x € [0,1], it follows

1 (h+06 o[k 2—x o (2—x K
— >Y(Z === +=
h(l)Y< . )_Y(2£1+ . 62)+Y( —0 2£2>. (12)

2

Multiplying both sides of (12) by x* 1w (5¢; + 25—"62), and we must integrate the
following inequality in terms of « on the interval [0, 1].

1 o/l +46 1 -1 K 2—K
h()Y< 5 )/OK w§€1+ 5 0y |dx

1 o 2 —K K 2—x
D) v—1 E _
D (IR)/O K Y<2£1 +— £2>w(2€1 +— €2>dx

2 > "42> dx. (13)

N—

1 o(2—x K K
v—1 i e
—i—(IR)/O K Y( 0+ €2>w( 0+

From the left-hand side of the inequality in (13), we use (8) to obtain

211711—‘(7]) N ) ) )
(6 — )" [(ﬁl(ﬁ;@yl ﬁ(woﬁ)) (19 1(£2)> + <Iﬂi([1;(2>_(woﬂ)> <l9 1(61))]
. 2°T(v) y .

= W <l9]<51J2r42)+I 19(7,(;019)) (19 1(62))

_ e e

(b= 0)° /191(/1§iz> (L2 —8())

e (206 -90) ) T 4
- /lgl(q;fz) (M) (wod)(C)d (C)gz_e1

1 _ 0y — (7
= /0 K”lw(gél + 2 5 Kég) dx, [where K= W] (14)

-1

(wo 8)(£)¥'(2)dg

It follows that
) B v—1
11 Y(fl—;fz)/ K01w<§fl+22K€2>dK: 11 26 rév)vy(gl—;@)
h(3) 0 n(z) (2= 1)

(ﬁ](wyf"l’(woﬁ)) (19_1(52)) + (I;'ﬂl(él;[z)(woé‘o (19‘1(61))]. (15)

X
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It is possible to verify this by computing the weighted fractional operators,

w(l2) <19 1(51+é2)+z (Yoﬁ)> (19_1(52» +w(€1)<w°191319<51+£2) (YOﬁ)) (19_1@1))

o (62) s v—1 . , , L
= () 020 7 /ﬂlé%)(ﬂzﬂ(é)) (Yo 8) () (wo 8)(£)0' ()it

wo®) 1ot _1% . o1 v . . o
+ull) ) :1(51) ) 600) - 0)" (o 0) Qe 0 OP ¢

o ~(t2) N . S o)A s
_ [w@z)(w?(v)“ﬂm) [ (5= 000 o) O D 100

14— e I . . oo
(e 2208 gy /:1((23@2) (62— 0(0))" " (Yoo) (6)(w019)(§)19’(€)d61

) 071(%) > =1 /sy, ; N ol AN 8
o R T @ =) (e 0) @) (wo 0)()Y (©)a

wo )t 9-1(4y) o1(932) IPPEEENY N
O AN COREY 1(Yoﬂ)<a><woﬂ><§w<@>dg]

(-0 016 (26— 00\ o L 2df

= [ 227’1"(01) (R) /191(4]%2) (M) (Yo 8)()(wod)(0)d'(Z) ,

(g — £1)° 8 (11#2) (¢ —9(0)) ot - . e 2dT

% zzvr(vl) (R)/z%l(él) (M) (Yoﬁ)(C)(woﬂ)(@ﬁ(@) ]

(6 — 01)° o1 (952) (200(0) )\ o L odt
+ [ (R) /1971(41) M) (Yod)(0)(wod)(£)d'(0)

1(132) 2(8(¢) — 1) s . e 2dE
() Y /Wl) ( A ) (Yoo) (@) (wod)(©)¢'(Q)

[(u)oﬁ)ﬂ_l(y)}il = (w )1 1) = w(ly)' for y=1{1,0.

