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Abstract: The structural property of the search graph plays an important role in the success of local
search-based metaheuristic algorithms. Magnification is one of the structural properties of the search
graph. This study builds the relationship between the magnification of a search graph and the
mixing time of Markov Chain (MC) induced by the local search-based metaheuristics on that search
space. The result shows that the ergodic reversible Markov chain induced by the local search-based
metaheuristics is inversely proportional to magnification. This result indicates that it is desirable
to use a search space with large magnification for the optimization problem in hand rather than
using any search spaces. The performance of local search-based metaheuristics may be good on
such search spaces since the mixing time of the underlying Markov chain is inversely proportional
to the magnification of search space. Using these relations, this work shows that MC induced by
the Metropolis Algorithm (MA) mixes rapidly if the search graph has a large magnification. This
indicates that for any combinatorial optimization problem, the Markov chains associated with the
MA mix rapidly i.e., in polynomial time if the underlying search graph has large magnification.
The usefulness of the obtained results is illustrated using the 0/1-Knapsack Problem, which is a
well-studied combinatorial optimization problem in the literature and is NP-Complete. Using the
theoretical results obtained, this work shows that Markov Chains (MCs) associated with the local
search-based metaheuristics like random walk and MA for 0/1-Knapsack Problem mixes rapidly.

Keywords: Markov chain; mixing time; search space; magnification; conductance; metropolis
algorithm; Markov chain monte carlo; local search; metaheuristics

1. Introduction

Most of the combinatorial optimization problems in the real world have high compu-
tational complexity, which implies there are no known polynomial time algorithms that
exist for such optimization problems. For example, there is the Traveling Salesman prob-
lem [1], Covering Salesman problem [2], 0/1-Knapsack Problem [3], Knapsack Problem
with Forfeits [4], multiple demand multiple-choice multidimensional Knapsack Problem [5],
Longest path problem [6], Scheduling problem [7], Truck Scheduling [8,9], and Flexible
Flowshop Scheduling [10] etc. There is no good polynomial time approximation algorithm
for such problems (for example, Shortest Vector Problem [11]). Hence, a practitioner or
researcher makes use of metaheuristics such as Evolutionary Algorithm (EA) [12], Metropo-
lis Algorithm (MA) [13], Simulated annealing (SA) [14], Particle Swarm Optimization
(PSO) [15], Ant Colony Optimization (ACO) [16] etc., to get near to the optimum solution
for the problem. Performance analysis of metaheuristics are not simple, since it is highly
random in nature. MCs are one of the widely used methods to analyze the performance of
metaheuristics [17–30].

Metaheuristics are applied successfully to obtain the optimum or near to optimum
solution for many optimization problems in the literature [31–38]. To apply metaheuristics
for the optimization problem, one should define a search space for the problem. Once the
search space is defined, a practitioner can apply different metaheuristics algorithms using
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that search space and try to locate the desired solution. Local search-based metaheuristics
such as SA, MA, random walk [39], iterated local search [40], etc., search the search space
locally. This means that local search-based metaheuristics search the neighborhood of the
current state and move from one state to another state locally and try to locate near to
the optimum solution for the optimization problem. Hence, to apply local search-based
metaheuristics, a researcher must define a search space and neighborhood structure for the
problem at hand. Therefore, defining an appropriate and good search space plays a crucial role
in the success of metaheuristics. Appropriate means that a search space for the problem should
contain all the feasible solutions. Good means that the search space that is defined should
have good structural properties. The search space should be connected. This will ensure that
any local search-based metaheuristic algorithms using this search space may be able to search
all the feasible solutions by moving from one feasible solution to another feasible solution.
Secondly, an important structural property is called magnification. Magnification of the search
graph indicates the number of edges going out from any cut-set in the search graph. Lower
bound on magnification implies the minimum number of edges going out from any cut-set
in the search graph. Large magnification implies many edges going out from any cut-set in
the search graph. This property may be profitably when used by metaheuristic algorithms to
avoid getting stuck at local optima and to reach global optima.

This work shows the importance of designing a good search space for the optimization
problem. The results obtained indicate that the success of local search-based metaheuristics
depend on the structural property of a search space for the problem. A structural property
called magnification [41] of the search graph plays an important role in the rapid mixing of MC
induced by local search-based metaheuristics. The proposed study shows that magnification is
inversely proportional to the mixing time of MC induced by local search-based metaheuristics.
Using the established result between the mixing time of MC and magnification, the study
further shows that the MC induced by MA mixes rapidly. Note that MA is a widely used
local search-based metaheuristic [42]. As per the literature, it is successful in finding a good
solution for many optimization problems [11,41–50]. Further details about MA are discussed
in Section 4.

