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Abstract: At present, the study concerning pricing variance swaps under CIR the (Cox–Ingersoll–
Ross)–Heston hybrid model has achieved many results ; however, due to the instantaneous interest
rate and instantaneous volatility in the model following the Feller square root process, only a semi-
closed solution can be obtained by solving PDEs. This paper presents a simplified approach to price
log-return variance swaps under the CIR–Heston hybrid model. Compared with Cao’s work, an
important feature of our approach is that there is no need to solve complex PDEs; a closed-form
solution is obtained by applying the martingale theory and Itô’s lemma. The closed-form solution is
significant because it can achieve accurate pricing and no longer takes time to adjust parameters by
numerical method. Another significant feature of this paper is that the impact of sampling frequency
on pricing formula is analyzed; then the closed-form solution can be extended to an approximate
formula. The price curves of the closed-form solution and the approximate solution are presented by
numerical simulation. When the sampling frequency is large enough, the two curves almost coincide,
which means that our approximate formula is simple and reliable.

Keywords: CIR–Heston hybrid model; realized variance; stochastic volatility; stochastic interest rate;
variance swap

1. Introduction

Since the break of the global financial crisis in 2008, with the sharp rise and fall of the
stock market, financial markets have shown high volatility and risk. Almost all financial
markets in the world have experienced volatility risk; some local financial problems are
likely to spread and become a serious global problem with the globalization of economies.
Under this background, trading or hedging this risk has become more and more impor-
tant. The management of volatility risk has attracted extensive attention from financial
practitioners. Both individuals and financial institutions are very interested in trading
volatility/variance to obtain returns under high risk or effectively hedge volatility risk.
Volatility derivatives have gradually become an important financial instrument. Carr and
Lee [1] pointed out that the trading volume of volatility derivatives in the current financial
market is increasing significantly. Among many volatility derivatives, volatility/variance
swaps are the most popular. They are essentially a kind of forward contract. The swap
parties agree to swap the volatility/variance (realized volatility/variance) generated by
the price of the underlying asset during the contract period with the fixed value agreed in
advance on the maturity date. In other words, the holder of the contract actually exchanges
the future uncertain volatility/variance with the fixed volatility/variance value, so as to
avoid the volatility risk.

In the financial market, traders prefer trading volatility swaps directly. However, due
to the convexity of the square root process, the pricing problem of volatility swaps is very
complex. Financial practitioners try to weaken the condition and apply variance to describe
the volatility risk. The advantage of variance swaps lies in its good mathematical properties
(such as additivity), which enables scholars to systematically and accurately study variance
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swaps and provide investors with accurate volatility risk exposure. Moreover, the pricing of
volatility swaps is often approached by the results of variance swaps. Therefore, the pricing
of variance swaps has attracted more attention from financial practitioners. Many scholars
study variance swaps by establishing stochastic volatility models to describe the price
process of underlying assets [2–5]. Swishchuk [6,7] defines and studies the single factor
and multi factor stochastic volatility model with delay, they presented the pricing formula
of variance swaps under the corresponding model. When the volatility process of the
underlying asset satisfies the BN-S (Barndorff-Nielsen and Shephard) model, Habtemicael
and Sengupta [8] studied the pricing problem of variance and volatility swaps under the
assumption of no arbitrage. Issaka and Sengupta [9] obtained various results related to
variance swaps under the BN-S model. They also introduced a price-weighted index modu-
lated by market variance and verified its impact on pricing. In addition, Sengupta et al. [10]
designed a combination of futures and variance swaps under the BN-S model, which can
optimally hedge oil price risk.

The above literature is carried out under the assumption of continuous sampling.
However, Jarrow et al. [11] pointed out that the results obtained under continuous sam-
pling can only be seen as an approximation of the actual financial market. For more accurate
pricing, scholars tried to solve the pricing problem of volatility and variance swaps under
the assumption of discrete sampling. Refs. [12–14] show that the pricing of derivatives
under discrete sampling assumption is more complex than continuous sampling assump-
tion. The results of variance swaps with discrete sampling are usually obtained based on
the stochastic volatility model. Little and Pant [15] proposed a finite difference method,
by reducing dimension and introducing new variables, they solved the pricing problem of
variance swaps under Black-Scholes framework. A path dependent option pricing simula-
tion method under Heston [16] stochastic volatility model is proposed in [17]. Zhu and
Lian [18,19] derived the analytical solution of variance swaps based on Heston [16] stochas-
tic volatility model. Similarly, Zhang [20] obtained the analytical solution of variance
swaps under the MRG (mean-reversing Gaussian) stochastic volatility model. It is worth
noting that if only a single factor stochastic volatility model is considered, the results can
not truly reflect the actual financial market. Therefore, scholars introduce other volatility
factors to the model to better adapt to the data in the financial market. Jump process is
often added into the underlying asset price process. Jain [21] proves that the introduction
of jump diffusion process will affect the result of variance swaps. Liu [22] obtained a
analytical solution of variance swaps based on the Hawkes jump diffusion process. In the
mean time, the stochastic interest rate is also embedded into the underlying asset price
process. Kim [23] proves that the introduction of stochastic interest rate can indeed get
better results. Cao et al. [24] combined the Heston [16] stochastic volatility model with
Cox-Ingersoll-Ross (CIR) [25] stochastic interest rate model, using the dimension reduction
technology in Little and Pant [15] and characteristic function, they obtained a semi-closed
solution of variance swaps under the CIR–Heston hybrid model. Cao et al. [26] further
extended the partial coefficient correlation model to the full correlation structure model,
and presented a semi-closed solution through the derivation of characteristic function.
Based on the work of [20,24], Zhao [27] introduced the Vasicek interest rate process to
the MRG(mean-reverting Gaussian) model to obtain a closed-form solution. Recently,
Xu et al. [28] obtained the pricing formula of variance swaps with the liquidity risk of the
underlying assets. As to the pricing of variance swaps under Markov modulation model,
readers can refer to [29,30].

