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Abstract: This paper extends the Wittrick-Williams (W-W) algorithm for hybrid dynamic stiffness
(DS) models connecting any combinations of line and point nodes. The principal novelties lie in the
development of both the DS formulation and the solution technique in a sufficiently systematic and
general manner. The parent structure is considered to be in the form of two dimensional DS elements
with line nodes, which can be connected to rigid/spring point supports/connections, rod/beam
point supports/connections, and point connections to substructures. This is achieved by proposing a
direct constrain method in a strong form which makes the modeling process straightforward. For
the solution technique, the W-W algorithm is extended for all of the above hybrid DS models. No
matrix inversion is needed in the proposed extension, making the algorithm numerically stable,
especially for complex built-up structures. A mathematical proof is provided for the extended W-W
algorithm. The proposed DS formulation and the extended W-W algorithm are validated by the
FE results computed by ANSYS. This work significantly extends the application scope of the DS
formulation and the W-W algorithm in a methodical and reliable manner, providing a powerful
eigenvalue analysis tool for beam-plate built-up structures.

Keywords: dynamic stiffness method; line nodes; point nodes; Lagrange multiplier; modal analysis;
Wittrick-Williams algorithm

1. Introduction

Built-up structures in engineering are often composed of plates, beams and other
elements through a variety of imposed constraints or connections [1–3]. The applicability
of the built-up structures includes, but is not limited to, solar panels, building floors,
ships, aircraft, armored vehicles, cars, robots, and circuit boards, among others. Vibration
analysis is an essential requirement for the design of these built-up structures. Moreover,
supports/connections can significantly affect the dynamic behavior of built-up structures,
such as natural frequency, transmission path, and vibro-acoustic characteristics. If these
constraints or connections are not properly considered in the design, inaccurate dynamic
analysis may result in undesirable phenomena such as resonance or structural fatigue. The
supports/connections of beam-plate combination of built-up structures can be divided into
continuous (linear) supports/connections and discrete (point) supports/connections.

Point supports/connections are very common in built-up structures in engineering.
Figure 1 describes a range of common point supports/connections, which can be divided
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into two main categories: (a) Point supports (PS), including rigid support, spring support,
rod support and beam support, see Figure 1a, and (b) point connections (PC), including
rigid connection, spring connection, rod connection and beam connection, see Figure 1b.

Figure 1. Four types of point supports (PS) and four types of point connections (PC): (a) Plates
supported by four types of connections; (b) Plates coupled by four types of connections.

In the modeling of built-up structures shown in Figure 1, various supports and con-
nections for plate structures can be generally idealized as points, springs, beams and rods
connected to the plate. That is, the line nodes are connected with various forms of point
nodes (PS/PC) in the built-up structure.

There are two main types of modeling methods for the built-up structures under con-
sideration, namely, numerical methods and analytical/semi-analytical methods. Numerical
methods include finite element method (FEM) [4–8], finite difference method [9–11], modal
constraint method [12–14], Galerkin method [15,16], etc. However, numerical methods
often fail to achieve high accuracy and computational efficiency at the same time. For
example, Mello et al. [4] developed a finite element model for built-up systems made of
concrete slabs and steel beams and carried out a dynamic analysis and showed that accu-
racy of result and computational efficiency run encounter. Machado et al. [5] developed
a dynamic finite element formulation (plate, bar and interface) to model building floors,
and evaluated the influence of connection stiffness on the dynamic properties. Altabey [6]
used a finite strip transition matrix for the response analysis of laminated structures with
four classical boundary conditions under different elastic constraint coefficients. Recently,
Friswella and Wang [7,8] used FEM to model plates with additional supports/mass, and in-
vestigated the optimal position and minimum constraint stiffness of flexible PS to attenuate
the natural frequencies of the plate structures, but their modeling was quite complicated.
By contrast, analytical or semi-analytical modeling methods can be both computationally
accurate and efficient at the same time, for example, the Ritz method [17–24], finite strip
method [25–29], superposition method [16,30–35], and Lagrange multiplier method [36–38].
In the analytical or semi-analytical method, modeling supports/connections of beam-
plate built-up structures can also be divided into continuous (line supports/connections)
and point supports/connections like the numerical methods. For instance, continuous
(line) supports/connections (including beam stiffeners) are essentially modeled as direct
supports or connections to the line nodes. It should be noted that for uniformly dis-
tributed elastic supports/rigid supports, the Ritz method [17–21], Fourier series based
analytical method [39,40], and finite strip method [28,29] have routinely been used. How-
ever, the modeling of arbitrarily spaced non-uniform continuous support are no-doubt
difficult [41–47]. Similarly, the beam-stiffened plate that is generally modeled as line nodes
can be connected to the line nodes of plate boundaries based on different methods, such as
generalized differential quadrature method [48], superposition method [31], mode-based
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approach [49], Ritz method based on modified Fourier series [50], and double finite cosine
integral transformation method [51].