The mixing time of the Markov chain plays an important role in the run time analysis
of the metaheuristic algorithms. It gives the convergence speed of MC to the stationary
distribution. It quantifies how close the chain is to its stationary distribution. If the Markov
chain induced by metaheuristic algorithm has rapid mixing time i.e., in polynomial time,
then running the metaheuristic algorithm that amount of time and taking samples may
give the desired solution for the combinatorial optimization problem at hand. Theoretical
analysis of a metaheuristic algorithm is not an easy task since they are highly probabilistic
in nature. Sanyal et al. proved that one of the necessary and sufficient conditions for
the success of the Metropolis algorithm is rapid mixing of the Markov chain induced by
the algorithm [43]. In the proposed work we prove that if the search graph has large
magnification, then the MC induced by MA mixes rapidly i.e., in polynomial time. The
major contributions of the proposed work are listed below:

1. Establishes the relationship between search graph magnification and conductance of
reversible MC induced by local search-based metaheuristics (Refer Theorem 1);

2. Establishes the relationship between search graph magnification and mixing time of
reversible ergodic MC induced by local search-based metaheuristics (Refer Theorem 2);

3. Proved that if the designed search graph has large magnification, then for a particular
choice of temperature parameter, the MC induced by MA mixes rapidly, i.e., in
polynomial time (Refer Corollarys 1 and 2);

4. Applications of the results obtained are illustrated using 0/1-Knapsack Problem(Refer
Section 5).

• The search graph for 0/1-Knapsack Problem has large magnification (Refer
Proposition 1);



Mathematics 2022, 10, 47 3 of 17

• Conductance of MC induced by random walk for 0/1-Knapsack Problem is large
and MC induced by random walk mixes rapidly (Refer Corollary 3);

• Conductance of MC induced by MA for 0/1-Knapsack problem is large and MC
induced by MA mixes rapidly (Refer Corollary 4).

The paper is organized as follows. The following section discusses basic definition and
concepts needed to understand the proposed work. Section 3 establishes the relationship
between magnification of search graph and reversible MCs. The relation between magnifi-
cation and mixing time of the MCs induced by MA is discussed in Section 4. Applications
of the theoretical results obtained are illustrated Using 0/1-Knapsack problem in Section 5
followed by the conclusion.

2. Preliminaries

The search graph (or search space) represents the set of all feasible solutions for any
discrete optimization problem. Any metaheuristics such as EA, MA, SA, etc., search this
search graph using some heuristics to locate the optimum or near to optimum solution.
The search graph has three components:

1. Search graph elements: Feasible solutions of the optimization problem;
2. Neighborhood structure: How two or more search graph elements are connected i.e.,

adjacency information;
3. Cost or fitness for each element in the search graph.

Based on the problem definition, one has to define the appropriate neighborhood
structure and fitness/cost function. For basic definition of MC and its mixing time, refer to
the standard textbooks and paper given in the literature [41,48,49,51,52].

Definition 1 (Markov Chain (MC) [41]). A random variable sequence χ1, χ2, χ3, . . . is a MC,
if the probability of the future state, given the present sate, is independent of past states. i.e.,
Prob(χt = b|χt−1 = a, . . . , χ0 = x0) = Prob(χt = b|χt−1 = a).

The set of all possible values of χi is the state space Ω of the chain. A transition matrix
P = (Pa,b)a,b∈Ω denotes the transition probability of moving from state a to b.

Next, to define stationary distribution of a MC.

Definition 2 (Stationary Distribution [51,52]). Stationary distribution π is a probability distri-
bution on state space Ω such that π = πP, i.e., ∑a∈Ω πaPa,b = πb.

Definition 3 (Irreducible MC [41]). Let P denote transition matrix of a MC. A MC with tran-
sition matrix P is irreducible If ∀a, b ∈ Ω, there exists some t such that Pt

a,b > 0 then the MC
is aperiodic.

Which implies that the probability of reaching any state to any other state is greater
than zero. This implies that the underlying search graph is connected.

Definition 4 (Aperiodic chain [41]). Let P denote the transition matrix of the MC on state space
Ω. If ∀a, binΩ, gcd{t : Pt

a,b > 0} = 1, then the MC is aperiodic.

If a chain is aperiodic and irreducible, then it is called a ergodic chain. It is a well-
known fact that an ergodic chain has stationary distribution, and it is unique (a fundamental
theorem of the MC [52]). Lazy MCs are chains that feel lazy and stay in the same state with
probability 1

2 . By choosing self-loop probability 1/2, one can ensure that MC is lazy. Lazy
MCs are aperiodic [52]. An ergodic MC is reversible πaPa,b = πbPb,a, i.e., flow from a to b is
the same as flow from b to a [52].
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3. Relation between Magnification of Search Graph and Reversible MCs

This section discusses the methods to build relation between magnification of a search
graph and mixing time of reversible MCs. Magnification gives a lower bound for the
number of arcs (or edges) leaving from any cut set. More formally, it is defined as:

Definition 5 (Magnification (c.f. [41], Proposition 2.11)). Let µ(Ω) denote magnification of the
search graph Ω and S ⊂ Ω and is non empty. Then,

µ(Ω) = min
S
{µ(S) : |S| ≤ |Ω|/2},

where,

µ(S) =
|E(S, S)|
|S| (1)

and E(S, S) denote the number of arcs leaving from S to S (where S represents the complement of
S), respectively.