In recent years, the pricing problem of log-return variance swaps has also made great
progress. Zhu and Lian [31] obtained an exact solution of the PDE system based on the He-
ston’s [16] two-factor model. Bernard and Cui [32] solved the pricing problem of log-return
variance swaps with discrete sampling under three different stochastic volatility models.
Based on Heston’s [16] two factor stochastic volatility model, Zhu and Lian [33] proposed
a general method of forward start variance swaps with discrete sampling. By using the
forward characteristic function, two analytical solutions of forward start variance swaps are
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derived. Furthermore, there are some studies on pricing log-return variance swaps under
other models [34,35]. As to the national policies, in order to deal with some possible risks
in the future, which can adjust the net reserve value and promote sustainable economic
growth, readers can refer to [36].

To our best knowledge, the pricing problem of variance swaps based on the CIR–
Heston hybrid model has been deeply studied in Cao [24,26] by PDEs. However, solving
PDEs is a very cumbersome process and only a semi-closed solution can be obtained.
In contrast, this paper study the problem from the perspective of stochastic analysis
without solving PDEs. By applying the martingale theory and Itô’s lemma, the solving
process can be greatly simplified and a closed-form solution of log-return variance swaps
is obtained. The significant advantage of our closed-form solution is there is no need to
spend time adjusting parameters by numerical simulation. In addition, one limitation of
solving the pricing problem by PDEs is not convenient to analyze the influence of sampling
frequency on the pricing formula. Another important feature of this paper is that the
closed-form solution can be further extended to a simple and reliable approximate formula.
The numerical simulation results show that there is little difference between the exact
solution and the approximate solution when the sampling frequency is large enough.

The rest of this paper is organized as follows: In Section 2, we give a description
of CIR–Heston hybrid model and obtain a closed-form formula for discretely sampled
variance swaps. In Section 3, using Itô’s lemma and the martingale theory, we derive an
approximate formula in the case of large sampling. The numerical analysis is shown to
illustrate our main results in Section 4. In Section 5, we conclude the results.

2. Pricing Variance Swaps and Our Model

In this section, we introduce the related concepts of variance swaps and CIR–Heston
bybrid model, and we also show the solution of variance swaps valuation in detail.

2.1. CIR–Heston Hybrid Model

Let (Ω,Ft,Q) is a probability measurable space, the price of the underlying asset St ,
the instantaneous interest rate rt and the instantaneous stochastic volatility vt , can be
described by the following CIR–Heston hybrid model:

dSt = rtStdt +
√

vtStdWS
t

dvt = k(θ − vt)dt + σ
√

vtdWv
t

drt = h(η − rt)dt + ξ
√

rtdWr
t

(1)

θ is the long-term mean of volatility, σ is the volatility of volatility, η is the long-term
mean of the instantaneous interest rate, ξ is the volatility of the interest rate. k and h
are the mean-reverting speed parameter of vt and rt, respectively. WS

t , Wv
t , Wr

t are three
one-dimensional Brownian motions. We make the following assumptions:

(1) dWS
t dWv

t = ρdt, dWS
t dWv

t = 0, dWv
t dWr

t = 0, and −1 ≤ ρ ≤ 1.
(2) To ensure the value of rt and vt are always positive, we set 2kθ ≥ σ2, 2ξh ≥ η2.
(3) All the parameters are denoted under the risk-neutral measure Q.

2.2. Variance Swaps

We firstly give a introduction for the measurement of the realized variance of the
underlying asset, which is expressed as the sum of squares of log-returns during the
contract period in [15]:

σ2
R =

AF
N

N

∑
i=1

ln2(
Sti

Sti−1

)× 1002 (2)

where Sti is the price of the underlying asset at time ti. Suppose St has N observations in the
period [0,T]: 0 ≤ t1 < t2 < t3 . . . < tN ≤ T. 1002 is the parameter used to adjust the result.
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AF is the annualized factor converting the expression to an annualized variance, related to
sampling frequency. If the sampling frequency is every trading day, then AF = 252, which
means that there are 252 trading days in one year; If the sampling frequency is every week,
then AF = 52. If every month, then AF = 12, Typically, assuming equally spaced discrete
observations and take AF = 1

∆t =
N
T .

Variance swaps is a kind of forward contract about the variance of the future return of
the underlying asset. The long position of the contract pay a fixed value on the maturity date
and receive the amount of the realized variance of the underlying asset during the contract
period, while the short position just the opposite. Suppose the price of an underlying asset
is St with the maturity date T, the return of the long position on the maturity date is:

(σ2
R − K)× L (3)

where K is the annualized delivery price of the variance swaps; L is the notional amount of
the swap in dollars per annualized variance point, also known as nominal principal.

2.3. Measure Transformation

According to the risk-neutral pricing principle, the value of variance swaps contract
at time t is the present value of future expected return, thus:

Vt = EQ
t [e
−
∫ T

t rsds(σ2
R − K)× L] (4)

Due to the contract is fair to both parties, therefore, the price of log-return variance
swaps contract is actually the value of K that ensures Vt = 0 at the initial time, thus

K = EQ
0 [e−

∫ T
0 rsdsσ2

R]. It is quite difficult to directly calculate the value of K because of the
stochastic interest rate, we need to change the expression (4) from the risk-neutral measure
Q to the T-forward measure QT . According to Brigo and Mercurio [37], the value of zero

coupon bonds at time t = 0 is given by EQ
0 [e−

∫ T
0 rsds] = P(0, T). Then, Equation (4) can be

written as
Vt = EQ

t [e
−
∫ T

t rsds(σ2
R − K)× L] = P(0, T)ET

0 [(σ
2
R − K)× L] (5)

where ET
0 [·] is the expectation under the T-forward measure QT at time t = 0. Hence,

the price of log-return variance swaps contract K should satisfies K = ET
0 (σ

2
R). Further,

according to the mathematical expression of the realized variance in (2):