Setting v1 = 2(62 i(f)) and vp = (ﬂ(é) =7 h) one can deduce that

2— 2 —
_[ M /’yl Y(W + ““z) ( My 4 71€2>d71
2
’ 21;1" /71 <rg 7162) (716 + €2>d71:|
(52—51) 2— 72 72 2 — 72 72
+|: 27T (0) (R)/ 72 X 0+ =4 €1+7£2 dvo

(v
’(2?’1"( )) (R)/o 72 1Y(2 > €1+72252> (2 72€1+72€2>d72}
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By using the symmetric weighted function of Equation (7), we obtain the required
calculation

(=6 b ok 2—x K 2—x
(b —£1)° 1o s« 2—x K 2—x
’ W(R)/O K Y 56] + 5 62 w Egl + ) 62 dK

(Bt oy [ erg(2 50+ 5 Y S 5 255
+{ 2”1"(7;) (R) A kY > £1+2€2 w 2£1+ 5 f> |dx

(by—61)° /1 T2k K K 2—x
,722;1_,(0) (R) 0 K Y 5 €1+2f2 w 261—1— 5 0y )dx]|.
As a consequence,
1
-1 [ K 2—x K 2—x
(IR)/O x Y<2£1+ > €2>w(2€1+ - €2>d1<

1 o (2—k K K 2—xK
v—1 n N
—I—(IR)/O K Y( b+ €2>w<2€1—0— Ez)d;c

2T'(v)

JRCEO [w“” (ﬂl(“zfz)*:’i’fﬂ (Ye 19>) (o7 )
+w<£1)<WOﬂI;,01(51+52)(Y019)> (19—1(61))‘| (16)
When we use (15) and (16) in (13), we get the following result
! Y gl + £ 0,0 1
(1) Y( . ) [(ﬂl(“?z)J (wo 19)) (67 (1))
v, o 1
+ (Iﬁl(zlyz)(w 19)) G (m)}

2 w(fz) <§1(414££2>+IZ]'319 (Y o 19)> (1971 (62)>

v,0 v -1
+w(‘€1) (wOﬁIﬁ_l((l;gz>(Yol9)> (19 (61)) (17)
Consequently, the left inequality of (13) is demonstrated.
It is possible to verify the second inequality of (13) by utilizing h-convex interval-
valued function of Y, which gives us

Y(Em 2;%) > n(5) v +h<2;">\?<£z>- (18)

o2 — 2 — o o
Y( 2K€1+§£2)Dh< ZK)Y(£1)+h(§)Y(€2). (19)

Adding (18) and (19), we have

Y(;& + 2;%) +Y<2;"£1 + géz) ») [h(;) +h(2;K)] [Y(t) +Y(£)]. (20)
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Multiplying both sides of (20) by x*~1w(5¢; + 2554,), and we must integrate the
following inequality in terms of « on the interval [0, 1].

1
-1y K 2—x K 2—x
(IR)~/0 K Y<2f1+ > €2>w(2€1+ 5 fz)dK
1 o (2—x
+(IR)/ Kle( S+ >w< L+ 2 )d
0

D [Y(t1) +Y(6)] /01 o < >[ ( Kﬂd;c. 1)

Then, by using (16) in (21), we get

w(t) <19 (g2)" +Tyeg(Yo ﬂ)) (67 (1))
w (1) <w0ﬂzﬂ (agy (Yo 0)) (67 (e))

5 [Y(€1)+\;§1€2(2]])(5251)v /levlw<§ 2;" 2) [h(;)Jrh(Z;K”dK' 22)

This ends our proof. [

Remark 1. From Theorem 3, we can obtain some special cases as follows:

(i)  Taking 0(C) = {, then inequality (11) becomes
1 o U1+ 0o w - w
2h<%>Y( 2 ) (/¢1+€2)+I (€2)+I(/1+/2) (gl):|
2 w(ﬁz) (((1+42)+I Y) (62) + w(gl) (WIZM)Y> (61)

L V@) +¥ (@) ~ )’ /Olvalw(ggl_Fz;KZZ) {h(%)-ﬁ-h(zg’{)}dn (23)