Now assume that a local search metaheuristic can induce a reversible MC on the search
graph Ω. The aim is to establish a relationship between magnification and mixing time of
this induced reversible MC. For this, the concept of conductance is needed. Conductance
of a MC is defined as:

Definition 6 (Conductance [41]). For any non-empty subset S, Conductance (φ(S) say) is defined as

φ(S) =
FS
CS

=
∑u∈S,v∈S Pu,v · πu

∑u∈S πu
, (2)

where FS and CS denote the flow and capacity of set S.
The conductance φ(P) of the chain P (say) is defined as

φ(P) = min
S:CS≤ 1

2

φ(S) (3)

Conductance is a powerful measure which gives conditional probability of the chain
getting stuck at any cut set. Large conductance implies large ergodic flow leaving from any
cut set. Now to establish the relationship between magnification and conductance.

Theorem 1. Let µ(Ω) and φ(P) denote magnification of search graph Ω and conductance of the
reversible ergodic MC with transition matrix P, respectively, then φ(P) ≥ P{u,v∈N(u)}min

πmin
πmax
·

µ(Ω), where P{u,v}min
denote minimum transition probability from u to a neighbor of u say v,

N(u) denotes neighbors of u and πmin, πmax denotes minimum and maximum probability in the
stationary distribution.

Proof. Let S ⊂ Ω and CS ≤ φ(S)
2 . Using Definition 6,

φ(S) =
∑u∈S,v∈S Pu,v · πu

∑u∈S πu

≥
P{u,v∈N(u)}min

· πmin · |E(S, S)|
∑u∈S πu

(Since there are |E(S, S)| edges leaving from S to S

and the chain is reversible.)

≥ P{u,v∈N(u)}min
· πmin

πmax
· |E(S, S)|
|S|

≥ P{u,v∈N(U)}min

πmin

πmax
· µ(Ω)
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Therefore, φ(P) ≥ P{u,v∈N(u)}min
πmin
πmax
· µ(Ω). Hence the proof.

Next is to find bound on mixing time of reversible ergodic MC using magnification.
Time taken by a MC to reach its stationary distribution from any starting distribution is
called mixing time of the chain. It is important to know how fast or quickly a chain reaches
close or near to the stationary distribution. The following lemma gives upper bound for
mixing time using the concept of conductance.

Lemma 1 (Mixing Time Lemma [41], Corollary 2.8). For any reversible ergodic MC

tmix(ε) ≤
2

φ(P)2 ·
(

ln ε−1 + ln π−1
min

)
where the notation πmin is used to denote the minimum probability in π (i.e., in stationary distri-
bution) and tmix(ε) is used to denote the mixing time of the chain when it is ε close to stationary
distribution.

Now to establish relation between magnification and mixing time. The following
theorem gives upper bound for mixing time using magnification.

Theorem 2. The relationship between search graph magnification (µ(Ω)) and mixing time of
reversible ergodic MC (tmix(ε)) is:

tmix(ε) ≤
4 ln π−1

min
P2
{u,v∈N(u)}min

· µ(Ω)2
· π2

max

π2
min

(4)

Proof. Using Lemma 1:

tmix(ε) ≤
2

φ(P)2 ·
(

ln ε−1 + ln π−1
min

)
(5)

and by Theorem 1,

φ(P) ≥ P{u,v∈N(u)}min

πmin

πmax
· µ(Ω) (6)

Using Equations (5) and (6):

tmix(ε) ≤
2

P2
{u,v∈N(u)}min

· µ(Ω)2
· π2

max

π2
min
·
(

ln ε−1 + ln π−1
min

)
Now, by choosing ε = πmin/2:

tmix(ε) ≤
4 ln π−1

min
P2
{u,v∈N(u)}min

· µ(Ω)2
· π2

max

π2
min

The above results shows that if the stationary distribution is inverse exponential and
ratio between πmin and πmax is polynomial in input size then mixing time of the Markov
chain induced by local search-based metaheuristics mixes rapidly, which is in polynomial
time. A flowchart representing the general structure of local search-based metaheuristic
algorithm is given in Figure 1 and a detailed block diagram explaining how to apply the
proposed method for the combinatorial optimization problem is given in Figure 2.
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Figure 1. Flow chart representing local search-based metaheuristic algorithm.