However, the analytical modeling for a built-up structure with a line node connected to
point nodes, shown in Figure 1, is significantly more challenging than those of continuous
support/connection modeling. There are few existing works in this area, which can be
classified into two groups, which are explained in detail as follows: Group (i) analytical
modeling of line nodes subjected to point supports. For instance, Gorman and Singal [32]
proposed the analytical free vibration solutions of rectangular plates constrained by bolts
or spot welding based on superposition method. Huang and Thambiratnam [27] proposed
a finite strip element method combined with spring system for the free vibration analysis of
elastic intermediate support plate. Dozio [20] extended the trigonometric Ritz method for
the vibration characteristics of plate structures with midline and point supports. Tripathy
and Suryanaraya [52,53] studied the vibration and buckling characteristics of welded
rectangular plate by the flexible function method. Recently, Li et al. [33,34] proposed a
symplectic superposition method for the free vibration of rectangular plate with multi-point
supports. Group (ii) Analytical modeling of line nodes with point connected nodes to
flexible beams. For instance, Chiba and Yoshida [22] used the Ritz method for free vibration
analysis of a cantilever rectangular plate coupled to beam structures. Garusi and Tralli [54]
proposed a new transition element based on the FEM and mixed stress method to model
solid-to-beam and plate-to-beam connections. Cao et al. [2,3] used the global modal method
combined with the Ritz method to analyze the vibration characteristics of spacecraft flexible
joints, where the high-aspect-ratio plate was modeled as a beam, but the coupling of
bending and torsional vibration was ignored. Furthermore, some electronic microstructure
components, sometimes called the island-bridge model, are essentially plated like island
connected to beam-like bridges, have received attention of many investigators [1,55–57].
Nevertheless, majority of these investigations are focused on static and buckling analysis
only. It can be seen from the above literature review that most analytical solutions are for
continuous support (line nodes connected to line nodes), while analytical solutions for
built-up structures with discrete connections (line nodes connected to point nodes) are
relatively rare, and the modeling process is somehow cumbersome. Moreover, modeling for
different support or connection often requires separate and different formulations, which
are not really convenient for straightforward application in engineering structures.

Against the above background, the DSM [58] is a powerful alternative modeling
method for built-up structures. This is because first, the DSM is an exact analytical method,
in which exact individual elements are based on exact shape functions, and thus is capable
of computing exact results by using very few degrees of freedom (DOF) within the whole
frequency ranges. Secondly, there is a comprehensive group of different elements in
DSM, and importantly, the elements can be assembled directly to model complex built-
up structures. When the analytical DSM is applied to modal analysis, there are many
eigenvalues solution techniques, such as the determinant method [59–63]. However, the
determinant method is inefficient, and some natural frequencies may be missed. On the
contrary, the Wittrick-Williams (W-W) algorithm [64] is an accurate, efficient and robust
method to compute eigenvalues from analytical DS models, which ensures that no natural
frequencies will be missed. The powerful combination of DS formulations and the W-W
algorithm has been applied to a wide range of problems in the literature, such as the free
vibration analyses of advanced rods [65], tapered beams [66], lattice microstructures [67–69],
cracked frames [70–72], multi-body structures [73–75], plates [76–80], membranes [81] and
recently for uncertain structures [82,83]. Once the DS elements have been developed, the
solution of built-up structures containing 1D and 2D elements with the application of W-W
algorithm is quite straightforward. This is because the 1D elements are assembled directly
by point nodes, and the 2D elements are assembled directly via line nodes.

There are few reported research on DS formulation and the associated W-W algorithm
devoted to built-up structures with line nodes connected to point nodes. In this respect,
Williams and Anderson [84] proposed a DS formulation method and applied the Wittrick-
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Williams algorithm based on the Lagrange Multipliers. This approach was subsequently
used for free vibration [38] and wave propagation [85] of plate elements with line nodes
and with rigidly/elastically point supports. On the other hand, Lam et al. [37] investigated
the buckling of two overlap-jointed plate elements connected by bolts and spot welding.
Interestingly, Powell et al. [86] gave a different perspective by applying the method for
efficient multi-level substructuring with constraint for buckling and vibration of prismatic
plate assemblies. The related formulation and the W-W algorithm have also been extended
to model hybrid models by connecting line nodes of DS model with the point nodes of
FE model, see [87,88]. However, all of the above works are based on dynamic flexibility
formulation rather than DS formulations. The calculation process involved cumbersome
matrix inversion, which may become numerically instable for larger systems with more
degrees of freedom. Moreover, the above research was by and large applied to plates with
point supports, and the formulation and the associated W-W algorithm application were
not extended to plate elements with line nodes connected to point nodes of DS elements of
bars and beams. This is a significant omission in the literature.

Motivated by the work of Williams and Anderson [84], the main purpose of this paper
is to propose a unified and universal DS modeling method that extends the W-W algorithm
for built-up structures with line nodes connected to point nodes, including eight types of
different supports/connections, as illustrated in Figure 1.

DS formulation for 1D elements, 2D elements and the classical W-W algorithm are
not given detailed coverage here because they are available in the literature. The paper
proceeds as follows. First, the DS formulation for 1D elements, 2D elements and the
classical Wittrick-Williams algorithm are briefly reviewed in Section 2. Then, the new
DS formulation with extended W-W algorithm for built-up structures with line nodes
connected to point nodes are presented in Section 3. Next, the proposed formulation and
the extended W-W algorithm are validated against the FEM results by modal analysis of
several representative structures in Section 4. Finally, conclusions of this work are drawn
in Section 5. This paper is basically a significant extension of the work of Williams and
Anderson [84]. Additionally, the work in this paper can be applied in a much wider context
of built-up structures, including the coupling effects of 1D DS elements and 2D elements
in the general case. An important attribute of this paper is that the modeling procedure is
more direct and convenient with much better numerical stability properties.

2. Dynamic Stiffness Formulation for 1D and 2D Elements and the Classical
Wittrick-Williams Algorithm

In Section 2.1 below, the general procedure for the DS formulation for 1D and 2D
elements is presented. Then, the DS matrix for 2D plate element, 1D bar and beam elements,
and the massless spring element are presented, respectively, in Sections 2.2–2.4. Finally, the
classical Wittrick-Williams algorithm is briefly discussed in Section 2.5.