2T (v)
(i) Taking 8(C) = { and w({) = 1, then inequality (11) takes the form

1 b— 0\ (l+1 " .
< 22 1) Y< 1 5 2) D((fﬁ_[z)JrZY(gz)—i—I ,Y(él)

r(o+1)h(}) (132)

. [Y(4) +\;(1€?2]])(£2 —4)° /01 -1 [h(g) +h(2;">}dx. (24)

(iii) Letting 9({) = {, w({) = 1and h(t) = t, then from the inequality (11) we get

(25)

Y(El +£2) 5 21T (v + 1)

Y(01) +Y(6)
2 (b — £7)° 2 '

LI () + I° Y| 2
) (2)+ (LH) (1):|—

([1+lz

(iv) Letting 0(0) = ¢, h(t) = t and v = 1, then from the inequality (11) we get

ol + 7 b b Lo . Y/ Y(/ %) s
Y( L 2)/(21 w(¢)di 2 w(g)\((g)dgg(1);(2)/Zl w(()di.  (6)

4

This is the well-known weighted-Hermite-Hadamard type inequalities for convex interval-
valued functions.
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(v) Letting (() = ¢, w({) =1, h(t) = tand v = 1, then from the inequality (11) we get

o (1 + 4 1 b Y(fl)—F (ﬁz)
Y(152) 2 2 [ voar 2 M), @)

This is the well-known Hermite-Hadamard type for convex interval-valued functions.

Example 1. Let Y( ) = [-vVT VT, €02,v=13 h() = forall{ € [0,1], then
w(l) = (¢ —1) and 9({) = {2, hence O ({) = 2¢ and 01 ({) = V/C.
1 (e . . . .
K e TR N O
2 971(2) S\ T3 s s B I
- \/E{/Ml) (2-8) w@hga+ [ (@) w<52>5d5} [-1,1]
2

= Ne [/1\@(2 — gz) 2 (Cz _ 1)zgd§+ ./01 <gz - 1)2(15} [-1,1] ~ [—1.2036,1.2036].  (28)

We also observe that
w(la) (l, (gt uz) IZfﬂ(Yoﬁ)> (ﬁ 1(fz)> +w(fy) <10019I;l9([1+[2) (Yo 19)) <1971(51))

== [(R) [P e-2) e 1) e+ w [ (@ -1) eha

[Y(41) +Y ()] (b2 = £1)° /01 Kv_1w<§€1 42 > %> [h(K) + h(2 5 K)]d;c

2
L [/01 K*%(l - K)sz] [—\6, V2

—

~ [—0.8511,0.8511]. (30)

Thus we get that
[—1.2036,1.2036] O [—1.01458,1.01458] O [—0.8511, 0.8511]
We observe the validity of Theorem 3.

6. Fractional Hermite-Hadamard Type Inequalities for harmonically h-Convex
Interval-Valued Functions

In this section, we shall define some novel Hermite and Hadamard type inequalities
for harmonically #-convex interval-valued functions by using weighted fractional integrals
on both sides of the function Y defined by another function 9(¢).

Theorem 4. Let Y : [¢4, (] — R} is a harmonically h-convex interval-valued function such that

~ ~

Y(&) = [Y(0),Y()]and Y € IR (jty,05))- Let w = [y, £2] — R} be an interval-valued function

such that w : [€1, £5] — R is nonnegative, integrable and symmetric weighted function with respect

to Ezﬁ%z . If § is increasing and positive function from [(4,{5) onto itself such that its derivative 8

is continuous on ({1, 3), and let a nonnegative function h : [0,1] — R* with h (%) # 0, while
h(Q) = fwzthge [ﬁ T } then
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(g ©r0) (@) oy =)
(N2 [t 500 (7 (7))
tw (el>( (42) Iﬁw(?”“”)(‘“l(é))
> B e k(a6 P G) () e

Proof. Since Y is a harmonically h-convex interval-valued function on [¢1, {,], we write

1 o/ 2014
Zh@)Y(G -ﬁz)

Y(zanCZ) D) h(;) [Y(T[l) —|—Y(7T2)], for all 7T, 70y € [61,62].