Figure 2. Block diagram representing how to apply the proposed method for a new combinatorial
Optimization Problem.
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4. Relation between Magnification and Mixing Time of the MCs Induced by MA

MA is a widely used local search-based metaheuristic and is a modified version of
SA [14]. In SA, temperature decreases slowly in every iteration, whereas in the MA tem-
perature is a constant in all the iterations. In SA, the algorithms give better results when
temperature is tending to zero, whereas in MA, one must find for which value of tempera-
ture parameter we get the desired solution. So, even for one value of temperature parameter,
if the MA gives a desirable solution, then we are through. MA induces reversible MC on
any irreducible state space Ω with the desired stationary distribution. This is the beauty of
this algorithm. Without loss of generality, this section will explain the MA for maximization
problem (similar arguments holds for minimization problem also). MA try to locate the
optimum and near optimum solution by searching search graph elements using biased
random walk (non-uniform). In each iteration, the algorithm selects any one of the neighbors
uniformly at random. If the fitness of the selected neighbor is better (i.e., maximum for
maximization problem), then it will move to that state, otherwise it will move to that state
with smaller probability, which implies the MA moves to the worst solution also with some
small probability. This bias ensures that the MA is unlikely to get stuck at local optima. The
basic structure of the MA for the maximization problem is given in Algorithm 1 and the
flowchart is given in Figure 3.

Figure 3. Metropolis Algorithm.
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Algorithm 1 MA for Maximization Problem.

1: Input: Initial solution, i.e., any state a from the search graph Ω and terminate condition
2: Output: Final solution, i.e., a state from the search graph which has desired cost of

fitness (i.e., optimum or near to optimum solution)
3: Initialize BestCost = C(a), where C(a) denotes the cost (or fitness) of a (Note that

cost function c(.) and neighborhood structure should be defined in the search graph
definition for the problem at hand

4: while (Until meeting the terminate condition) do
5: Select a neighbor b of a uniformly at random
6: Set a = b with probability α, where

α =
1
2

. min

exp
(
−C(a)

T

)
exp

(
−C(b)

T

) , 1


7: if (BestCost < C(a)) then
8: BestCost← C(a)
9: end if

10: steps← steps + 1
11: end while

The MA induces MC on the state space Ω and the transition matrix P of MC is given as:

P[Xk+1 = b|Xk = a] =



0
(if a 6= b and b /∈ N(a))
1

2N · e
− c(a)−c(b)

T

(if c(b) ≤ c(a) and b ∈ N(a))
1

2N
(if c(b) > c(a) and b ∈ N(a))

1−∑z 6=a P[Xk+1 = z|Xk = a]
(if a = b)

(7)

where N(x) denotes neighbors of a and N = maxa∈Ω{|N(a)|}, i.e., the maximum number
of neighbors for any element a ∈ Ω. The stationary distribution of the MC with the
transition matrix given as Equation (7) is

πa =
e−

c(a)
T

∑a∈Ω e−
c(a)

T

(8)

The 1/2 multiplication factor in transition matrix P (Equation (7)) is to ensure that
with probability 1/2 the chain remains in state x, which makes the MC lazy and aperiodic.
We have assumed that the underlying search graph used by the MA is connected and hence
the induced MC is irreducible. Therefore, the MC is ergodic (irreducible and aperiodic).
Also, it is well known that the MC induced by the MA is reversible [52]. i.e.,

Lemma 2 (Lemma 11.8 [52]). The MC with transition matrix P (as given in Equation (7)) is
irreducible and aperiodic, then it is having stationary distribution

πa =
e−

c(a)
T

∑a∈Ω e−
c(a)

T

.

Also, the chain is reversible.
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Now to use the conductance result obtained in the previous section to prove the
following result.

Corollary 1. The Conductance Φ(P) of the MC induced by the MA with transition matrix P is
related to magnification µ(Ω) as:

φ(P) ≥ 1
2N
· e−

2(Cmax−Cmin)
T · µ(Ω)

where Cmax and Cmin denotes maximum, minimum cost (fitness) respectively. Particularly for
temperature parameter T ≥ k(Cmax − Cmin),

φ(P) ≥ 1
2N
· e−

2
k · µ(Ω)

where k is a non-zero positive constant.

Proof. Using Theorem 1,

φ(P) ≥ Pu,v∈N(u)min

πmin

πmax
· µ(Ω).

Using Equation (7),

Pu,v∈N(u)min
≥ 1

2N
· e−

(Cmax−Cmin)
T (9)

Using Equation (8),
πmin

πmax
≥ e−

(Cmax−Cmin)
T . (10)

Therefore,

φ(P) ≥ 1
2N
· e−

2(Cmax−Cmin)
T · µ(Ω)

By choosing T ≥ k(Cmax − Cmin), where k is a non-zero positive constant,

φ(P) ≥ 1
2N
· e−

2
k · µ(Ω)

Now we can establish the relationship between the mixing time of the MC induced by
the MA and magnification of the search graph.

