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Abstract: In this paper, we analyze the risk ratios of several shrinkage estimators using a balanced loss
function. The James–Stein estimator is one of a group of shrinkage estimators that has been proposed
in the existing literature. For these estimators, sufficient criteria for minimaxity have been established,
and the James–Stein estimator’s minimaxity has been derived. We demonstrate that the James–Stein
estimator’s minimaxity is still valid even when the parameter space has infinite dimension. It is
shown that the positive-part version of the James–Stein estimator is substantially superior to the
James–Stein estimator, and we address the asymptotic behavior of their risk ratios to the maximum
likelihood estimator (MLE) when the dimensions of the parameter space are infinite. Finally, a
simulation study is carried out to verify the performance evaluation of the considered estimators.

Keywords: balanced loss function; James–Stein estimator; multivariate normal distribution; noncen-
tral chi-square distribution; positive-part version of James–Stein estimator; shrinkage estimators

1. Introduction

When it comes to estimating the mean parameter of a multivariate normal distribution,
the minimax technique has attracted the greatest attention and development in research
thus far. Following Stein [1], it is well-known that the maximum likelihood estimator (MLE)
is minimax and admissible when the dimensions of the parameter space are less than or
equal to two. On the other hand, the MLE maintains the minimax property but is no longer
admissible when the dimension is greater than three. Therefore, enhancing estimators has
been accomplished through the development of shrinkage estimators that minimize the risk
associated with the quadratic loss function. The efficient outperformance of these shrinkage
estimators, compared to the MLE, has been demonstrated in various studies; for example,
see Baranchik [2], Efron and Morris [3,4], Stein [5], Casella and Whang [6], Berger [7],
Arnold [8], and Gruber [9]. Stein [1] and James and Stein [10] have also provided specific
suggestions for improvement. In this paper, we discuss adaptive shrinkage estimating
strategies and show how they may be generated by shrinking a raw estimate. In addition,
we report our investigation of the characteristics of several shrinkage estimators in the
context of risk.

There have been various recent studies focused on shrinkage estimation, including
those of Nourouzirad and Arashi [11], Nimet and Selahettin [12], Kashari et al. [13], and
Benkhaled and Hamdaoui [14]. Shrinkage estimators for multivariate normal means in the
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Bayesian framework have been examined by Hamdaoui et al. [15], in order to determine
the minimaxity and limitations of their risk ratios. For the X ∼ Nd(θ, σ2 Id) model, the
authors used the prior law θ ∼ Nd(υ, τ2 Id), in which the parameters υ and τ2 are known
but the parameter σ2 is unknown. They developed two modified Bayes estimators, a δ∗B
and an empirical δ∗EB. When the sample size n and the dimension of parameter space d
are finite, they found that the estimators δ∗B and δ∗EB are minimax under the quadratic loss.
When n and d approach infinity, the risk ratios of these estimators were examined in terms
of the MLE X.

Improvement of the estimators can also be achieved by incorporating a balanced loss
function. Zellner [16] presented a balanced loss function that is intended to represent
two requirements; namely, quality of fit and accuracy of the estimate. We refer to Far-
sipour and Asgharzadeh [17], Karamikabir et al. [18], and Selahattin and Issam [19] for
further information on the use of this loss function. Using the generalized Bayes shrink-
age estimators of location parameter for a spherical distribution subject to a balance-type
loss, Karamikabir et al. [20] determined the minimax and acceptable estimators of the
location parameter.

In this paper, we use the model Y ∼ Nd(µ, τ2 Id), in which the parameter τ is well
known. Our main purpose was to estimate the unknown parameter µ, by using shrinkage
estimators derived from the MLE to solve for µ. We utilized the risk associated with
the balanced loss function to compare two estimators. With the incorporation of the
balanced loss function, the risk function of the estimators was computed using Tα(‖Y‖2) =
(1− α 1

‖Y‖2 )Y, where the real constant α may be dependent on d, and ‖.‖ is the typical

norm in Rd. In addition, we investigated the minimaxity characteristic of the estimators
and concluded that the James–Stein estimator has the same feature. We also extended the
work to study the limit of the risk ratios of the James–Stein estimator to the MLE when
d tends to infinity. We discuss the positive-part version of the James–Stein estimator and
the asymptotic behavior of its risk ratios to the MLE in scenarios where the dimension of
the parameter space d is either finite or goes to infinity. We demonstrate that, when d is
finite, the positive-part version of the James–Stein estimator outperforms the James–Stein
estimator.