ET
0 [σ

2
R] = ET

0 [
1
T

N

∑
i=1

ln2(
Sti

Sti−1

)]× 1002 =
1
T

ET
0 [

N

∑
i=1

ln2(
Sti

Sti−1

)]× 1002 (6)

the process of computing the value of K can be reduced to compute the following N
conditional expectation:

ET
0 [ln

2(
Sti

Sti−1

)], i = 1, . . . , N (7)

Obviously, for continue solving, we also need to change SDEs in (1) from the risk-
neutral measure Q to the T-forward measure QT. By using Cholesky decomposition, we
can obtain: 

dSt

St
dvt
drt

 =

 rt
k(θ − vt)
h(η − rt)

dt + ∑×C×

dŴS
t

dŴv
t

dŴr
t


where

∑ =

√vt 0 0
0 σ

√
vt 0

0 0 ξ
√

rt

, C =

1 0 0
ρ
√

1− ρ2 0
0 0 1
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and

CCT =

1 ρ 0
ρ 1 0
0 0 1

,

dW̃S
t

dW̃v
t

dW̃r
t

 = C×

dŴS
t

dŴv
t

dŴr
t


According to Brigo and Mercuio [37] and Cao [24], the expression of SDEs in (1) under

the T-forward measure QT can be represented as:
dSt = rtStdt +

√
vtStdŴS

t

dvt = k(θ − vt)dt + σ
√

vt(ρdŴS
t +

√
1− ρ2dŴv

t )

drt = (hη − [h + B(t, T)η2]rt)dt + ξ
√

rtdŴr
t

(8)

where

B(t, T) =
2(e(T−t)

√
h2 + 2η2 − 1)

2
√

h2 + 2η2 + (h +
√

h2 + 2η2)(e(T−t)
√

h2+2η2 − 1)

and ŴS
t , Ŵv

t , Ŵr
t are three independent Brownian motions.

Note that the form of drt in (8) is complex, in order to make the solution process more
clear, let

h∗ = h + B(t, T)η2, η∗ =
hη

h + B(t, T)η2 (9)

then we can change (8) to the following system under QT


dSt = rtStdt +

√
vtStdŴS

t

dvt = k(θ − vt)dt + σ
√

vt(ρdŴS
t +

√
1− ρ2dŴv

t )

drt = h∗(η∗ − rt)dt + ξ
√

rtdŴr
t

(10)

2.4. Pricing Formula for Variance Swaps

We present a two-step approach to compute the value of K. First of all, the filtration
satisfies that F0 ⊂ Fti−1 ⊂ Fti , in terms of the tower property of conditional expectation:

ET
0 [ln

2(
Sti

Sti−1

)] = ET
0 [E

T
ti−1

[ln2(
Sti

Sti−1

)]] (11)

where ET
ti−1

[·] is defined as the conditional expectation with respect to Fti−1 under QT .
Hence, the first step is to compute ET

ti−1
[·] , Sti−1 , rti−1 and vti−1 are Fti−1 measurable.

Set Xt = ln(St), based on (8), Xt satisfies the following dynamics:

dXt = (rt −
1
2

vt)dt +
√

vtdŴS
t . (12)

To compute the conditional moment of Xt, we need to calculate the conditional
moments of rt and vt firstly, which are shown in the following theorem.

Theorem 1. Suppose that St follows the dynamics described in (12), for any 0 ≤ ti−1 ≤ t,
we have:

ET
ti−1

(rt) = η∗ + (rti−1 − η∗)e−h∗(t−ti−1) (13)

ET
ti−1

(vt) = θ + (vti−1 − θ)e−k(t−ti−1) (14)

Varti−1(rt) = ξ2[
η∗

2h∗
(1− e−2h∗(t−ti−1)) +

rti−1 − θ

h∗
(e−h∗(t−ti−1) − e−2h∗(t−ti−1))] (15)

Varti−1(vt) = σ2[
θ

2k
(1− e−2k(t−ti−1)) +

vti−1 − θ

k
(e−k(t−ti−1) − e−2k(t−ti−1))] (16)
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the conditional moments are Fti−1 measurable, thus: ET
ti−1

= ET(·|Fti−1),Varti−1 = Var(·|Fti−1).

Proof. The proof of this theorem is left in Appendix A.

In order to obtain the expectation of ln2(
Sti

Sti−1
), Cao [24,26] use the characteristic

function and the generalized Fourier transform to solve PDEs, however, the computation
process is cumbersome. We present a simpler approach. Considering the definition of
variance

ET
ti−1

[ln2(
Sti

Sti−1

)] =
[

ET
ti−1

[ln(
Sti

Sti−1

)]
]2

+ Varti−1 [ln(
Sti

Sti−1

)] (17)

we transform the problem into calculating the expectation and variance of log-return with
respect to Fti−1 . The result are presented by Theorem 2.

Theorem 2. If St follows the dynamics described in (10). Let ∆t = ti − ti−1, then we have

ET
ti−1

[ln(
Sti

Sti−1

)] = P1(∆t) + P2(∆)(rti−1 − η∗) + P3(∆)(vti−1 − θ) (18)

Varti−1 [ln(
Sti

Sti−1

)] = Q1(∆t) + Q2(∆t)(rti−1 − η∗) + Q3(∆t)(vti−1 − θ) (19)

where Sti−1 , rti−1 , vti−1 are Fti−1 measurable, and

P1(∆t) = (η∗ − 1
2

θ)∆t, P2(∆t) =
1
h∗

(1− e−(h
∗)2∆t), P3(∆t) = − 1

2k
(1− e−k∆t) (20)

Q1(∆t) = (
ξ2

(h∗)2 η∗ +
θσ2(1− ρ2)

4k2 + θ − θρσ

k
+

σ2ρ2θ

4k2 )∆t− (
θσ2(1− ρ2)

2k3 +
θρσ

k2

+
σ2ρ2θ

2k3 )(1− e−k∆t) + (
θσ2(1− ρ2)

8k3 +
θσ2ρ2

8k3 )(1− e−2k∆t)

− 2ξ2

(h∗)3 η∗(1− e−h∗∆t) +
ξ2

2(h∗)3 η∗(1− e−2h∗∆t)− σ2ρ2

2k2 e−k∆t∆ t

Q2(∆t) = − 2ξ2

(h∗)2 (∆te−h∗∆t) +
ξ2

(h∗)3 (1− e−2h∗∆t)

Q3(∆t) = (−σ2(1− ρ2)

2k2 +
ρσ

k
)(∆te−k∆t) + (

σ2ρ2

4k3 +
1
k
− σρ

k2 )(1− e−k∆t) +
σ2(1− ρ2)

4k3 (1− e−2k∆t)

+
σ2ρ2

4k3 (e−k∆t − e−2k∆t)

(21)

Proof. We show the details of the derivation in Appendix B.