Corollary 2. The relationship between magnification µ(Ω) and mixing time (tmix(ε)) of the
reversible ergodic MC induced by the MA is given as:

tmix(ε) ≤
16N2 ln π−1

min · e
4(Cmax−Cmin)

T

µ(Ω)2

For T ≥ k(Cmax − Cmin)

tmix(ε) ≤
16N2 · e 4

k

µ(Ω)2 · ln |Ω|

where k is a non-zero positive constant.
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Proof. By Theorem 2:

tmix(ε) ≤
4 ln π−1

min
P2
{u,v∈N(u)}min

· µ(Ω)2
· π2

max

π2
min

Using Equations (9) and (10):

tmix(ε) ≤
16N2 ln π−1

min · e
4(Cmax−Cmin)

T

µ(Ω)2

For T ≥ k(Cmax − Cmin)

tmix(ε) ≤
16N2 ln π−1

min · e
4
k

µ(Ω)2 (11)

where k is a non-zero positive constant.

Since πa =
e−

c(a)
T

∑a∈Ω e−
c(a)

T
:

πmin ≥
1

e
(cmax−cmin)

T · |Ω|
≥ 1

e
1
k |Ω|

(Since T ≥ k(cmax − cmin) ) (12)

Using Equations (11) and (12):

tmix(ε) ≤
16N2 · e 4

k

µ(Ω)2 · ln |Ω| (13)

Note that the above results are proved by selecting the temperature parameter T =
k(Cmax − Cmin), where k is a non zero positive constant. For k > 1 the mixing time is

O
(

N2·ln |Ω|
µ(Ω)2

)
). As k tends to zero, the mixing time will become larger and larger. Hence,

one has to vary the value of parameter k, where (0 < k ≤ 1) and check experimentally,
for which value of k the MA gives better result. This way of selecting the temperature
parameter ensures that the Markov chain associated with the Metropolis algorithm mixes
rapidly. The results show that the mixing time of the MC induced by MA on the search
graph is indirectly proportional to magnification of the search graph. A large magnification
implies the MC induced by MA mixes rapidly. Hence it is important to design a good search
space that is connected and has large magnification. This ensures that any randomized
local search heuristics, if it induces reversible ergodic MCs on such a state space, it will mix
rapidly, i.e., in polynomial time. A detailed block diagram representing how to apply the
proposed method to a new combinatorial optimization problem is given in Figure 4.

The following section discusses the importance of the proposed results using suitable
examples.
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Figure 4. Block Diagram representing how to apply the Metropolis algorithm for a new combinatorial
Optimization Problem.

5. Importance of the Theoretical Results Obtained: Illustration Using
0/1-Knapsack Problem

This section discusses how the obtained results can be applied to combinatorial opti-
mization problem. The application of the proposed work is illustrated using 0/1-Knapsack
problem, which is a well-studied hard combinatorial optimization problem in the liter-
ature [3,53–55]. 0/1-Knapsack problem has vast applications. Some of the real-world
applications of Knapsack problem are financial decision problems, Knapsack cryptosys-
tems, combinatorial auctions and load-shedding in microgrid operation, etc. [56,57].

Definition 7. 0/1-Knapsack Problem: Let w1, . . . , wn and p1, . . . , pn denote weights and profits
associated with n items, respectively. The problem is to fill a bag (or knapsack) with items in such a
way that the profit earned is maximum and the weight of all the items included in the knapsack is
less than the capacity of the knapsack. More formally,

Maximize Z =
n

∑
i=1

xi pi

subject to the constraints:

n

∑
i=1

xiwi ≤ C, where C denote the capacity of the knapsack and xi ∈ {0, 1} :

xi =

{
1 if ith item is included in the knapsack
0 Otherwise
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Note that partial filling of items in the knapsack is not allowed, which implies either
that an item can be filled in the knapsack or not. Therefore, this problem is called the 0/1-
Knapsack problem. Now by applying steps mentioned in Figures 2 and 4, we show that
the Markov chain associated with the random walk and the Metropolis algorithm mixes
rapidly, i.e., in polynomial time for the 0/1-Knapsack problem. The search space used by
local search-based metaheuristics for this problem is given in Definition 8.

Definition 8 (Search Space (or search graph) for 0/1-Knapsack Problem).

• Search Space Elements (or nodes): Set of all n bit strings, where each bit in the string can take
the values 1 or 0. Each node in the search graph represents n bit string;

• Neighborhood Structure: Two nodes in the search graph are adjacent to each other if the
hamming distance between two string is equal to 1;

• cost (or fitness): Cost of a node is number of 1’s in the bit string. More formally, if x =
(x1, . . . , xn) is a node in the search graph then cost c(x) of x is given as c(x) = ∑n

i=1 xi pi.

Let Ω denote the search space defined in the Definition 8. Then the number of search
space elements (or nodes) in the search graph is equal to the total number of possible n bit
binary string, which is equal to 2n. Therefore |Ω| = 2n. As a first step, we will find the
magnification of the search graph.

Proposition 1. The magnification of the search graph for 0/1-Knapsack problem is at least 1.