The remainder of this paper is structured as follows: In Section 2, we present our
model and recall some published findings that are useful in proving the main results. In
Section 3, we show the minimaxity property and the limit of the risk ratios of the James–
Stein estimator and its positive-part version, regarding the dimension of the parameter
space. We end this paper with the results of a simulation study, which illustrate the
performance of the considered estimators.

2. Model Presentations

In this section, we recall that, if U is a multivariate Gaussian random variable Nd(µ, τ2 Id)

in Rd, then ‖U‖2

τ2 ∼ χ2
d(
‖µ‖2

τ2 ), where χ2
d(
‖µ‖2

τ2 ) denotes the non-central chi-square distribu-

tion with d degrees of freedom and non-centrality parameter ‖µ‖
2

τ2 .
Suppose that Z is a random vector which follows a multivariate normal distribution

Nd(µ, τ2 Id), where the parameter µ is unknown. For any estimator T of the parameter µ,
the balanced squared error loss function of T can then be defined as

`ω(T, µ) = ω‖T − T0‖2 + (1−ω)‖T − µ‖2, (1)

where T is the given estimator that is being compared to the target estimator T0 of µ, ω
is the weight provided to the closeness of T to T0, and 1−ω is the relative weight given
to the precision of the estimator T to µ. This means that the risk function associated with
`ω(T, µ) is defined as follows:

Rω(T, µ) = ωE(‖T − T0‖2) + (1−ω)E(‖T − µ‖2). (2)
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Now, considering the model Z ∼ Nd(µ, τ2 Id), in which τ2 is known, we focus on
estimating the unknown mean parameter µ using shrinkage estimators under the balanced
loss function defined in Equation (1). For simplicity, we only consider the scenario τ2 = 1,
as any model of the type Z ∼ Nd(µ, τ2 Id) may be converted to a model X ∼ Nd(µ, Id) by
a change of variables. Specifically, we investigate the estimation of the unknown parameter
µ when Y ∼ Nd(µ, Id). In this case, following Benkhaled et al. [21], it is obvious that the
MLE is Y := T0, and its risk function is Rω(T0, µ) = (1−ω)d. Therefore, any estimator
that dominates T0 is likewise minimax for d ≥ 3.

For the proof given in the next section, we needed to address the result of Lemma 1
given in Stein [5], which states that

E((Z− υ) f (Z)) = E( f ′(Z)), (3)

where Z is a random variable that follows N(υ, 1), f ′ is the derivative of f , and E( f ′(Z)) <
+∞.

3. Main Results
3.1. General Class of James–Stein Estimator
3.1.1. Risk Function and Minimaxity

Here, we study the minimaxity of estimators defined by

Tα(‖Y‖2) =

(
1− α

1

‖Y‖2

)
Y, (4)

where α is a real parameter.

Proposition 1. Under the balanced loss function `ω given in Equation (1), the risk function of the
estimator Tα(‖Y‖2) is

Rω(Tα(‖Y‖2), µ) = d(1−ω) + α(α− 2(1−ω)(d− 2))E

(
1

‖Y‖2

)
. (5)

Proof of Proposition 1. From Equations (2) and (4), we have

Rω(Tα(‖Y‖2), µ) = ωE(‖Tα(‖Y‖2)− T0‖
2
) + (1−ω)E(‖Tα(‖Y‖2)− µ‖

2
)

= ωE
(
‖ − α 1

‖Y‖2 Y‖2
)
+ (1−ω)E

(
‖Y− µ− α 1

‖Y‖2 Y‖2
)

= α2E
(

1
‖Y‖2

)
+ (1−ω)E(‖Y− µ‖2)

−2(1−ω)αE(Y− µ , 1
‖Y‖2 Y).