2.1. General Procedure for the DS Formulation for 1D Element, 2D Element

The general procedure for the DS formulation for a structural element (either 1D
or 2D) is provided as follows. Based on Hamilton’s principle or other suitable methods,
such as Newton’s Laws and Lagrange’s equation, the governing differential equations
(GDEs) describing the structural motion in the time domain are obtained in the general
form as follows

L(u, t) = 0 (1)

where L is a linear differential operator, u is displacement vector , t is time. Then, based on
harmonic oscillation assumption by letting u(x, t) = U(x)eiωt, where U(x) is displacement
amplitude vector, ω stands for circular frequency, the GDEs can be written as

L1(U, ω) = 0 (2)
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where L1 is the linear differential operator in the frequency domain. Subsequently, the
exact general solution of Equation (2) can be derived U(x) = N(x)C, where N(x) is the
exact shape functions and C is the unknown vector of constants. By eliminating constant
vector C using boundary conditions of force and displacement, the elemental DS matrix
can be obtained as

f e = Ke(ω)de (3)

where f e and de are, respectively, the generalized amplitudes of boundary force and
displacement of the structure element in the frequency domain, and Ke(ω) is the DS matrix.

Next, the DS formulation of 2D plate elements and 1D beam/spring elements are
briefly reviewed as follows.

2.2. The DS Formulation for 2D Plate Element

The GDE of classical plate theory of a thin Levy-type plate element (Figure 2) in the
frequency domain is [76]

∂4W(x, y)
∂x4 + 2

∂4W(x, y)
∂x2∂y2 +

∂4W(x, y)
∂y4 − ρhω2

D
W(x, y) = 0 (4)

Figure 2. Force and displacement of a Levy plate element.

Considering the Levy-type boundary conditions, the general solution of Equation (4)
can be written as

W(x, y) =
∞

∑
m=1

Wm(x) sin(αmy) (5)

The force and displacement boundary conditions along the nodal edges of the plate
element of half-wavenumber m are, respectively:

x = 0 , Wm = w1 ; φym = φy1 ; Qxm = −Q1 ; Mxm = −M1
x = b , Wm = w2 ; φym = φy2 ; Qxm = Q2 ; Mxm = M2.

(6)

Finally, the DS matrix of plate can be written in the following general form [76,77]:
Q1
M1
Q2
M2

 =


k11 k12

k22

k13 k14
−k14 k24

Sym
k11 −k12

k22




w1
φy1
w2
φy2

 (7)

i.e.,
f pl = Kpl(ω)dpl (8)

where Qi and Mi (i = 1, 2) represent generalized amplitudes of boundary forces, w and φ
represent generalized amplitudes of boundary displacements, and the analytical expres-
sions of k11∼k24 in Equation (7) are given in Appendix A, also see Equations (A1) and (A2).
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2.3. The DS Formulation of 1D Rod and Beam Element

This section gives the DS formulation for a beam element based on the classical rod
theory for axial vibration and the Euler–Bernoulli theory for transverse vibration, see
Figures 3 and 4.

The GDE of a rod in the frequency domain can be written as follows [73]:

d2U
dξ2 + µ2U = 0 (9)

where µ =
√

mω2L2

EA , U(ξ) is the amplitude of axial vibration and ξ = x/l.

Figure 3. Amplitude of displacement and forces in axial vibration of a rod.

Now, referring to Figure 3, the boundary conditions for displacements and forces at
both ends can be applied as follows:

ξ = 0, U = U1, F = Fx1 (10)

ξ = 1, U = U2, F = −Fx2 (11)

The DS matrix of the rod can be written in the following form:[
Fx1
Fx2

]
=

[
e1 e2
e2 e1

][
U1
U2

]
(12)

i.e.,
f r = Kr(ω)dr (13)

where the analytical expressions of the elements e1 and e2 in Equation (12) are given in
Appendix B.

The frequency domain GDE of a Euler–Bernoulli beam for bending vibration is given
as follows [73]:

d4W
dξ4 − λ4W = 0 (14)

where λ =
√

mω2l4

EI , W(ξ) is the amplitude of transverse deflection, ξ = x/l. Now, referring
to Figure 4, the boundary conditions for displacements and forces at both ends of the beam
can be applied as follows:

ξ = 0 : W = w1 , θ = θ1 , S = Fy1 , M = M1 (15)

ξ = 1 : W = w2 , θ = θ2 , S = −Fy2 , M = −M2 (16)

Figure 4. Boundary conditions for displacements and forces of bending vibration.
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The DS matrix of a beam under bending vibration can now be written in the following
general form: 

Fy1
M1
Fy2
M2

 =


d1 d2 d4 d5

d3 −d5 d6
Sym d1 −d2

d3




w1
θ1
w2
θ2

 (17)

i.e.,
f b = Kb(ω)db (18)

where f b =
[
Fy1, M1, Fy2, M2

]T denotes generalized amplitudes of boundary forces and
db = [w1, θ1, w2, θ2]

T denotes generalized amplitude of boundary displacements. Fy and M
represent the shear force and bending moment, respectively, at the two ends denoting point
nodes; w represents vertical or bending displacement, and the θ represents the bending
rotation. Note that the 4× 4 stiffness matrix shown in Equation (17) must be symmetric,
d1∼d6 are the DS coefficients for beam vibration, which are given in Appendix C.

2.4. Massless Spring

Let us assume that the ith and the jth point nodes of a structure are connected by a
massless elastic spring with stiffness kp, as shown in Figure 5. Here, kp stands for either
translational or rotational stiffness. The displacement equation for the ith and jth point
nodes will then be

kp
[
di − dj

]
= f a

i = − f a
j (19)

where di and dj are the generalized amplitudes of displacements for the ith and the jth
point nodes, respectively; f a

i and f a
j are the forces acting onto the corresponding point

nodes due to the point elastic constraint with stiffness kp.

Figure 5. Forces and displacements of a massless spring connecting nodes i and j.