Proof. We prove this by using the concept of canonical path [11,41]. We describe it quickly
here for better readability. For each pair of nodes, say x and y in search space Ω, define
a unique path βx,y from x to y. This unique path βx,y is canonical path from x to y. Let
(p, q) be an edge in the search graph Ω, which implies p and q are neighbors in the search
space (i.e, the hamming distance between them is equal to 1 (refer to Definition 8)). Now
the aim is to bind the number of canonical paths passing through the edge (p, q). Let
x = (x1, . . . , xn) and y = (y1, . . . , yn) be any two nodes in the search graph (as per the
search space in Definition 8, each node represents n bit binary string). Let i1, . . . , ik are
indices (in increasing order), where bit values of x and y differs. Then canonical path
βx,y is defined as u0 = xu1u2 . . . uk = y, where uj and uj−1 are neighbors to each other
(∀1 ≤ j ≤ k) and they differ at ij-th bit.

Let the canonical path βx,y pass through the edge (p, q) = (uj−1, uj), where p =
(y1, y2, . . . , yj−1, xj, . . . , xn) and q = (y1, y2, . . . , yj, xj+1, . . . , xn). That means values of first
j-bits of y match with p and values of last n− j + 1-bits x match with m. Therefore, the
number of canonical paths βx,y which passes through edge (p, q) is less than or equal to

2n−i · 2i−1 = 2n−1 =
|Ω|
2

. (14)

Next, we will bind magnification of the search graph: Let S ⊂ Ω, S 6= π and |S| ≤ |Ω|2 .
Let η(S, S) denotes the set of all canonical paths βx,y which start at node x ∈ S and end at
node y ∈ S, where S denote the compliment of set S. Then

|η(S, S)| = |S| × |S| ≥ |S| · |Ω|
2

(
Since |S| < |Ω|

2
, |S| ≥ |Ω|

2

)
(15)

Note that every canonical path βxy ∈ η(S, S) should pass through one edge (p, q) ∈ E(S, S),
where E(S, S) denotes the edges in the cut set (S, S). From Equation (14) we know that
the number of canonical paths which passes through an edge is bounded above by |Ω|2 .
Therefore,

|η(S, S)| ≤ |E(S, S)| · |Ω|
2

(16)
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From Equations (15) and (16) we get:

|S| · |Ω|
2

≤ |η(S, S)| ≤ |E(S, S)| · |Ω|
2

Therefore,

µ(S) =
|E(S, S)|
|S| ≥ 1

Hence the proof.

Next we show the application of our results (Theorems 1 and 2, Corollarys 1 and 2)
by taking two randomized local search-based metaheuristics Random walk and MA for
0/1-Knapsack Problem.

5.1. Mixing Time of MC Associated with Random Walk for 0/1-Knapsack Problem

Consider a random walk on the search graph defined in Definition 8. This random
walk will induce a MC on the search space. We can make this MC aperiodic by assigning
self loop probability of 1/2. From the search graph definition (Definition 8) it is clear that
number of neighbors for each node is n. Since random walk selects any of the neighbor
uniformly at random and move to that node, the transition probability of such a random
walk can be given as follows:

P(a, b) =



0
(if a 6= b and b /∈ N(a))
1

2n
(if b ∈ N(a))

1/2
D (if a = b)

(17)

Note that since it is a random walk, stationary distribution is uniform (i.e., πa = πb)
and πaP(a, b) = πbP(b, a). Therefore, MC is ergodic and reversible. Hence we can apply
the proposed results for this chain.

Corollary 3. Conductance and mixing time of the of MC P induced by random walk are bounded as

1. Conductance Φ(P) ≥ 1
2n

2. Mixing Time tmix(ε) ≤ 16n3.

Proof. Using Theorem 1 and Proposition 1, we get conductance Φ(P) ≥ 1
2n (since πmin = πmax,

N = n, transition probability P(a, b) = 1/2n and µ(G) ≥ 1).
Using Theorem 2 we get, tmix(ε) ≤ 16n2 · ln π−1

min. Since π = 1/2n, we get: tmix(ε) ≤
16n3.

5.2. Mixing Time of MC Associated with the MA for 0/1-Knapsack Problem

As discussed in Section 4, MC induced by the MA is reversible and ergodic. Transition
probability for the 0/1-Knapsack problem is given as

P(a, b) =



0
(if a 6= b and b /∈ N(a))
1

2n · e
− c(a)−c(b)

T

(if c(b) ≤ c(a) and b ∈ N(a))
1

2n
(if c(b) > c(a) and b ∈ N(a))

1−∑z 6=a P[Xk+1 = z|Xk = a]
(if a = b)

(18)
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We can apply the theoretical results obtained (Corollarys 1 and 2) to bound conduc-
tance and mixing time of the MC induced MA for 0/1-Knapsack problem.