(6)

Using Equation (3), we obtain

E
(
< Y− µ , 1

‖Y‖2 Y >

)
= E

(
d
∑

j=1
(Yj−µj)

1
‖Y‖2 Yj

)
=

d
∑

j=1
E
[
(Yj−µj)

1
‖Y‖2 Yj

]
=

d
∑

j=1
E
[

∂
∂Yj

(
1

∑d
i=1 Yi

2 Yj

)]
= (d− 2)E

(
1
‖Y‖2

)
.

(7)

According to Equations (6) and (7), we obtain the desired result. �
Subsequently, from Equation (5), we can immediately deduce that a sufficient condition

for the estimator Tα(‖Y‖2) to dominate the MLE Y is

0 ≤ α ≤ 2(1−ω)(d− 2).
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Due to the convexity of the risk functionRω(Tα(‖Y‖2), µ) on α, the optimal value of
α that minimizes this risk function is

α = α̂ = (1−ω)(d− 2).

By replacing α with α̂ in Equation (4), we then obtain the James–Stein estimator that is
defined as

TJ.S(‖Y‖2) =

(
1− (1−ω)(d− 2)

‖Y‖2

)
Y. (8)

Additionally, its risk function related to the balanced loss function `ω given in Equation (1)
is given by

Rω(TJ.S(‖Y‖2), µ) = d(1−ω)− (d− 2)2(1−ω)2E

(
1

‖Y‖2

)
(9)

≤ Rω(T0, µ).

We can then deduce that the James–Stein estimator TJ.S(‖Y‖2) dominates the MLE;
thus, TJ.S(‖Y‖2) is minimax.

3.1.2. Asymptotic Behavior of Risk Ratios of James–Stein Estimator

This section discusses the effectiveness of the James–Stein estimator, in terms of
dominating the MLE under the balanced loss function when the dimension of the parameter
space d goes to infinity.

Casella and Whang [6] have shown that the James–Stein estimator dominates the MLE
under the quadratic loss function; that is, in the specific case of the balanced loss defined
by Equation (1): ω = 0.

Theorem 1. Under the balanced loss function `ω defined in Equation (1), if lim
d→+∞

‖µ‖2

d = Q

(Q > 0) , we get

lim
d→+∞

Rω(TJ.S(‖Y‖2), µ)

Rω(T0, µ)
=

ω + Q
1 + Q

.

Proof of Theorem 1. From Lemma 1 of Casella and Whang [6], and for d ≥ 3, we have

1

d− 2 + ‖µ‖2 ≤ E

(
1

‖Y‖2

)
≤ 1

d− 2

(
d

d + ‖µ‖2

)
. (10)

Using Equations (9) and (10), we obtain

1− (1−ω)(d− 2)

d + ‖µ‖2 ≤
Rω(TJ.S(‖Y‖2), µ)

Rω(T0, µ)
≤ 1− (1−ω)(d− 2)2

d(d− 2 + ‖µ‖2)
.

By passing to the limit—namely, when d tends to infinity and under the condition

lim
d→+∞

‖µ‖2

d = Q (Q > 0)we get

1− lim
d→+∞

(1−ω)(d− 2)

d + ‖µ‖2 ≤ lim
d→+∞

Rω(TJ.S(‖Y‖2), µ)

Rω(T0, µ)
≤ 1− lim

d→+∞

(1−ω)(d− 2)2

d(d− 2 + ‖µ‖2)
,
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and then

1− lim
d→+∞

(1−ω)(d−2)
d

d
d + ‖µ‖2

d

≤ lim
d→+∞

Rω(TJ.S(‖Y‖2), µ)

Rω(T0, µ)
≤ 1− lim

d→+∞

(1−ω)(d−2)2

d2

d
d

(
d−2

d + ‖µ‖2

d

) .