Square (18) on both sides,[
ET

ti−1
[ln(

Sti

Sti−1

)]
]2

= P2
1 (∆t) + P2

2 (rti−1 − η∗) + P2
3 (∆t)(vti−1 − θ)2

+ 2P1(∆t)P2(∆t)(rti−1 − η∗) + 2P1(∆t)P3(∆t)(vti−1 − θ)

+ 2P2(∆t)P3(∆t)(rti−1 − η∗)(vti−1 − θ)

(22)

then plug (19) and (22) into (17) and the expression of inner expectation under the informa-
tion set Fti−1 is given by

ET
ti−1

[ln2(
Sti

Sti−1

)] = D1(∆t) + D2(∆t)(rti−1 − η∗) + D3(∆t)(vti−1 − θ)

+ D4(∆t)(rti−1 − η∗)2 + D5(∆t)(vti−1 − θ)2 + D6(∆t)(rti−1 − η∗)(vti−1 − θ)

(23)
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where:

D1(∆t) = Q1(∆t) + P2
1 (∆t)

D2(∆t) = 2P1(∆t)P2(∆t) + Q2(∆t)

D3(∆t) = 2P1(∆t)P3(∆t) + Q3(∆t)

D4(∆t) = P2
2 (∆t)

D5(∆t) = P2
3 (∆t)

D6(∆t) = 2P2(∆t)P3(∆t)

Next, the second step is to compute the outer expectation. Note that Dk(∆t), k = 1, . . . , 6
are all constants, so only the expectations of rs and vs under the information set F0 need to
be computed. The result can be derived by the following theorem.

Theorem 3. For any i = 1, 2, 3, . . . , N, v0, r0 > 0, the price of log-return variance swaps in
discrete sampling at the initial moment can be written as

ET
0 [ln

2(
Sti

Sti−1

)] = D̃1(∆t) + D̃2(∆t)(r0 − η∗) + D̃3(∆t)(v0 − θ) + D̃4(∆t)(r0 − η∗)2 + D̃5(∆t)(v0 − θ)2

+ D̃6(∆t)(r0 − η∗)(v0 − θ) (24)

where ∆t = ti − ti−1, and

D̃1(∆t) = D1(∆t) + D4(∆t)
η∗ξ2

2h∗
(1− e−2h∗ti−1) + D5(∆t)

θσ2

2k
(1− e−2kti−1)

D̃2(∆t) = e−h∗ti−1 D2(∆t) + D4(∆t)
σ2

h∗
(e−h∗ti−1 − e−2h∗ti−1)

D̃3(∆t) = e−kti−1 D3(∆t) + D5(∆t)
σ2

k
(e−kti−1 − e−2kti−1))

D̃4(∆t) = e−2h∗ti−1 D4(∆t)

D̃5(∆t) = e−2kti−1 D5(∆t)

D̃6(∆t) = e−h∗ti−1 e−kti−1 D6(∆t)

Proof. Refer to Appendix C.

Now, we obtain the strike price K for the variance swaps contract at the initial time as

K = ET
0 [σ

2
R] =

1002

T

N

∑
i=1

ET
0 [ln

2(
Sti

Sti−1

)] (25)

=
1002

T



1
(r0 − η∗)
(v0 − θ)
(r0 − η∗)2

(v0 − θ)2

(r0 − η∗)(v0 − θ)



T



N
∑

i=1
D̃1(∆, ti−1)

N
∑

i=1
D̃2(∆, ti−1)

N
∑

i=1
D̃3(∆, ti−1)

N
∑

i=1
D̃4(∆, ti−1)

N
∑

i=1
D̃5(∆, ti−1)

N
∑

i=1
D̃6(∆, ti−1)
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Remark 1. The closed-form solution of the log-return variance swaps consists of constant term,
first-order term (r0 − η∗), (v0 − θ) and second-order term (r0 − η∗)2, (v0 − θ)2, (r0 − η∗)(v0 −
θ). The expression in this form is very advantageous. Compared with Cao [24,26], our formula can
be intuitively observed that the parameter θ will have great impact on the results. Moreover, if r0, v0
and η∗, θ are relatively close respectively, (r0 − η∗)2, (v0 − θ)2, (r0 − η∗)(v0 − θ) will tend to be
0, the second terms will have little impact on the results.

Remark 2. Another contribution of our method is to consider the influence of sampling frequency.
Roughly speaking, when the sampling frequency is large enough, the higher-order term about ∆t
will tend to 0, then the exact solution can be extended to a simple and reliable approximate formula.
The detailed derivation process and results will be shown in Section 3.

3. The Approximate Formula

As mentioned above, when the sampling frequency is large enough, the first-order
term of ∆t will play a major role in the exact formula. Then the pricing formula can be
simplified in theory. However, if we take Taylor expansion to the higher-order directly,
the calculation is very complex [22]. The feature of our approach is to note the fact that
both vt and rt are bounded functions, then we deduce a simple and reliable approximate
formula by applying the integral mean value theorem and Itô’s lemma. We show the result
in the form of Theorem 4.