Therefore, Equation (19) can be rewritten in the following matrix form as[
f a
i

f a
j

]
=

[
kp −kp
−kp kp

][
di
dj

]
(20)

2.5. Classical Wittrick-Williams Algorithm in Original Form

Once the global dynamic stiffness matrix of the whole structure is formulated, the
W–W algorithm can be applied to compute the natural frequencies ω of the structure. The
algorithm is based on the computation of the mode count J when ω is lower than the trial
frequency ω∗

J = J0 + s{[K(ω∗)]} (21)

where [K(ω∗)] is the DS matrix of overall structure, and s{[K(ω∗)]} is the number of nega-
tive diagonal elements after upper triangular transformation by using Gauss elimination of
[K(ω∗)]. J0 is given by

J0(ω
∗) =

N

∑
n=1

J0m(ω
∗) (22)
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where J0(ω
∗) is the number of natural frequencies between ω = 0 and ω = ω∗ when the

nodes of all the elements are fully clamped. The expressions for J0m of plate, rod and beam
are, respectively, given by Equations (A3), (A5) and (A8) (see Appendices A–C).

3. The DS Formulation and Extended Wittrick-Williams Algorithm for Built-Up
Structures with Line Nodes Connected to Point Nodes

This section presents a direct constraint method for the connection of the DS matrices
of 1D and 2D elements (see Section 3.1), and provides the extended W-W algorithm with the
corresponding formulation procedure of hybrid DS modeling (see Section 3.2). As it will be
seen that this useful extension is far from trivial, and efforts expended are very considerable.

3.1. The Direct Constraint Method

The proposed DS formulations and the associated Wittrick-Williams algorithm are
intended for built-up structures composed of either 1D elements connected via point
nodes or 2D elements connected via line nodes. However, for built-up structures where
2D elements with line nodes connected to point nodes require new DS formulation and
the associated Wittrick-Williams algorithm application. In this section, a direct constraint
method is proposed to connect a line node of a plate structure to a point node in a sufficiently
general manner covering all possible cases, see Figure 1. The procedure is essentially based
on a strong formulation using the equilibrium conditions at the point connections.

Based on the premises of the DS method, the generalized displacement d(ξ) along the
ith line DOF (CPT, ξ ∈ [0, L]) can be written as

di(ξ) = e(ξ)d , ξ ∈ [0, L] (23)

where
e(ξ) =

2
L

sin(αmξ) (24)

Therefore, the generalized displacement dip at point ξ = ξp on the ith line DOF can be
written as

dip = di(ξp) = e(ξp)d (25)

where e(ξp) is a vector obtained by evaluating e(ξ) at point ξ = ξp. If there are P point
connections on the ith line node to be considered, then

diP = EiPd (26)

where
diP = [di(ξ1), di(ξ2), · · · , di(ξP)]

T , EiP = [e(ξ1), e(ξ2), · · · , e(ξP)] (27)

For all of the point connections on all of the line DOF of the plate assembly, the
corresponding equation can be written in the form

dP = EPdPL (28)

where

dP = [d1P, d2P, · · · , diP]
T , EP = [ET

1P, ET
2P, · · · , ET

iP]
T , dPl = [dpl1, dpl2, · · · , dplm] (29)

When the plate assembly is under free vibration condition with the specified boundary
conditions and point connections, a reciprocal relation can be obtained between the point
forces and the boundary forces. To be more specific, if concentrated point generalized
forces f ip (p = 1∼P) are acting on P points of the ith line DOF, then these point forces will
cause additional generalized force vector f a

i to the ith line DOF becomes

f a
i = ET

iP f iP (30)
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The above equation can be obtained by integrating the Dirac Delta functions which
represent the concentrated generalized forces f ip on the ith line DOF. Similarly, the corre-
sponding equation for the whole plate assembly becomes

f a = ET
P f P (31)

The boundary force vector f becomes the summation of the plate response f Pl =
KPldPl and the additional boundary response resulting from these point connections f a.

Therefore, the equilibrium condition can be written as

f = f PL + f a (32)

namely,
f = KPLdPL + ET

P f P (33)

where

KPL =


LKpl1

LKpl2
LKpl3

. . .
LKplm

 (34)

Kplm represents the DS matrix of the plate [38,84], and the assembly of the plate element
refers to [77], m stands for the half-wavenumber of a plate and I is the unit matrix.

It should be pointed out that the method proposed in this paper can be directly applied
for composite plates [89] and plate assemblies with arbitrary boundary conditions [78,80,90],
once the corresponding DS formulation has been developed. The procedure is simply
replacing the DS formulations of Equation (4) by the formulations in [78,80,89,90]. Likewise,
the rod/beam formulations could be quite general to consider composite ones as well.
Moreover, this type of point connections have very important practical applications as
mentioned earlier in the Introduction, and whose DS formulation can be accomplished in a
concise manner.

3.2. The Global DS Formulation and Mode Count for Line Nodes Subjected to Point
Supports/Connections

We provide the formulation of global DS and extension of the W-W algorithm for rigid
point supports/connections (Section 3.2.1), elastic point supports/connections without
slave degrees of freedom (Section 3.2.2) or connected to substructures with slave degrees of
freedom (Section 3.2.3).

3.2.1. Rigid Point Supports/Connections

When a plate is subjected to rigid point supports/connections as shown in Figure 6.

Figure 6. Parent structure subjected to rigid point supports/connections.