Thus,

ω + Q
1 + Q

= 1− 1−ω

1 + Q
≤ lim

d→+∞

Rω(TJ.S(‖Y‖2), µ)

Rω(T0, µ)
≤ 1− 1−ω

1 + Q
=

ω + Q
1 + Q

,

Therefore,

lim
d→+∞

Rω(TJ.S(‖Y‖2), µ)

Rω(T0, µ)
=

ω + Q
1 + Q

< 1 ,

as 0 ≤ ω < 1. This means that, even if d tends to infinity, the James–Stein estimator
TJ.S(‖Y‖2) is superior to the MLE T0. As a result, the minimaxity feature of the James–Stein
estimator TJ.S(‖Y‖2) remains stable. �

3.2. The Positive-Part Version of the James–Stein Estimator

In this section, we study the superiority of the positive-part version of the James–Stein
estimator to the James–Stein estimator, and the limit of the risk ratio of the positive-part
version of the James–Stein estimator to the MLE when the dimension of the parameter
space d tends to infinity. The positive-part version of James–Stein estimator is given by

TJ.S+(‖Y‖2) =

(
1− (1−ω)(d− 2)

‖Y‖2

)+

Y, (11)

where
(

1− (1−ω)(d−2)
‖Y‖2

)+

= max
(

0, 1− (1−ω)(d−2)
‖Y‖2

)
=

(
0, 1− (1−ω)(d−2)

‖Y‖2

)
I (1−ω)(d−2)

‖Y‖2
≤1

,

with I (1−ω)(d−2)
‖Y‖2

≤1
denoting the indicator function of the set

(
(1−ω)(d−2)
‖Y‖2 ≤ 1

)
.

3.2.1. Comparison of Risk Functions of the Positive-Part Version of the James–Stein
Estimator and the James–Stein Estimator

Proposition 2. Under the balanced loss function `ω defined in Equation (1), the positive-part
version of James–Stein estimator TJ.S+ defined in Equation (11) dominates the James–Stein estimator
TJ.S given in Equation (8).

Proof of Proposition 2. We have

Rω(TJ.S+(‖Y‖2), µ) = ωE
(
‖TJ.S+(‖Y‖2)− T0‖

2)
+ (1−ω)E

(
‖TJ.S+(‖Y‖2)− µ‖

2)
. (12)

Baranchick [2] has shown that, under the quadratic loss function (i.e., in the case where
ω = 0),

E
(
‖TJ.S+(‖Y‖2)− µ‖

2)
≤ E

(
‖TJ.S(‖Y‖2)− µ‖

2)
for any µ ∈ Rd . (13)

If ω = 0, the positive–part version of James–Stein estimator TJ.S+(‖Y‖2) then domi-
nates the James–Stein estimator TJ.S(‖Y‖2). Thus, using Equations (12) and (13), a sufficient
condition for which TJ.S+(‖Y‖2) dominates TJ.S(‖Y‖2) under the balanced loss function
(i.e., 0 ≤ ω < 1) is

E
(
‖TJ.S+(‖Y‖2)− T0‖

2)
≤ E

(
‖TJ.S(‖Y‖2)− T0‖

2)
.
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We have

E
(
‖TJ.S+(‖Y‖2) −T0‖2

)
= E(‖TJ.S+(‖Y‖2)− TJ.S(‖Y‖2) + TJ.S(‖Y‖2)−Y‖

2
)

= E(‖TJ.S+(‖Y‖2)− TJ.S(‖Y‖2)‖
2
) + E

(
‖TJ.S(‖Y‖2)−Y‖

2
)

+2E(< TJ.S+(‖Y‖2)− TJ.S(‖Y‖2), TJ.S(‖Y‖2)−Y >)

= E

(
‖
(

(1−ω)(d−2)
‖Y‖2 − 1

)
I (1−ω)(d−2)

‖Y‖2
≥1

Y‖
2
)

+E
(
‖TJ.S(‖Y‖2)−Y‖

2)
−2(1−ω)(d− 2)E

(
<

(
(1−ω)(d−2)
‖Y‖2 − 1

)
I (1−ω)(d−2)

‖Y‖2
≥1

, 1
‖Y‖2 Y >

)
.

Subsequently,

E
(
‖TJ.S+(‖Y‖2) −T0‖2

)
− E

(
‖TJ.S(‖Y‖2)− T0‖

2)
= E

(
‖
(

(1−ω)(d−2)
‖Y‖2 − 1

)
I (1−ω)(d−2)

‖Y‖2
≥1

Y‖
2
)

−2(1−ω)(d− 2)E

(
<

(
(1−ω)(d−2)
‖Y‖2 − 1

)
I (1−ω)(d−2)

‖Y‖2
≥1

Y, 1
‖Y‖2 Y >

)
= E

[(
1
‖Y‖2 (‖Y‖2 − (1−ω)(d− 2)

)(
‖Y‖2

+(1−ω)(d− 2))) I‖Y‖2−(1−ω)(d−2)≤0

]
≤ 0.