Theorem 4. For any i = 1, 2, 3, . . . , N, v0, r0 > 0, if the sampling frequency is large enough,
N → ∞, ∆t→ 0, the price of log-return variance swaps in discrete sampling at the initial moment
can be written as

K = ET
0 [σ

2
R(0, N, T)] =

1002

T

N

∑
i=1

ET
0 [ln

2(
Sti

Sti−1

)]

= 1002 × [θ +
1
T

N

∑
i=1

(v0 − θ)e−kti−1 ∆t)] + O(
1
N
)

(26)

Proof. Integrating both sides to (12) from ti−1 to ti, the log-return of the underlying assets
can be written as:

ln(
Sti

Sti−1

) =
∫ ti

ti−1

(rt −
1
2

vt)dt +
∫ ti

ti−1

√
vtdŴS

t (27)

Divide both sides of the Equation (27) by N∆t and add up from 1 to N, then take conditional
expectation.

N

∑
i=1

1
N∆t

ET
0 [ln

2(
Sti

Sti−1

)] =
N

∑
i=1

1
N∆t

ET
0 [
∫ ti

ti−1

(rt −
1
2

vt)dt]2 +
N

∑
i=1

1
N∆t

ET
0 [
∫ ti

ti−1

√
vtdŴS

t ]
2

+
N

∑
i=1

1
N∆t

2ET
0 [
∫ ti

ti−1

(rt −
1
2

vt)dt
∫ ti

ti−1

√
vtdŴS

t ] (28)

As the sampling frequency increases, N → ∞, then ∆t→ 0 and ∆u→ 0.
For the first item to the right (28), let ϕ(t, rt, vt) = rt − 1

2 v2
t . Since ϕ(t, rt, vt) is a

bounded continuous function clearly, hence, according to the integral mean value theorem,
there is a ξ ∈ [ti−1, ti] satisfied∫ ti

ti−1

(rt −
1
2

vt)dt = ϕ(ξ, rξ , vξ)∆t (29)
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According to (29), the following results can be derived:

lim
∆t→0

N

∑
i=1

1
N∆t

ET
0 [
∫ ti

ti−1

(rt −
1
2

v2
t )dt)2] = lim

∆t→0

N

∑
i=1

1
N∆t

ET
0 [ϕ

2(ξ, rξ , vξ)∆t2]

= ∆t · ET
0 [ϕ

2(ξ, rξ , vξ)] = 0

(30)

Using the properties of the Itô’s integral again, the second item to the right (28) is simply
computed:

N

∑
i=1

1
N∆t

ET
0 [
∫ ti

ti−1

√
vtdŴS

t ]
2 =

N

∑
i=1

1
N∆t

ET
0 [
∫ ti

ti−1

vtdt]

=
1
T

E0[
∫ T

0
vtdt]

(31)

For the third item on the right (28), by substituting the (A1) and (A2), we can obtain:

N

∑
i=1

1
N∆t

2ET
0 [
∫ ti

ti−1

(rt −
1
2

vt)dt
∫ ti

ti−1

√
vtdŴS

t ] =
N

∑
i=1

1
N∆t

{
ET

0 [2
∫ ti

ti−1

rtdt ·
∫ ti

ti−1

√
vtdŴS

t ]

− ET
0 [
∫ ti

ti−1

vtdt ·
∫ ti

ti−1

√
vtdŴS

t ]

}

=
N

∑
i=1

1
N∆t

{
ET

0
[
2
∫ ti

ti−1

η∗ + (rti−1 − η∗)e−h∗(t−ti−1)dt ·
∫ ti

ti−1

√
vtdŴS

t
]

+ ET
0
[
2
∫ ti

ti−1

ξ
∫ t

ti−1

e−h∗(t−u)√rudŴr
udt ·

∫ ti

ti−1

√
vtdŴS

t
]

− ET
0
[ ∫ ti

ti−1

θ + (vti−1 − θ)e−k(t−ti−1)dt ·
∫ ti

ti−1

√
vtdŴS

t
]

− ET
0
[
σ
∫ ti

ti−1

e−k(t−u)√vu(ρdŴS
u +

√
1− ρ2dŴv

u )dt ·
∫ ti

ti−1

√
vtdŴS

t
]}

(32)

We divide (32) into the following four parts: (33), (34), (35), (36) and compute the value of
each part:

ET
0 [2

∫ ti

ti−1

(η∗ + (rs − η∗)e−h∗(t−s))dt ·
∫ ti

ti−1

√
vtdŴS

t ] = ET
0 [(η

∗∆t +
rs − η∗

h∗
(1− e−h∗∆t)) ·

∫ ti

ti−1

√
vtdŴS

t ] = 0 (33)

ET
0 [2

∫ ti

ti−1

ξ
∫ t

s
e−h∗(t−u)√rudŴr

udt ·
∫ ti

ti−1

√
vtdŴS

t ] = ET
0 [2

∫ ti

ti−1

ξ
∫ ti

u
e−h∗(t−u)dt

√
rudŴr

u ·
∫ ti

ti−1

√
vtdŴS

t ]

= 0 (34)

ET
0 [
∫ ti

ti−1

(θ + (vs − θ)e−k(t−s))dt ·
∫ ti

ti−1

√
vtdŴS

t ] = ET
0 [(θ∆t +

vs − θ

k
(1− e−k∆t)) ·

∫ ti

ti−1

√
vtdŴS

t ]

= 0 (35)
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ET
0 [σ

∫ t

s
e−k(t−u)√vudŴv

u dt ·
∫ ti

ti−1

√
vtdŴS

t ] = ET
0 [
∫ ti

ti−1

σ
∫ ti

u
e−k(t−u)dt

√
vu(ρdŴS

u +
√

1− ρ2dŴv
u )

·
∫ ti

ti−1

√
vtdŴS

t ]

= ET
0 [
∫ ti

ti−1

σ
∫ ti

u
e−k(t−u)dt · vudu]

= ET
0 [σe−k(λ−δ) · vδ · ∆t · ∆u]

(36)

where λ, δ ∈ [ti−1, ti]. This is the result of using the Integral Median Theorem again.

lim
∆t→0,∆u→0

N

∑
i=1

1
N∆t

ET
0 [σe−k(λ−δ) · vδ · ∆t · ∆u] = ∆u · ET

0 [σe−k(λ−δ) · vδ] = 0 (37)

Finally, when N → ∞ and ∆t→ 0, the price of log-return variance swaps at 0 moment can
be simplified as

lim
∆t→0

ET
0 [σ

2
R(0, N, T)] =

1
T

ET
0 [
∫ T

0
vtdt] (38)

Thus, we can write (38) in discrete form (26).