Corollary 4. Conductance and mixing time of the of MCs P induced by the MA are bounded as

1. Φ(P) ≥ 1
2n · e

−2
k

2. tmix(ε) ≤ 16n3 · e 4
k for temperature parameter T ≥ k(cmax − cmin)

Proof. Using Corollary 1 we get: Φ(P) ≥ 1
2n · e

−2
k for non zero positive constant k (since

magnification µ(G) ≥ 1 and N = n).
Using Corollary 2 and |Ω| = 2n we get:

tmix(ε) ≤ 16n3 · e
4
k , (19)

for non zero positive constant k.

6. Conclusions

This work builds the relationship between the magnification of a search graph and
the mixing time of the reversible MC induced by local search-based metaheuristics. If the
search graph has large magnification, then the ergodic reversible Markov chain induced
by the local search-based metaheuristics mixes rapidly in polynomial time. Using this
result, it is further proved that, if the search graph has large magnification, then the MCs
induced by MA mixes rapidly for a particular choice of temperature parameter. Mixing

time of MC induced MA is upper bounded by 16N2·ln |Ω|·e
4
k

µ(Ω)2 . The importance of the proposed
result is illustrated by applying it to the 0/1-Knapsack problem. The search graph for the
0/1-Knapsack problem has a large magnification and hence the Markov chain induced
by local search-based metaheuristics like random walk and Metropolis Algorithm mixes
rapidly, i.e., in polynomial time. Hence, we conclude that the design of search space plays
an important role in the mixing time of MC induced local search-based metaheuristics. If
one can design a search graph with large magnification for a hard optimization problem,
then it is worth analyzing the performance of the local search-based metaheuristics on
that search graph both theoretically and experimentally. Some limitations of the proposed
work are:

• The proposed theoretical results hold only if the local search-based metaheuristics can
induce reversible ergodic Markov chains on the search graph;

• Even though the Markov chain induced by the metaheuristic algorithms mixes rapidly,
i.e., in polynomial time (say Tmix), one may have to take many samples to get the
desired solution for the problem at hand. One sample is obtained by running local
search-based metaheuristic algorithms for Tmix amount of time. So, it would be inter-
esting to study how many samples are needed to get the optimum or near optimum
solution for the problem at hand;

• Note that the results for the Metropolis Algorithm are proved by selecting temperature
parameter T = k(Cmax − Cmin), where k is a non-zero positive constant. For k > 1 the

mixing time is O
(

N2·ln |Ω|
µ(Ω)2

)
). As k tends to zero, the mixing time will become larger

and larger. Hence, one must vary the value of parameter k, where (0 < k ≤ 1) and
check experimentally, for which the value of k the MA gives a better result.

It is also worthwhile to analyze the performance of non-local search-based metaheuris-
tics such as Genetic algorithms, nature-inspired algorithms, and bio-inspired algorithms,
etc., for combinatorial optimization problems using the search spaces with and without
large magnification.



Mathematics 2022, 10, 47 15 of 17

Author Contributions: Conceptualization, A.K.B.S. and S.N.P.; methodology, A.K.B.S. and S.N.P.;
validation, A.K.B.S. and S.N.P.; formal analysis, A.K.B.S. and S.N.P.; investigation, A.K.B.S. and S.N.P.;
resources, A.K.B.S. and S.N.P.; Original draft preparation, A.K.B.S., and S.N.P.; review and editing,
A.K.B.S. and S.N.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MC Markov Chain
MCs Markov Chains
MA Metropolis Algorithm
EA Evolutionary Algorithm
SA Simulated Annealing
PSO Particle Swarm Optimization
ACO Ant Colony Optimization

References
1. Rubin, S.H.; Bouabana-Tebibel, T.; Hoadjli, Y.; Ghalem, Z. Reusing the NP-Hard Traveling-Salesman Problem to Demonstrate

That P NP (Invited Paper). In Proceedings of the 2016 IEEE 17th International Conference on Information Reuse and Integration
(IRI), Pittsburgh, PA, USA, 28–30 July 2016; pp. 574–581. [CrossRef]

2. Pandiri, V.; Singh, A.; Rossi, A. Two hybrid metaheuristic approaches for the covering salesman problems. Neural Comput. Appl.
2020, 32, 15643–15663. [CrossRef]

3. Buhrman, H.; Loff Barreto, B.S.; Torenvliet, L. Hardness of Approximation for Knapsack Problems. Theory Comput. Syst. 2015,
56, 372–393. [CrossRef]

4. Capobianco, G.; D’Ambrosio, C.; Pavone, L.; Raiconi, A.; Vitale, G.; Sebastiano, F. A hybrid metaheuristic for the Knapsack
Problem with Forfeits. Soft Comput. 2021. [CrossRef]

5. Gaspar, D.; Lu, Y.; Song, M.S.; Vasko, F.J. Simple population-based metaheuristics for the multiple demand multiple-choice
multidimensional knapsack problems. Int. J. Metaheuristics 2020, 7, 330–351. [CrossRef]

6. Garey, M.R.; Johnson, D.S. Computers and Intractability; A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York,
NY, USA, 1990.