Thus, TJ.S+(‖Y‖2) dominates TJ.S(‖Y‖2) for any 0 ≤ ω < 1. �

3.2.2. Limit of Risk Ratio of the Positive-Part Version of the James–Stein Estimator to
the MLE

Theorem 2. Under the balanced loss function `ω defined in Equation (1), if lim
d→+∞

‖µ‖2

d = Q

(Q > 0), we get

lim
d→+∞

Rω(TJ.S+(‖Y‖2), µ)

Rω(T0, µ)
=

ω + Q
1 + Q

.

Proof of Theorem 2. As TJ.S+(‖Y‖2) dominates TJ.S(‖Y‖2) for any 0 ≤ ω < 1, then
Rω(TJ.S+(‖Y‖2), µ) ≤ Rω(TJ.S(‖Y‖2), µ) for any 0 ≤ ω < 1 and for all d ≥ 3 and µ ∈ Rd.
Hence,

lim
d→+∞

Rω(TJ.S+(‖Y‖2), µ)

Rω(T0, µ)
≤ lim

d→+∞

Rω(TJ.S(‖Y‖2), µ)

Rω(T0, µ)
=

ω + Q
1 + Q

. (14)

To ensure that TJ.S+(‖Y‖2) dominates the MLE as d tends to infinity, it suffices to
show that

lim
d→+∞

Rω(TJ.S+(‖Y‖2), µ)

Rω(T0, µ)
≥ ω + Q

1 + Q
.

Using the same techniques as used in the proof of Lemma 5 in Benmansour and
Hamdaoui [22], based on Lemma 2.1 of Shao and Strawderman [23], we obtain

Rω(TJ.S+(‖Y‖2), µ) = Rω(TJ.S(‖Y‖2), µ) + E

[(
‖Y‖2 +

(1−ω)2(d− 2)2

‖Y‖2 − d

)
I (1−ω)(d−2)

‖Y‖2
≥1

]
. (15)
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As

E

(
‖Y‖2I (1−ω)(d−2)

‖Y‖2
≥1

)
=
∫ +∞

0
tI (1−ω)(d−2)

t ≥1
χ2

d(‖µ‖
2)dt ,

where χ2
d(‖µ‖

2) is the chi-squared distribution with d degrees of freedom and non-centrality
parameter ‖µ‖2, and by applying Equation (1.3) in Casella and Hwang [6], we have

E

(
‖Y‖2I (1−ω)(d−2)

‖Y‖2
≥1

)
=
∫ +∞

0 tI (1−ω)(d−2)
t ≥1

χ2
d(‖µ‖

2)dt

= d
∫ +∞

0 I (1−ω)(d−2)
t ≥1

χ2
d+2(‖µ‖

2)dt

+2‖µ‖2 ∫ +∞
0 I (1−ω)(d−2)

t ≥1
χ2

d+4(‖µ‖
2)dt

= dP(χ2
d+2(‖µ‖

2) ≤ (1−ω)(d− 2))
+2‖µ‖2P(χ2

d+4(‖µ‖
2) ≤ (1−ω)(d− 2)).

(16)

Moreover,

E

[
(1−ω)2(d−2)2

‖Y‖2 I (1−ω)(d−2)
‖Y‖2

≥1

]
≥ 1

(1−ω)2(d−2)2 E(I (1−ω)(d−2)
‖Y‖2

≥1
)

= 1
(1−ω)2(d−2)2 P(‖Y‖2 ≤ (1−ω)(d− 2))

= 1
(1−ω)2(d−2)2 P(χ2

d(‖µ‖
2) ≤ (1−ω)(d− 2)) ,

(17)

and

− dE

[
I (1−ω)(d−2)

‖Y‖2
≥1

]
= −dP(χ2

d(‖µ‖
2) ≤ (1−ω)(d− 2)). (18)

From Equations (16)–(18), we obtain

Rω(TJ.S+(‖Y‖2), µ)

≥ Rω(TJ.S(‖Y‖2), µ) + d P(χ2
d+2(‖µ‖

2) ≤ (1−ω)(d− 2))
+2‖µ‖2 P(χ2

d+4(‖µ‖
2) ≤ (1−ω)(d− 2))

+ 1
(1−ω)(d−2)P(χ

2
d(‖µ‖

2) ≤ (1−ω)(d− 2))

−dP(χ2
d(‖µ‖

2) ≤ (1−ω)(d− 2)).