In particular, (38) is the price obtained under the continuous model.
Obviously, compared with the closed-form solution (25), the approximate Formula (26)

has a simpler form, and numerical simulation in Section 4 also verifies the reliability of (26).
What’s more, the interest rate is the volatility of rt does not appear in the approximate
formula. This means the influence of stochastic interest rate becomes smaller and smaller
with the increase of sampling frequency.

4. Numerical Analysis

In this section, we show some numerical examples for illustration purpose. We
present the results of the closed-form formula, Monte Carlo simulations, the first-order
approximation and the continuous model that can help readers understand of our pricing
formula intuitively. Compared with Monte Carlo simulation, we verify the validity of our
closed-solution and the approximation formula. In addition, according to the approximate
formula, we infer that the impact of stochastic interest rate on the results decreases with
the increase of sampling frequency. We will also verify this point.

To achieve these purposes, we make the following assumptions:
(1) The values of the parameters involved in the pricing formula are

r0 = 5%, v0 = 0.04, k = 11.35, θ = 0.022, σ = 0.618, ρ = −0.64, ξ = 0.01, h = 1.2, η = 0.05, T = 1.

In particular, the above parameters are obtained from Zhu and Lian [18], and Cao [24].
(2) The asset price S0 = 10.
(3) The number of the paths N = 100, 000 for all the MC simulations presented here.

4.1. Monte Carlo Simulations

We firstly adopt the simple Euler-Maruyama discretization for the CIR–Heston hybrid
model in our MC simulations:

dSt = St−1 + rt−1St−1∆t +
√

vt−1St−1
√

∆tW1,t

dvt = vt−1 + k(θ − vt−1)∆t + σ
√

vt−1
√

∆t(ρW1,t +
√

1− ρ2W2,t)

drt = rt−1 + h(η − rt−1)∆t + ξ
√

rt−1
√

∆tW3,t

(39)

where W1,t, W2,t, W3,t, are three independent standard normal random variables.
Some Monte Carlo simulations, the closed-form solution (25), the approximate solu-

tion (26) and the continuous model (38) price curve are carried out with MATLAB software.
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We show the results in Figure 1. We can clearly observed from Figure 1 that the closed-
form solution matches well with the results of some Monte Carlo simulation. However,
Monte Carlo simulation is expected to takes 6705.83 s, and our closed-form solution takes
only 0.0223 s.

In particular, compared with the semi-solution in Cao [24,26], there is no need to
adjust the parameters for our closed-form solution. In the mean time, with the increase
of sampling frequency, the price curve of the closed-form solution and the approximate
solution is closer and closer, eventually converge to the continuous case. Specifically, we
select the prices corresponding to the above curve under different sampling frequencies,
and put them together with some Monte Carlo simulation results in Table 1. According to
the data in Table 1, when the sampling frequency N = 4, the error between the closed-form
solution and the approximate solution is 21.31. When the sampling frequency N reaches
200, the error is only 0.67.
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The continuous model

Figure 1. A comparison of fair strike prices based on the closed-solution, Monte Carlo simulations,
the first-order approximation and the continuous model.

Table 1. The numerical results of Monte Carlo simulations, discrete sampling, first-order approxima-
tion and continuous sampling.

Sampling Frequency Monte Carlo Discrete First Order Continuous

Quarterly (N = 4) 318.11 318.13 296.82 236.31
Monthly (N = 12) 274.24 274.02 258.91 236.31

Fortnightly(N = 16) 265.33 265.55 252.53 236.31
Weekly (N = 52) 247.43 247.48 241.80 236.31
Daily (N = 252) 240.14 240.12 239.45 236.31

4.2. Reliability of Approximate Formula

By observing the form of approximate formula, when the sampling frequency is large
enough, the influence of stochastic interest rate is very small. This means that there is little
difference between the results of different stochastic interest rates and the approximate
formula in the case of large sampling. In order to verify this point, we need to compare
the results of stochastic interest rates under different parameters. According to Cao [24]
and Zhao [27], the long-term mean of stochastic interest rate η has a great influence on
the formula, but the mean-reverting speed h and volatility ξ have little impact. Hence,
to improve efficiency, we only select different long-term mean values, then take h = 1.2
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and ξ = 0.01. Figure 2 shows that when the sampling frequency is small, there is a large
difference between the variance swaps prices calculated by the long-term mean of different
stochastic interest rates; However, with the increase of sampling frequency, the difference
between these prices and the price of the approximate formula becomes smaller and smaller.
This fact shows that the influence of stochastic interest rate is indeed very small when the
sampling frequency is large enough. What’s more, when the sampling frequency reaches
150, the maximum error of the approximate formula does not exceed 0.8, which means that
the approximate formula proposed in this paper is reliable.

0 50 100 150

Sampling Frequentcy (Times/Year)

220

240

260

280

300

320

340

360

380

C
a

lc
u

la
te

d
 S

tr
ik

e
 P

ri
c
e

 f
o

r 
V

a
ri
a

n
c
e

 S
w

a
p

s
 

Our formula( *=9.8%)

Our formula( =6.5%)

Our formula( =4.5%)

Our formula( =3%)

The approximate formula

The continuous model

Figure 2. The values of variance swaps with different η in our hybrid model.