The generalized displacements of point rigid supports are essentially zero, namely,
Equation (28) becomes

dP = EPdPL = 0 (35)
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Putting Equations (33) and (35) together leads to the following matrix relationship:[
f
0

]
=

[
KPL ET

P
EP O

][
dPL
f P

]
(36)

There are two different situations in terms of Lagrange multipliers: (i) rigid point
supports; and (ii) rigid point coupling connection. The only difference is in the expression
of EP. The usage of Lagrange multiplier in the DSM will introduce extra DOFs, in this case,
the sign count of these extra DOFs, which should be eliminated from the system under
consideration. Assuming that there are NP rigid point constraints, the associated mode
count formula will be as follows:

J =
M

∑
m=1

J0plm + s(
[

KPL ET
P

EP O

]
)− NP (37)

where, J0plm is the number of eigenvalues for the plate element, which would still lie
between 0 and ω∗ and NP is the number of rigid point supports.

In Equation (37), we have

s(
[

KPL ET
P

EP O

]
) = s(KPL) + s(−EPKPL

−1ET
P) (38)

Therefore, Equation (37) could also take the form

J =
M

∑
m=1

J0plm + s(KPL) + s(−EPKPL
−1ET

P)− NP (39)

which is the previously extended W-W algorithm proposed by Williams and Anderson [38,84].
It worth emphasizing that special care should be taken when applying rigid point

coupling constraints to avoid overdetermined constraints; otherwise, the above mode count
algorithm will lead to misleading results.

3.2.2. Elastic Point Supports/Connections without Slave Degrees of Freedom

When the parent structure is connected to elastic point supports/connections with-
out slave degrees of freedom, such as some representative cases shown in Figure 7, the
equilibrium conditions at these point supports/connections can be written as

f P = KPdP (40)

where KP is the DS matrix of the elastic supports or connections, such as spring supports,
rods and beams with the other end clamped.

By combining Equations (33), (35) and (40) together, we can obtain the DS formulation
of line nodes connected to point elastic supports as f

0
0

 =

 KPL O ET
P

O KP −I
EP −I O

 dPl
dP
f P

 (41)

which is applicable to a wide range of parent structures with line nodes connected to point
nodes without slave degrees of freedom, see Figure 7.

Moreover, the corresponding mode count formula takes the following unique form:

J =
M

∑
m=1

J0plm +
Mp

∑
mp=1

J0mp + s(

KPL O ET
P

O KP −I
EP −I O

)− NP (42)
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where, J0plm and J0mp are the number of eigenvalues for plate and beam/bar element, which
would still lie between 0 and ω∗, respectively. NP is the degree of point connection freedom.
Note that EP takes different forms for each case.

Figure 7. Parent structure with lines nodes connected to point supports/connections without slave
degrees of freedom: (a) A plate connected to three springs; (b) A plate connected to a rod and a beam;
(c) Plates coupled by a spring/rod/beam.

Notably, KP in Equation (41) can represent three cases.

1. Parent structure subjected to massless spring point supports (Figure 7a). Assuming
that the DS of the point supports are kp. In Equation (40), the matrix formulation KP
can be written as KP = diag[kp], (p ∈ [1, P]).

2. Parent structure subjected to a rod or beam point connection with the other end
clamped (Figure 7b). The formulation for KP will then be the same as Equation (40)
but KP represents the supported/connected DS matrix of beam or rod.

3. Parent structure with point elastic coupling constraints (Figure 7c). In this case, if two
plates are coupled by springs, KP can be described by Equation (20). However, when
two plates are coupled by a rod or beam, KP represents the connected DS matrix of
beam or rod.

3.2.3. Elastic Point Supports/Point Connections to Substructures with Slave Degrees
of Freedom

The substructure is connected with the parent structure (DS matrix KP) with the dP
whilst other DOFs are related to displacement ds. A parent structure can be connected with
any number of substructures through point connections, where the substructures have
point nodes either in the form of 1D analytical DS elements or 1D or 2D numerical finite
element elements, see Figure 8.

Figure 8. Parent structure connected to substructures with slave degrees of freedom.

The DS formulation of the substructures can be rewritten in the form
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f sub = Ksubdsub (43)

i.e.,

f sub =

[
f s
f P

]
, Ksub =

[
Kss Ksp
Kps Kpp

]
, dsub =

[
ds
dP

]
(44)

f p and dp are generalized forces and displacements at point node/connections to plate, f s
and ds denote the generalized forces and displacements of slave nodes without connecting to
plates, Ksub is the DS matrix of the substructure. We can then formulate the global DS matrix
of point connections to other substructures by putting Equations (33), (35) and (44) together.

f
f sub
0
0

 =


KPL O O ET

P
O Kss Ksp O
O Kps Kpp −I
EP O −I O




d
ds
dP
f P

 (45)

Moreover, the corresponding mode count formula take the following unique form

J =
M

∑
m=1

J0plm +
Msub

∑
msub =1

J0msub + s




KPL O O EP
T

O Kss Ksp O
O Kps Kpp −I
EP O −I O


− NP (46)

where, J0plm and J0msub are the number of eigenvalues for plate and beam/bar element
which would still lie between 0 and ω∗, respectively. NP is the DOF of the connection point
between the plate and the substructure.

It is easily seem that the case formulated by Equation (45) is a general case of those
formulated by Equation (41), which can be implemented to the computer program covering
all possible cases.

The solution procedure of the proposed dynamic stiffness formulation as well as
the associated W-W algorithm for the free vibration analysis of built-up structures is
demonstrated by the flow chart given in Figure 9.

Figure 9. Flow chart for the modal solution procedure by the proposed dynamic stiffness formulation
as well as the associated Wittrick-Williams algorithm for built-up structures.

4. Results and Applications

The new DS formulations and the corresponding enhanced Wittrick-Williams algo-
rithm have been implemented in a Matlab code. The DS models of several representative
built-up structures are constructed and computed results are compared and contrasted
with those computed by commercial FE software ANSYS. For representative boundary
conditions, a simply supported edge is denoted by the letter S and a free edge is represented
by the letter F. In the examples of this paper, unless otherwise specified, the size of the
Levy-type plate is a = b = 1 m, the boundary condition for the typical FSFS is shown in
Figure 10, Young’s modulus is taken as Epl = 7.2 × 1010 Pa, Poisson ratio νpl = 0.3 and the
mesh size of plate FEM elements is chosen to be 5 mm.
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Figure 10. Boundary conditions applied on four edges of a plate.