Then,

Rω(TJ.S+(‖Y‖2),µ)
Rω(T0,µ)

≥ Rω(TJ.S(‖Y‖2),µ)
Rω(T0,µ) + d

d(1−ω)
P(χ2

d+2(‖µ‖
2) ≤ (1−ω)(d− 2))

+ 2‖µ‖2

d(1−ω)
P(χ2

d+4(‖µ‖
2) ≤ (1−ω)(d− 2))

+ 1
d(d−2)(1−ω)2 P(χ2

d(‖µ‖
2) ≤ (1−ω)(d− 2))

− d
d(1−ω)

P(χ2
d(‖µ‖

2) ≤ (1−ω)(d− 2)).

Using Equation (3.4) from Casella and Hwang [6], we have

lim
d→+∞

P(χ2
d+2(‖µ‖

2) ≤ (1−ω)(d− 2)) = lim
d→+∞

P(χ2
d+4(‖µ‖

2) ≤ (1−ω)(d− 2))

= lim
d→+∞

P(χ2
d(‖µ‖

2) ≤ (1−ω)(d− 2)) = 0.
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Subsequently, under the condition lim
d→+∞

‖µ‖2

d = Q, we obtain

lim
d→+∞

Rω(TJ.S+(‖Y‖2), µ)

Rω(T0, µ)
≥ lim

d→+∞

Rω(TJ.S(‖Y‖2), µ)

Rω(T0, µ)
=

ω + Q
1 + Q

. (19)

According to Equations (14) and (19), we can deduce that

lim
d→+∞

Rω(TJ.S+(‖Y‖2), µ)

Rω(T0, µ)
=

ω + Q
1 + Q

≤ 1;

namely, the positive-part version of James–Stein estimator TJ.S+(‖Y‖2) dominates the MLE,
even if d tends to infinity. Thus, there is a stability of the minimaxity property of the
positive-part version of the James–Stein estimator TJ.S+(‖Y‖2) when the dimension of
parameter space d is in the neighborhood of infinity. �

4. Simulation Results

In this section, we discuss the values of the risk ratios of the James–Stein estimator
TJ.S(‖Y‖2) defined in Equation (8), for which the risk function under the balanced loss
function is given by Equation (9), and the positive-part version of James–Stein estimator
TJ.S+(‖Y‖2) defined by Equation (11), for which the risk function related to the balanced
loss function is given by Equation (15), with respect to the MLE. We denote these risk ratios

as Rω(TJ.S(‖Y‖2),µ)
Rω(T0,µ) and Rω(TJ.S+(‖Y‖2),µ)

Rω(T0,µ) , respectively. First, we discuss the performance of

both estimators as functions of λ = ‖µ‖2, and then compare their performance to the MLE
based on selected values of the parameters d and ω. We then explain their performance
based on various values of, ω, and λ = ‖µ‖2.

Figures 1–6 show the curves of Rω(TJ.S(‖Y‖2),µ)
Rω(T0,µ) and Rω(TJ.S+(‖Y‖2),µ)

Rω(T0,µ) as functions of

λ = ‖µ‖2, based on selected values of the parameters d and ω. These curves were also
compared to the gold standard curve of the risk ratio of the MLE (a constant function equal

to 1). We noted that the values of the risk ratios Rω(TJ.S(‖Y‖2),µ)
Rω(T0,µ) and Rω(TJ.S+(‖Y‖2),µ)