5. Conclusions

In this paper, we studied the problem of pricing log-return variance swaps under the
CIR–Heston hybrid model. Compared with Cao’s work, the contribution of our work is
to propose a more concise approach from the perspective of stochastic analysis. There
is no need to solve complex PDEs, and we obtained a closed-form solution instead of a
semi-closed solution. In the mean time, considering the influence of sampling frequency on
the pricing formula, we further extend the closed-form solution to an approximate formula.
The advantage of the approximate solution is a simpler form and reliable in the case of
large sampling. Some numerical simulation shows that our closed-form solution matches
well with the results of MC simulation. By comparing the price curves of the closed-form
solution and the approximate solution, we conclude that the error become smaller and
smaller with the increase of sampling frequency. Moreover, in the case of large samples,
the error between the closed-form solution determined from different stochastic interest
rates and the approximate solution is quite little. Therefore, we have reason to confirm
that the influence of stochastic interest rate on the pricing formula does decrease with the
increase of sampling frequency and our approximate formula is reliable.

Finally, it should be noted that our pricing approach is general. It also can be extended
to other stochastic interest rate and stochastic volatility models, such as the Heston–Hull–
White hybrid model. However, when the model becomes a full coefficient correlation, how
to obtain the pricing formula by the method proposed in this paper is a problem worthy of
study in the future.
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Appendix A

Proof of Theorem 1. For any 0 ≤ ti−1 < t, upon applying Itô’ s lemma on d(e−h∗(t−u)ru)
and d(e−k(t−u)vu) with respect to u and integrate both sides from ti−1 to t, we obtain

rt = η∗ + (rti−1 − η∗)e−h∗(t−ti−1) + ξ
∫ t

ti−1

e−h∗(t−u)√rudŴr
u (A1)

vt = θ + (vti−1 − θ)e−k(t−ti−1) + σ
∫ t

ti−1

e−k(t−u)√vu(ρdŴS
t +

√
1− ρ2dŴv

t ) (A2)

η∗ + (rti−1 − η∗)e−h∗(t−ti−1), θ + (vti−1 − θ)e−k(t−ti−1) can be considered as a constant on
taking conditional moments under information set Fti−1 , and ξ

∫ t
ti−1

e−h∗(t−u)dWr
u and

σ
∫ t

ti−1
e−k(t−u)√vu(ρdŴS

t +
√

1− ρ2dŴv
t ) can be regard as a martingale. Hence, the condi-

tional expectation can be calculated as

ET
ti−1

(rt) = η∗ + (rti−1 − η∗)e−h∗(t−ti−1)

ET
ti−1

(vt) = θ + (vti−1 − θ)e−k(t−ti−1)
(A3)

According to the property of the Itô’ s integral, the variance of rt and vt can be written as

Varti−1(rt) = Varti−1(ξ
∫ t

ti−1

e−h∗(t−u)√rudŴr
u)

= ξ2
∫ t

ti−1

e−2h∗(t−u)ET
ti−1

(ru)du

= ξ2[
η∗

2h∗
(1− e−2h∗(t−ti−1)) +

rti−1 − η∗

h∗
(e−h∗(t−ti−1) − e−2h∗(t−ti−1))]

(A4)

Varti−1(vt) = Varti−1(σ
∫ t

ti−1

e−k(t−u)√vu(ρdŴS
u +

√
1− ρ2dŴv

u ))

= σ2
∫ t

ti−1

e−2k(t−u)ET
ti−1

(vu)du

= σ2[
θ

2k
(1− e−2k(t−ti−1)) +

vti−1 − θ

k
(e−k(t−ti−1) − e−2k(t−ti−1))]

(A5)
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Appendix B

Proof of Theorem 2. During the period [ti−1, ti], integrate (12) on both sides from s to t,
the result can be expressed as

ln(
Sti

Sti−1

) =
∫ ti

ti−1

(rt −
1
2

vt)dt +
∫ ti

ti−1

√
vtdŴs

t (A6)

Plug (A1) and (A2) into (A6) , we can obtain

ln(
Sti

Sti−1

) =
∫ ti

ti−1

(η∗ + (rti−1 − η∗)e−h∗(t−ti−1) + ξ
∫ ti

ti−1

e−h∗(t−u)√rudŴr
u)dt

− 1
2

∫ ti

ti−1

(θ + (vti−1 − θ)e−k(t−ti−1) + σ
∫ t

ti−1

e−k(t−u)√vu(ρdŴS
u +

√
1− ρ2dŴv

u ))dt +
∫ ti

ti−1

√
vtdŴS

t

(A7)

Noting that ti−1 6 u < t 6 ti, then exchange the order of integral that is produced by∫ ti
ti−1

rtdt and
∫ ti

ti−1
vtdt. (A7) can be rewritten as

ln(
Sti

Sti−1

) = L1 + L2 + L3 + L4 (A8)

where

L1 =
∫ ti

ti−1

(η∗ + (rti−1 − η∗)e−h∗(t−ti−1) − 1
2
(θ + (vti−1 − θ)e−k(t−ti−1)))dt

= (η∗ − 1
2

θ)∆t +
1
h∗

(1− e−h∗∆t)(rti−1 − η∗)− 1
2k

(1− e−k∆t)(vti−1 − θ)

(A9)

L2 =
∫ ti

ti−1

ξ
∫ ti

ti−1

e−h∗(t−u)√rudŴr
udt

=
∫ ti

ti−1

ξ
∫ ti

u
e−h∗(t−u)dt

√
rudŴr

u

=
ξ

h∗

∫ ti

ti−1

(1− e−h∗(ti−u))
√

rudŴr
u

(A10)

L3 = −1
2

∫ ti

ti−1

σ
√

1− ρ2
∫ ti

ti−1

e−k(t−u)√vudŴv
u dt

= −1
2

∫ ti

ti−1

σ
√

1− ρ2
∫ ti

u
e−k(t−u)dt

√
vudŴv

u

= −σ
√

1− ρ2

2k

∫ ti

ti−1

(1− e−k(ti−u))
√

vudŴv
u

(A11)