4.1. Example 1: Plate with Rigid Point Supports

In the numerical implementation of the DSM theory, different terms of Levy solutions
are superposed to model a plate element. It is important to examine the convergence
rate of the method and to verify the DS formulation of Equation (36) and the extension
of W-W algorithm of Equation (37). Using the classical thin plate theory, we study the
convergence and computational efficiency of a plate supported by three rigid points at
(0,0.25,0), (0.4,0.5,0), (1,0.75,0) as shown in Figure 11. The plate parameters of density
ρpl = 2700 kg/m3, thickness hpl = 0.002 m and other parameters have been given previ-
ously. The FE mesh is chosen to be 100 × 100, 200 × 200 and 500 × 500, respectively.

Figure 11. Plate supported by three rigid points.

It is clearly demonstrated from Table 1 that the current DSM converges very rapidly
to exact solutions. In addition, the first ten natural frequencies obtained by the DSM
match very well with the FE results, the difference might be due to the discrepancy of
classical plate theory adopted in the DSM and the advanced plate theory adopted in the
FEM, and the calculation time is obviously better than commercial software ANSYS. When
the half-wavenumber m = 25, the proposed DSM is 23 times faster than ANSYS with a
200 × 200 mesh. It is shown that the DSM for plate supported by rigid points has excellent
convergence rate and computational efficiency. Considering the accuracy of the calculation
performance and efficiency, the following calculation examples take m = 25.

4.2. Example 2: Plates Supported at Points by Massless Springs

In this example, we studied a plate subjected to three elastic point supports to verify the
DS formulation of Equation (41) and the extension of the W-W algorithm of Equation (42).
As illustrated in Figure 12, the coordinates of three spring points supporting the plate are
(0,0.25,0), (0.4,0.5,0) and (1,0.75,0), the plate is formed by two plate elements and other
parameters of the plate are the same as Example 1.
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Table 1. The first 10 natural frequencies for a plate supported by three rigid points as shown in Figure 11,
by the current DSM with different m, compared with FEM solutions with three different meshes.

Mode
DSM (Hz) FEM (Hz)

m = 5 m = 25 m = 50 m = 100 100 × 100 200 × 200 500 × 500

1 12.39 12.26 12.26 12.26 12.26 12.25 12.25
2 16.58 16.41 16.40 16.40 16.40 16.40 16.39
3 23.37 23.21 23.20 23.20 23.21 23.20 23.19
4 29.12 28.69 28.67 28.67 28.68 28.66 28.65
5 36.71 36.04 36.02 36.02 36.04 36.01 35.99
6 39.74 39.51 39.50 39.50 39.52 39.49 39.48
7 45.36 45.20 45.20 45.19 45.23 45.19 45.17
8 52.61 52.11 52.09 52.08 52.11 52.07 52.04
9 63.11 61.68 61.64 61.64 61.68 61.61 61.58

10 64.42 64.28 64.27 64.27 64.33 64.27 64.24
Time (s) 0.195 0.910 1.934 5.291 11.81 21.18 368.6

Figure 12. A plate supported by elastic spring supports at three points, i.e., (0,0.25,0), (0.4,0.5,0)
and (1,0.75,0).

We compute the first three natural frequencies of the structure with a range spring
stiffness covering Ks = 0∼2 × 103 kN/m as shown in Figure 13. It can be seen that the first
three natural frequencies of the structure approach the results of plate subject to rigid point
supports as shown in Table 1.

Figure 13. Influence of spring stiffness variation on the first three fundamental natural frequencies of
the plate shown in Figure 12.

Next, the 1st∼10th , 20th, 30th, 40th and 50th natural frequencies under the three
massless springs with different stiffnesses of Ks = 10 N/m, 3 kN/m and 20 kN/m are
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tabulated in Table 2. The 1st, 2nd, 8th and 9th natural mode shapes with Ks = 3 kN/m
computed by both DSM and FE package ANSYS are compared and contrasted in Figure 14.

Table 2. The first 10 natural frequencies and the 20th, 30th, 40th and 50th natural frequencies for a
plate subjected to three elastic spring point supports as shown in Figure 12.

Ks = 10N/m Ks = 3 kN/m Ks = 20 KN/m

Mode DSM (Hz) FEM (Hz) Mode DSM (Hz) FEM (Hz) Mode DSM (Hz) FEM (Hz)

1 4.801 4.812 1 6.930 6.929 1 10.49 10.48
2 8.035 8.040 2 9.879 9.876 2 12.97 12.96
3 18.27 18.27 3 19.53 19.52 3 21.46 21.45
4 19.38 19.38 4 20.24 20.24 4 22.51 22.51
5 23.25 23.26 5 25.08 25.08 5 31.01 31.00
6 35.20 35.18 6 36.06 36.04 6 37.06 37.05
7 37.45 37.45 7 38.66 38.65 7 43.21 43.20
8 43.77 43.78 8 44.14 44.15 8 45.86 45.87
9 47.78 47.78 9 48.29 48.29 9 52.66 52.65

10 55.23 55.21 10 56.08 56.06 10 58.64 58.62
20 117.5 117.5 20 117.5 117.5 20 117.5 117.5
30 175.8 176.0 30 176.0 176.1 30 177.2 177.4
40 237.0 237.0 40 237.0 236.9 40 237.0 236.9
50 295.5 295.5 50 295.5 295.5 50 295.5 295.5

Figure 14. Comparison of the 1st, 2nd, 8th and 9th natural mode shapes of a plate subjected to three
spring point supports with stiffness Ks = 3 kN/m computed by both DSM and FE package ANSYS.