Rω(T0,µ) were
less than 1 for all selected values of d and ω. This indicates that the James–Stein estimator
TJ.S(‖Y‖2) and the positive-part version of the James–Stein estimator TJ.S+(‖Y‖2) are
minimax. Furthermore, the estimators TJ.S(‖Y‖2) and TJ.S+(‖Y‖2) represented a significant
improvement over the MLE, especially when the values of ω were close to zero and the
dimension of the parameter space d was high. Moreover, we noted a better performance
of TJ.S+(‖Y‖2), compared to TJ.S(‖Y‖2), for the same values of d and ω. By looking at the

curves of both risk ratios, it can be seen that the risk ratio Rω(TJ.S+(‖Y‖2),µ)
Rω(T0,µ) was obviously

lower than that of Rω(TJ.S(‖Y‖2),µ)
Rω(T0,µ) for most values of λ. The difference between these curves

was significant for small values of λ and negligible for larger values. This indicates that
the improvement of TJ.S+(‖Y‖2) over TJ.S(‖Y‖2) was slight for large values of λ, and the
curves of their risk ratios were almost identical once λ exceeded a certain value. All results
discussed through these figures can be confirmed by the values of risk ratios Rω(TJ.S(‖Y‖2),µ)

Rω(T0,µ)

and Rω(TJ.S+(‖Y‖2),µ)
Rω(T0,µ) provided in Tables 1–3 for different set values of λ = ‖µ‖2, d, and ω.

The first entry of each cell in these tables is the ratio Rω(TJ.S(‖Y‖2),µ)
Rω(T0,µ) , while the second entry

is the ratio Rω(TJ.S+(‖Y‖2),µ)
Rω(T0,µ) .

The superiority of the James–Stein estimator TJ.S(‖Y‖2) and the positive-part version
of the James–Stein estimator TJ.S+(‖Y‖2) over the MLE were observed under small values
of both ω and λ. This improvement tended to decrease and approached zero as ω and λ



Mathematics 2022, 10, 52 9 of 14

increased. We also observed that the improvement of both estimators and the dimension
of the parameter space d were positively correlated under fixed values of ω. We also

noted that, for each value of λ = ‖µ‖2, the values of the risk ratios Rω(TJ.S(‖Y‖2),µ)
Rω(T0,µ) and

Rω(TJ.S+(‖Y‖2),µ)
Rω(T0,µ) tended to be identical for large values of ω.
Hence, these results indicate the minimaxity of James–Stein estimator and the positive-

part version of the James–Stein estimator, as well as the superiority of the positive-part
version of the James–Stein estimator to the James–Stein estimator for different values of d
and ω.
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Table 1. Values of the risk ratios Rω(TJ.S(‖Y‖2),µ)
Rω(T0,µ) and Rω(TJ.S+(‖Y‖2),µ)

Rω(T0,µ) for d = 4 and ω = 0.1, 0.2,

0.5, 0.7, 0.9 at different values of λ = ‖µ‖2.

λ ω = 0.1 ω = 0.2 ω = 0.5 ω = 0.7 ω = 0.9

1.2418
0.6648 0.7020 0.8138 0.8882 0.9627
0.5826 0.6326 0.7809 0.8748 0.9611

1.6712
0.6950 0.7289 0.8305 0.8983 0.9661
0.6229 0.6686 0.8028 0.8872 0.9647

3.7523
0.7969 0.8194 0.8871 0.9323 0.9774
0.7601 0.7898 0.8750 0.9278 0.9769

5.0019
0.8348 0.8532 0.9082 0.9449 0.9816
0.8108 0.8342 0.9009 0.9423 0.9814

10.4310
0.9142 0.9237 0.9523 0.9714 0.9905
0.9108 0.9212 0.9515 0.9712 0.9904

20.0000
0.9550 0.9237 0.9523 0.9714 0.9905
0.9549 0.9212 0.9515 0.9712 0.9904

Table 2. Values of the risk ratios Rω(TJ.S(‖Y‖2),µ)
Rω(T0,µ) and Rω(TJ.S+(‖Y‖2),µ)

Rω(T0,µ) for d = 10 and ω = 0.1, 0.2, 0.5,

0.7, 0.9 at different values of λ = ‖µ‖2.