7T + 7T
So, for 711 = ﬁ and 7, = %, x € [0,1], it follows
1 o 2016, o 2014 g 20145
—_ D _ Y(——m————— . 2
h(%)Y(élﬁ-Ez) _Y<K€1+(2—K)€2 + Kby + (2 — 1K)y (32)

Multiplying both sides of (32) by x*~lw (%) and integrating the resulting

inequality with respect to x over [0, 1], we obtain
1 o 25182 ) /1 o1 < 25152 >
Y ———|d
h(%) (fl + 0y 0 v Kfl—l-(Z—K)ﬁz K
1 v 2014 2010
S 0-1 162 162
- (IR)/O K Y(Kgl—F(2—K)£2>w(1(£1+(2—1()€2 dx

TN 2010
v—1 12 1€2
HER) [ x Y(Ke2 - K)m)w(m m (2—K)£2)dK' 33)

From the left-hand side of the inequality in (33), we use (10) to obtain

i(fﬁ)vf@) [(I;ﬁl(wzz) Womﬂ)) <l91 (611>>
Loy 7more0) (7 (2)

() ro <I§"91<zgf;>*(“’0h“”> ()

- (e?ig?l)v/lfj((ii) (£ -00))" wenon@wrat

v—1

o1(L) [200(F - 00) ) 2atadl
w:f;)( aon ) ereOrORT,

: 2014 2014
_ v—1 12 — 1*2
N /0 K w(Kgl + (2 — K)gz)dK’ [Where i Kl + (2 — K)gz '
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It follows that

1. 2£1£2) v ( 20,0 ) 1 (zzlez ) u<2mz)
— Y[ == ——— |dx = I'(v)Y
w(2) (i) oo (s s ) () =) TN

0,0 (1 0,8 (1
(Iﬁl(gzjzzy(wohoﬂ))(ﬁ (61)>+<191(/'21[1+Z22>I (wohoﬁ))(ﬂ (52))] (34)

It is possible to verify this by computing the weighted fractional operators,

() (# gy o00) (7 (3)) (8 (g 7o) (7 (3)
1

_ w(£11> (ZUohoﬁ)*lﬁ—l (K) (IR) /ﬁl(l}ii)

1 \v 1 ] ] L
) ( - ﬁ(@)) (Yoho8)()(wohod) () ()

I'(v) 191("21”5 A
wohod) 19 1(L -1(4tlh v—
“"(zlz)( : ?w)ﬁ QQ)(IR) /;](Ef;“z)(ﬁ@)—jz) (Yoo )(©)woho 8)(O) (Ot
oho ly-1( 1L 11 o—
:[w<el >(w : ?@)ﬂ (fl)(m)/:l(é%;z)(é ﬂ(é)) (Yono8)(@)(wonot)(@)¥ ()it

wohod) 167 (7) (IR) /ﬂl(é)

g
VRS
S|
N———
—~ e

I'(v) 0 1(52111+(fz)
(wohod) "ot (L o1 (42) | o
+{w<€12> T(0) ([)@R)/W(Ez) >(ﬁ<¢>—§2) (Yoho®) () (wohod) () ()
1y oo () o ) (e 1)
w<ez) T'(0) (IR) /191@ <ﬂ<€>—€2) (Yoro9)(@)(wohod)()¥(§)dc
2M 00)\"
(tr— 1) (4) 127— g : oty 206dE
281262 g { £1+(2 by — 1 ) (Yomod)(Z)(wohod)(Z)d(0) 821—261
20 E ,
gﬁz ( ”,32 ; ) (Yohoﬁ)@@ohog)(@ﬁ/(@zﬂzfl