As can be seen in Table 2, the DSM results are in good agreement with the FE results.
When the spring stiffness Ks increases, the first five natural frequencies increase as expected,
but the effect on the natural frequencies after the 10th mode is much less significant.
This is not surprising since the boundary conditions have a much smaller effect on the
vibration behaviors in the high frequency range than in the low frequency range because
the characteristics of overall modes are very different from local modes. In addition, four
representative mode shapes of the structures computed by both the DSM and the FEM are
presented and contrasted in Figure 14, which demonstrates good agreement.

4.3. Example 3: A Plate Connected by a Rod and/or a Beam

In this example, we examine the free vibration behaviors of a plate connected to a rod
and/or a beam, respectively, to verify the DS formulation of Equation (45) and the extension
of the W-W algorithm of Equation (46). As is shown in Figure 15, a rod is perpendicularly
connected to the parent plate and the other end of the rod is free see Figure 15a, and a beam
horizontally connected to the plate and the other end of the beam is rotated by θ, i.e., the
beam is constrained see Figure 15b. Both the rod and the beam are connected to the plate at
position (0,0.25,0).
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Figure 15. A plate connected to (a) a rod or (b) a beam at position (0,0.25,0).

For the problem shown in Figure 15a: plate thickness hpl = 0.003 m and density
of plate material ρpl = 3000 kg/m3; rod Young’s modulus Er = 2× 108 Pa, rod density
ρr = 2700 kg/m3, rod cross section Br= Hr = 0.003 m and length lr = 0.3 m.

In Figure 15b: plate thickness hpl = 0.006 m, density of material ρpl = 2700 kg/m3;
beam Young’s modulus Eb = 2× 1010 Pa, density ρb = 2700 kg/m3, cross section Bb =
Hb = 0.004 m and length lb = 1.4 m.

We computed from the 1st to 10th natural frequency for the plate connected to the
rod and/or the beam, as shown in the left and right half of Table 3, respectively. It can be
concluded from the result of Table 3 that the first 10 natural frequencies computed by the
DSM and FE match very well with each other for two models described in Figure 15. Four
representative mode shapes of the model described in Figure 15b are shown in Figure 16.
Comparisons are made for both DSM and FE results, which show excellent agreements.

Table 3. The first 10 natural frequencies for the plate connected to a rod and/or a beam shown in
Figure 15.

A Plate Connected to a Rod with the Other End Free A Plate Connected to a Beam with
the Other End Rotation θ Constrained

Mode DSM (Hz) FEM (Hz) Mode DSM (Hz) FEM (Hz)

1 6.811 6.815 1 1.427 1.426
2 11.39 11.40 2 7.709 7.700
3 25.91 25.94 3 14.37 14.36
4 27.51 27.54 4 19.03 19.01
5 32.93 32.99 5 24.08 24.01
6 49.78 49.89 6 35.40 35.36
7 53.13 53.18 7 54.70 54.45
8 62.20 62.25 8 56.81 56.74
9 67.81 67.88 9 58.18 58.21
10 78.07 78.25 10 69.72 69.58

Figure 16. Comparison of representative mode shapes computed by both DSM and FE for a plate
connected to a beam with the other end rotation θ constrained as shown in Figure 15b.
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4.4. Example 4: Two Plates Coupled by a Spring or a Beam

This example can be applied to verify the DS formulation of Equation (41) and the
extended W-W algorithm of Equation (42). As shown in Figure 17a, two plates coupled by a
spring or a beam: the spring is perpendiculariy connected to two parallel plates at position
(0,0.25,0.3) and (0,0.25,0). The plate thickness hpl = 0.005 m with density ρpl = 2700 kg/m3

and the other parameters are the same as Example 1, the spring stiffness Ks = 1.2 kN/m.

Figure 17. Two plates coupled by a spring (a) or a beam (b) structure.

As shown in Figure 17b for the next example, a beam is horizontally connected to
two plates at (1, 0.25, 0) and (1.4, 0.25, 0). The plate thickness hpl = 0.006 m, density
ρpl = 2700 kg/m3; the beam Young’s modulus Er = 2× 1011 Pa density ρr = 7800 kg/m3,
cross section Bb = Hb = 0.004 m, length lb = 0.4 m and rotation angle θ constrained. Next,
we apply both the proposed DSM and the FE package ANSYS to compute the 1st∼10th
natural frequencies (there are shown in Table 4) and four representative mode shapes
(shown in Figures 18 and 19) for the two cases shown in Figure 17, and contrast the four
representative mode shapes computed by both DSM and FE package ANSYS.

Table 4. The first 10 natural frequencies for two plates coupled by a spring with Ks = 1.2 kN/m
shown in Figure 17a and by a beam shown in Figure 17b.

Two Plates Coupled by a Spring (Hz) Two Plates Coupled by a Beam (Hz)

Mode DSM FEM Mode DSM FEM

1 11.98 11.98 1 14.37 14.36
2 12.09 12.18 2 14.42 14.49
3 20.06 20.00 3 24.05 23.94
4 20.23 20.33 4 24.14 24.26
5 45.67 45.48 5 54.71 54.33
6 45.75 45.69 6 54.81 54.83
7 48.43 48.42 7 58.05 57.92
8 48.49 48.55 8 58.12 58.12
9 58.12 58.03 9 69.55 69.07
10 58.23 58.26 10 69.72 69.66

It can be ascertained from Table 4 that the first ten natural frequencies calculated by
the DSM and FEM match extremely well with each other for the two cases described in
Figure 17. Four representative mode shapes of the two cases computed by the DSM and
the FEM are compared in Figures 18 and 19, which show good agreements.
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Figure 18. Comparison of the 1st, 2nd, 9th and 10th natural mode shapes of two plates coupled by a
spring with Ks = 1.2 kN/m as shown in Figure 17a computed by both DSM and FE package ANSYS.