λ ω = 0.1 ω = 0.2 ω = 0.5 ω = 0.7 ω = 0.9

1.2418
0.3609 0.4319 0.6449 0.7870 0.9290
0.3083 0.3914 0.6349 0.7855 0.9290

1.6712
0.3854 0.4567 0.6585 0.7951 0.9317
0.3368 0.4169 0.6498 0.7939 0.9317

3.7523
0.4839 0.5413 0.7133 0.8280 0.9427
0.4525 0.5190 0.7089 0.8274 0.9426

5.0019
0.5306 0.5827 0.7392 0.8435 0.9478
0.5070 0.5666 0.7364 0.8432 0.9478

10.4310
0.6668 0.7039 0.8149 0.8889 0.9630
0.6610 0.7003 0.8145 0.8889 0.9630

20.0000
0.7828 0.8070 0.8793 0.9276 0.9759
0.7825 0.8068 0.8793 0.9276 0.9759

Table 3. Values of the risk ratios Rω(TJ.S(‖Y‖2),µ)
Rω(T0,µ) and Rω(TJ.S+(‖Y‖2),µ)

Rω(T0,µ) for d = 20 and ω = 0.1, 0.2, 0.5,

0.7, 0.9 at different values of λ = ‖µ‖2.

λ ω = 0.1 ω = 0.2 ω = 0.5 ω = 0.7 ω = 0.9

1.6712
0.2529 0.3359 0.5849 0.7509 0.9170
0.2245 0.3169 0.5831 0.7508 0.9169

2.4948
0.2807 0.3606 0.6004 0.7602 0.9201
0.2558 0.3445 0.5991 0.7602 0.9201

3.7523
0.3196 0.3952 0.6220 0.7732 0.9244
0.2991 0.3826 0.6211 0.7732 0.9244

5.0019
0.3545 0.4263 0.6414 0.7848 0.9283
0.3380 0.4165 0.6408 0.7848 0.9283

10.4310
0.4739 0.5323 0.7077 0.8246 0.9415
0.4681 0.5295 0.7076 0.8246 0.9415

20.0000
0.6054 0.6492 0.7808 0.8684 0.9561
0.6047 0.6490 0.7807 0.8684 0.9561
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5. Conclusions

In this paper, we considered the estimation of the mean µ of a multivariate normal
distribution Y ∼ Nd(µ, Id). We assessed the risk associated with the balanced loss function
for comparing any two estimators. First, we established the minimaxity of the estimators
defined by Tα(‖Y‖2) = (1− α 1

‖Y‖2 )Y, where α is a real parameter related to the dimension

of the parameter space, d, and deduced the minimaxity of James–Stein estimator TJ.S(‖Y‖2).
When the value of d was in the neighborhood of infinity, we studied the asymptotic behavior
of risk ratios of the James–Stein estimator to the MLE. We then showed that, under the

condition lim
d→+∞

‖µ‖2

d = Q > 0, the limit of the risk ratio Rω(TJ.S(‖Y‖2),µ)
Rω(T0,µ) tended to the value

ω+Q
1+Q (≤ 1); in other words, the James–Stein estimator TJ.S(‖Y‖2) dominates the MLE, even

when d tends to infinity. Thus, the minimaxity property of the James–Stein estimator
TJ.S(‖Y‖2) remains stable, even if d is in the neighborhood of infinity. Second, following
the same steps as in the first part, we examined the minimaxity of the positive-part version
of the James–Stein estimator TJ.S+(‖Y‖2), in the case when d is finite. When d was infinite,
we obtained the same results as reported previously; namely, we showed that, under

the condition lim
d→+∞

‖µ‖2

d = Q > 0, the limit of the risk ratio Rω(TJ.S+(‖Y‖2),µ)
Rω(T0,µ) tended to

ω+Q
1+Q (≤ 1). Thus, we observed the stability of the minimaxity property of the positive-part

version of the James–Stein estimator, TJ.S+(‖Y‖2), when the dimension of parameter space
d is in the neighborhood of infinity.

For further work, we plan to examine the general multivariate normal distribution
Y ∼ Nd(µ, ∑), where ∑ is an arbitrary unknown positive matrix. This work can also be
explored in the Bayesian framework as well as in the general case where the model has a
symmetrical spherical distribution.
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