L4 =
∫ ti

ti−1

[−ρσ

2k
(1− e−k(ti−u)) + 1]

√
vtdŴS

t (A12)

Hence, the conditional expectations can be written in the following form:

Eti−1 [ln(
Sti

Sti−1

)] = Eti−1 [L1] + Eti−1 [L2] + Eti−1 [L3] + Eti−1 [L4]

where

ET
ti−1

[L1] = (η∗ − 1
2

θ)∆t +
1
h∗

(1− e−h∗∆t)(rti−1 − η∗)− 1
2k

(1− e−k∆t)(vti−1 − θ) (A13)
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Eti−1 [L2] = Eti−1 [L3] = Eti−1 [L4] = 0 (A14)

Similarly, the conditional variance can be represented as:

Varti−1 [ln(
Sti

Sti−1

)] = Varti−1 [L1] + Varti−1 [L2] + Varti−1 [L3] + Varti−1 [L4] (A15)

where

Varti−1 [L1] = 0 (A16)

Varti−1 [L2] = ET
ti−1

[(
ξ

h∗

∫ ti

ti−1

(1− e−h∗(ti−u))
√

rudŴr
u)

2]−
[

ET
ti−1

[(
ξ

h∗

∫ ti

ti−1

(1− e−h∗(ti−u))
√

rudŴr
u]
]2

=
ξ2

(h∗)2

∫ ti

ti−1

(1− e−h∗(ti−u))2ET
ti−1

(ru)du

=
{ ξ2

(h∗)2 η∗∆t− 2
ξ2

(h∗)3 η∗(1− e−h∗∆t) +
ξ2

2(h∗)3 η∗(1− e2h∗∆t)
}

+
{
− 2ξ2

(h∗)2 ∆te−h∗∆t +
ξ2

(h∗)3 (1− e−2h∗∆t)
}
(rti−1 − η∗)

(A17)

Varti−1 [L3] = ET
ti−1

[
(−σ

√
1− ρ2

2k

∫ ti

ti−1

(1− e−k(ti−u))
√

vudŴv
u )

2]− [ET
ti−1

[
1
2

σ

k

∫ ti

ti−1

(1− e−k(ti−u))
√

vudŴv
u ]
]2

=
σ2(1− ρ2)

4k2

∫ ti

ti−1

(1− e−k(ti−u))2ET
ti−1

(vu)du

= σ2(1− ρ2)

{[ 1
4k2 θ∆t− 1

2k3 θ(1− e−k∆t) +
1

8k3 θ(1− e−2k∆t)
]

+
[
− 1

2k2 ∆te−k∆t +
1

4k3
(1− e−2k∆t)

]
(vti−1 − θ)

}
(A18)

Varti−1 [L4] = ET
ti−1

[
(
∫ ti

ti−1

[−ρσ

2k
(1− e−k(ti−u)) + 1

]√
vtdŴS

t )
2]−

(
ET

ti−1
[
∫ ti

ti−1

[−ρσ

2k
(1− e−k(ti−u)) + 1]

√
vtdŴS

t ])
2

=
∫ ti

ti−1

[−ρσ

2k
(1− e−k(ti−u)) + 1]2ET

ti−1
(vu)du

= (θ − θρσ

k
+

σ2ρ2θ

4k2 )∆t + (
θρσ

k2 −
σ2ρ2θ

2k3 )(1− e−k∆t) +
θσ2ρ2

8k3 (1− e−2k∆t)− σ2ρ2

2k2 e−k∆t∆t

+
{
(

σ2ρ2

4k3 +
1
k
− σρ

k2 )(1− e−k∆t) +
σ2ρ2

4k3 (e−k∆t − e−2k∆t) +
ρσ

k
∆te−k∆t

}
(vti−1 − θ)

(A19)

The value of Cov(L2, L3), Cov(L3, L4), Cov(L2, L3) are equal to 0 since ŴS
t , Ŵv

t , Ŵr
t are three

independent Brownian motions
Finally, organizing the above results as (20) and (21), Theorem 2 is proved.

Appendix C

Proof of Theorem 3. Taking the conditional expectation under the information set F0 on
both sides of (23) simultaneously

ET
0 [(rti−1 − η∗)] = E0[(r0 − η∗)e−h∗(ti−1−0) + ξ

∫ ti−1

0
e−h∗(ti−1−u)√rudŴr

u]

= (r0 − η∗)e−h∗ti−1

(A20)



Mathematics 2022, 10, 5 16 of 17

ET
0 [(vti−1 − θ)] = E0[(v0 − θ)e−k(ti−1−0) + σ

∫ ti−1

0
e−k(ti−1−u)√vu(ρdŴS

u +
√

1− ρ2dŴv
u )]

= (v0 − θ)e−kti−1

(A21)

ET
0 [(rti−1 − η∗)2] = E0[(r0 − η∗)2e−2h∗(ti−1−0) + ξ2

∫ ti−1

0
e−2h∗(ti−1−u)(η∗ + (r0 − η∗)e−h∗u)du]

= e−2h∗ti−1(r0 − η∗)2 +
η∗ξ2

2h∗
(1− e−2h∗ti−1) +

ξ2

h∗
(e−h∗ti−1 − e−2h∗ti−1)(r0 − η∗)

(A22)

ET
0 [(vti−1 − θ)2] = ET

0 [(v0 − θ)2e−2k(ti−1−0)] + ET
0 [σ

2
∫ ti−1

0
e−2k(ti−1−u)√vu(ρdŴS

u +
√

1− ρ2dŴv
u )

2]

= e−2kti−1(v0 − θ)2 +
θσ2

2k
(1− e−2kti−1) +

σ2

k
(e−kti−1 − e−2kti−1)(v0 − θ)

(A23)

ET
0 [(rti−1 − η∗)(vti−1 − θ)] = e−h∗ti−1 e−kti−1(r0 − η∗)(v0 − θ) (A24)

Finally, plug the above results into (23), then (24) can be obtained.
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