Figure 19. Comparison of the 1st, 2nd, 4th and 10th natural mode shapes of two plates coupled by a
beam as shown in Figure 17b, the mode shapes are computed by both DSM and FE package ANSYS.

5. Conclusions

The DSM and the Wittrick–Williams algorithm are enhanced and subsequently used to
model 2D line nodes with 1D point node supports/connections built-up structure accurately
and efficiently. Motivated by the work of Williams and Anderson[84], the proposed method
is a unified approach towards universal DS modeling and a further extension for built-up
structures with line nodes connected to point nodes. The proposed developments have the
following advantages:

1. The theory is systematic and general with a wider scope for applications. The W-W
algorithm is extended to cover a wide range of cases, including plates with point rigid
constraint, point elastic support, rod support, rigid support, beam constraint, point
elastic coupling constraint, plate-rod coupling, and plate-beam coupling.

2. The modeling procedure is more direct and convenient with much better numerical
stability. The work by Williams and Anderson [84] are based on dynamic flexibil-
ity formulation, which involved matrix inversions that might become numerically
unstable for larger systems with a larger number of DOFs.

The effect of the 2D line nodes supported/connected by 1D point nodes on the natural
frequencies and mode shapes of the built-up structure are demonstrated by numerical
results which show excellent agreement with ANSYS results. The proposed method is
computationally efficient and gives highly accurate results, which can be further extended
to complex structural systems.
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Appendix A. DS Matrix for Classical Plate Theory

The 4 × 4 DS matrix of Equation (7) including six independent terms k11, k12, k13, k14,
k22, k24. Thus, Kpl(ω) can be expressed as:

Kpl(ω) =
D
∆


k11 k12

k22

k13 k14
−k14 k24

Sym
k11 −k12

k22

 (A1)

where
∆ = (r1)

2Sh1Sh2 + (r2)
2Sh1Sh2 + r1r2

(
(Ch1 − Ch2)

2 − S2
h1 − S2

h2

)
k11 = (r2R1 − r1R2)(Ch2Sh1R1 − Ch1Sh2R2)

k12 = r1

(
R2

(
ChCh2 + S2

h1 − C2
h1

)
− R1Sh1Sh2

)
+

r2

(
R1

(
Ch1Ch2 + S2

h2 − C2
h2

)
− R2Sh1Sh2

)
k13 = (L2 − L1)(r2Ch2Sh1 − r1Ch1Sh2)

k14 = (r2R1 − r1R2)(r2Sh2 − r1Sh1)

k22 = (Ch2 − Ch1)(r2R1 − r1R2)

k24 = (L1 − L2)(r2Sh1 − r1Sh2)

Ri = (ri)
3 − α2

mri(2− ν) , Li = (ri)
2 − α2

mν i = 1, 2

D =
Eh3

12(1− ν2)

r1 =

√
α2

m + ω

√
ρh
D , r2 =

√
α2

m −ω

√
ρh
D

αm =
mπ

L
, m = 1, 2, 3 . . . ,



(A2)

For the Wittrick-Williams algorithm, the J0 of the plate element problem is solved
by the indirect method [77]. According to the Wittrick-Williams algorithm, the mode
count Jsm of the plate element with all nodal boundaries simply supported when the half-
wavenumber in the y direction is m can be given by equation Equation (21), which can be
recast as

J0plm = Jsm − s
{[

Ks
plm(ω

∗)
]}

(A3)

where J0m is J0 when the half-wavenumber in the y direction is m and
[
Ks

plm(ω
∗)
]

is the

DS matrix
[
Kplm(ω

∗)
]

for a plate element with all nodal boundaries simply supported for
a given half-wavenumber m.

Appendix B. DS Matrix for the Classical Rod Thory

The dynamic stiffness formula for axial vibration of classical rod can be obtained,
namely Equation (12):
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[
Fx1
Fx2

]
=

[
e1 e2
e2 e1

][
U1
U2

]
(A4)

where

e1 =
EA

l
µ cot µ, e2 = −EA

l
µ csc µ, µ =

√
ρAω2l2

EA
The W-W algorithm solving the natural frequencies of the rod element in the same

form as equation Equation (21), and J0r of the rod element expressed as follows:

J0r = INT
( µ

π

)
(A5)

where INT is the integer function.

Appendix C. DS Matrix for the Euler-Bernoulli Beam Theory

The DS matrix Kb of Euler–Bernoulli beam under bending vibration is as follows:

Kb(ω) =


d1 d2 d4 d5

d3 −d5 d6
Sym d1 −d2

d3

 (A6)

where

λ =
4

√
ρAω2l4

EI
d1 = Rb3λ2(sin(λ) cosh(λ) + cos(λ) sinh(λ))/δ

d2 = Rb2λ sin(λ) sinh(λ)/δ

d3 = Rb1λ(sin(λ) cosh(λ)− cos(λ) sinh(λ))/δ

d4 = −Rb3λ2(sin(λ) + sinh(λ))/δ

d5 = Rb2λ(cosh(λ)− cos(λ))/δ

d6 = Rb1(sinh(λ)− sin(λ))/δ

Rb1 =
EI
l1 , Rb2 =

EI
l2 , Rb3 =

EI
l3

δ = 1− cos(λ) cosh(λ)



(A7)

The expression of J0b for solving the natural frequency using the W-W algorithm is
shown as follows [91]:

J0b = ψ− 1
2
[
1− (−1)ψ sign(1− cos λ cosh λ)

]
(A8)

where ψ = INT
(

λ
π

)
, INT is the integer function.
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