_|_

v—1
o1(52) (20162 (8(2) — . . . -
St [ (MG worenieoncngwe sk

- 2010 SER AN :
afs®) [ <<3 >< 1200 fz)) (Yoho19)(C)(wohoﬁ)(é)ﬁ/(é)iilgzzf],

by —
and
1\1! 1 1 1 1
woho®)Y ()] = = for = —, —.
{( ! y (wohoo)d 1(%) w(y) A
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2010, ( =—8(0) 2014, (8(0) -1+
Setting 1 = %@) and 7, = : zgz_ 7 [2) , one can deduce that

_ |: ( U / ’)/1_0 1\.4 ( 2€1€2 )w< 2[1‘62 )d’)/l
(25152)” U) 11l + (2 —=711)b Y1l1+ (2= 71)02
(52 — €1>U / 0—1% ( 251(2 > ( Zglgz ) :|
R) Y w d
eatrt@) ™ Y are-e) e 2o )
(62 — él / -1y ( 20105 ) < 20145 >
+ w d
{(25152 “T'(v) 7 Y2l2 + (2= 712)0 Y2la + (2= 72)0 72
(fz — 61 / ( Zflfz ) ( 2€1£2 ) ]
w dys|.
" (2614,)°T () m Y2l2 + (2= 72)0 Y2l2 + (2= 72)0 72
By using the symmetric weighted function of Equation (9), we obtain the required
calculation

- [ ™4 < aaton) (o)

Kkl + (2 —x)ly kb + (2 —
(2(51252_)5;‘)(1) (R) /1 o— 1Y< 20145 >w< 25152 ) }

kb1 + (2 —x)bp Kl + (
(a—t)" Loy 2014, 26162
- {(25162)”1"(1)) (R)/o . Y(Mz + (Z—K)él)w< )gz>d’<

b+ (2—
(by — £1)° /1 o1 20,4y 2010p
GG ) Jy K bre-ns) \ar a6 )%
Asa Consequence,

(IR)/O - 1Y<Kgl +2flfz > ( 2010y )€2>d1{

ly Kl +(2—x
2010, 20,0,
( <K€2 *K €1>w<K61+(2K)€2>dK
(Wz o () (&)
= ofo Yohoto 4 — 35
62 7€1 woh 19 <é21£r522> ( ) 61 ( )

<

*“’(é)( () Iz’ohoﬂ(“hw)) (191<£12>)] 0

When we use (34) and (36) in (33), we get the following result

Y ° wohot) | (071~ ) )+ “I%%(wohod
2h<%) (61 + 4 < 0,1(4'21/1+522)+( ) 0 671(€1+/2) ( )

200,

(@) o(E) (ot gy 5re0 ) (4 (5)
o) () Fatonon) (7 (1)

Consequently, the left inequality of (33) is demonstrated

It is possible to verify the second inequality of (33) by utilizing the harmonically
h-convex interval-valued function of Y, which gives us

Y(mfff;{)gz) > h(2 . K)Y(El) +h(g)\?(€2).

(38)
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§ 2010 . N
Y(Kﬁﬁ(Z—K)fl)D (z)Y“th( 5 >Y(€z)- (39)
Adding (39) and (38), we have

o) (e in) S v o

Multiplying both sides of (40) by x* 1w (ﬁ) , we obtain, by integrating the

resulting inequality in terms of x on [0, 1].

TR) /o1 K < (Kel ;féef x)l ) ) @ (m +2f§£i x)l ) dr
TER) /0 K <K€2 +zf;£i k)l ) w<K€1 fééi K) 02 ) o
> [Y(6) + Y(£)] /01 Kv—lw(mfggjxwz) [h(g) + h(2 - K)}d;c. (41)

Then, by using (36) in (41), we get

1 , o
w(@) (ﬁ1(é21gf;)+zg;ohoﬁ<Yohol9>> (0 (@))
+ w(l) (wohoﬁzv,ﬂ s (Yono 19)) (19—1 <1)>
h L ( vy ) A

N [ i) B (7)o o

This ends our proof. [

Remark 2. From Theorem 3, we can obtain some special cases as follows:

(i)  Taking 8({) = {, then inequality (31) becomes

Zhé Y(ézgff ) Iz(]‘;ﬁf;) (wom(fll) ! ((‘;g;;) Iv(wc’h)) (elz)]
2u() (% YOh))(ell) *w(@((@g;;)zzoh(“h)) (%)
S5 [Y (51)2;22@2))]((42)—&) /0 Kv—lw(ﬁ%) l:h<g>+h(2;K):|dK. 3)
(i) Tuking 8({) = ¢ and w({) = 1, then inequality (31) takes the form
1 <€2—€1)0Y< 2014y )
h(%)l"(erl) 2614 0+ 0

2 (T @) () + (=) (2)

Y(6) +Y ()] (b2 —€)° 1 4, /x —x
o Mol eafu(5) +n(257) |ax. @
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(iii) Letting 8({) = ¢, w(¢) = 1 and h(t) = t, then from the inequality (31) we get
o 25162 F(U+1) Ez—fl v
D
Y(£1 +€2> - 2 20145

(Iiéz@ 5o (7) (e 700 ) ()

5 Y(4) + (62)'
= 2

(45)

(iv) Letting 9(0) = ¢, h(t) = t and v = 1, then from the inequality (31) we get

o 2010y bw(l) . YY) e Y+ Y(6) w ()
Y(él +£2>/41 72 dg;/é1 ?W(C)dCQ > 2 dg. (46)

This is the well-known weighted-Hermite-Hadamard type inequalities for interval-valued
harmonically-convex functions.
(v) Letting 8(() = ¢, w({) =1, h(t) = tand v = 1, then from the inequality (31) we get

o[ 2016 Gty 2Y(Q) . Y()+Y (L)
Woih) 2ats ], a2 T @)
This is the well-known Hermite-Hadamard type for interval-valued harmonically-convex
functions.
Example 2. Let Y({) = { gz'gz} ge2,v=2%nQ) =g forall { €0,1]. Then
Y= (22) and 0(¢) = 22, hence ' (¢) = 28 and 0°1(8) = VT
w({) %3) on (C) = 22 hence ¢ () C an (2) =V
1 Y( 2046y )
2h<%> l+10
0,0 oo -1 l 08 (0o -1 l
» ( SR 0)) (6 QJ)*(W@ T won 19)> (0 (ﬁz))}
2 [ oo -1 (1 (3) (,, 1\7? 288 288
—ﬁ{/ﬂl(i)(l—?) W(Zz)gdg-i-/ (1) (@2—5) <€2>§ é} {—E,E}

2 1
2 1 N3 2 . L. 1\ 2 2 . 288 288
:ﬁ[/«;@‘@z) <3_2gz> i+ [ (e-3) (3—2§2> Cd@] %5
~ [—43.5682, 43.5682]. (48)

We also observe that

)y 1))

~ [—1.76844, 1.76844].
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e e (aram) G) (35 o

v /01 K (ﬁrz)z[(;)6+ (2;'()6] dK] {—Z, Z} ~ [~1.2154, 1.2154]. (49)

Thus we get that

1

NI—=

[—43.5682, 43.5682] O [—1.76844, 1.76844] O [—1.2154, 1.2154].
We observe the validity of Theorem 3.

Remark 3. It has been observed that the variable-order fractional operators provide stronger
modeling abilities in real applications, hence we can say that the results provided in this research can
be a motivation for the researcher to extend the Hermite-Hadamard type interval-valued integral
inequalities for variable-order fractional operators. The interested reader should refer to [33-36] and
references therein.

7. Conclusions

In this paper, we proposed a new definition of weighted interval-valued fractional
integrals of a function Y by combining it with another function ¢(). Also, Hermite-
Hadamard-Fejér type inequality for h-convex and harmonically /-convex interval-valued
functions using weighted interval-valued fractional integrals of a function Y according to
another function #(¢) were obtained. Finally, some examples are provided to demonstrate
our results. The results can also be an inspiration for young researchers as well as researcher
already working in the field of fractional integral inequalities and can further open up new
directions of research in mathematical sciences.
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