7. Ullman, J. NP-complete scheduling problems. J. Comput. Syst. Sci. 1975, 10, 384–393. [CrossRef]
8. Theophilus, O.; Dulebenets, M.A.; Pasha, J.; Lau, Y.Y.; Fathollahi-Fard, A.M.; Mazaheri, A. Truck scheduling optimization at a

cold-chain cross-docking terminal with product perishability considerations. Comput. Ind. Eng. 2021, 156, 107240. [CrossRef]
9. Dulebenets, M.A. A Delayed Start Parallel Evolutionary Algorithm for just-in-time truck scheduling at a cross-docking facility.

Int. J. Prod. Econ. 2019, 212, 236–258. [CrossRef]
10. Gholizadeh, H.; Fazlollahtabar, H.; Fathollahi-Fard, A.M.; Dulebenets, M.A. Preventive maintenance for the flexible flowshop

scheduling under uncertainty: A waste-to-energy system. Environ. Sci. Pollut. Res. 2021. [CrossRef]
11. Ajitha Shenoy, K.B.; Biswas, S.; Kurur, P.P. Metropolis algorithm for solving shortest lattice vector problem (SVP). In Proceedings

of the 2011 11th International Conference on Hybrid Intelligent Systems (HIS), Melaka, Malaysia, 5–8 December 2011; pp. 442–447.
12. Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: New York, NY, USA, 1989.
13. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing

Machines. J. Chem. Phys. 1953, 21, 1087–1092. [CrossRef]
14. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef]
15. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks,

Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
16. Dorigo, M.; Stützle, T. Ant Colony Optimization; Bradford Company: Scituate, MA, USA, 2004.
17. Mühlenthaler, M.; Raß, A.; Schmitt, M.; Wanka, R. Exact Markov chain-based runtime analysis of a discrete particle swarm

optimization algorithm on sorting and OneMax. Nat. Comput. 2021. [CrossRef]
18. Yang, X.S. Metaheuristic Optimization: Algorithm Analysis and Open Problems. In Experimental Algorithms; Pardalos, P.M.,

Rebennack, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 21–32.

http://doi.org/10.1109/IRI.2016.84
http://dx.doi.org/10.1007/s00521-020-04898-4
http://dx.doi.org/10.1007/s00224-014-9550-z
http://dx.doi.org/10.1007/s00500-021-06331-x
http://dx.doi.org/10.1504/IJMHEUR.2020.111600
http://dx.doi.org/10.1016/S0022-0000(75)80008-0
http://dx.doi.org/10.1016/j.cie.2021.107240
http://dx.doi.org/10.1016/j.ijpe.2019.02.017
http://dx.doi.org/10.1007/s11356-021-16234-x
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1007/s11047-021-09856-0


Mathematics 2022, 10, 47 16 of 17

19. Sudholt, D. Using Markov-Chain Mixing Time Estimates for the Analysis of Ant Colony Optimization. In Proceedings of
the FOGA’11, 11th Workshop Proceedings on Foundations of Genetic Algorithms, Schwarzenberg, Austria, 5–8 January 2011;
Association for Computing Machinery: New York, NY, USA, 2011; pp. 139–150. [CrossRef]

20. Munien, C.; Ezugwu, A.E. Metaheuristic algorithms for one-dimensional bin-packing problems: A survey of recent advances and
applications. J. Intell. Syst. 2021, 30, 636–663. [CrossRef]

21. Lissovoi, A.; Witt, C. A Runtime Analysis of Parallel Evolutionary Algorithms in Dynamic Optimization. Algorithmica 2017,
78, 641–659. [CrossRef] [PubMed]

22. Jerrum, M.; Sinclair, A. The Markov Chain Monte Carlo Method: An Approach to Approximate Counting and Integration. In
Approximation Algorithms for NP-Hard Problems; PWS Publishing Co.: Boston, MA, USA, 1996; pp. 482–520.

23. Sinclair, A.; Jerrum, M. Approximate counting, uniform generation and rapidly mixing Markov chains. Inf. Comput. 1989,
82, 93–133. [CrossRef]

24. Aldous, D. On the Markov Chain Simulation Method for Uniform Combinatorial Distributions and Simulated Annealing. Probab.
Eng. Inf. Sci. 1987, 1, 33–46. [CrossRef]

25. Davis, T.E.; Principe, J.C. A Markov Chain Framework for the Simple Genetic Algorithm. Evol. Comput. 1993, 1, 269–288. [CrossRef]
26. Doerr, C.; Sudholt, D. Preface to the Special Issue on Theory of Genetic and Evolutionary Computation. Algorithmica 2019, 81,

589–592. [CrossRef]
27. Aldous, D.; Fill, J.A. Reversible Markov Chains and Random Walks on Graphs, 2002. Unfinished Monograph, Recompiled 2014.

Available online: https://www.stat.berkeley.edu/~aldous/RWG/book.pdf (accessed on 1 November 2021).
28. Kwon, J. Particle swarm optimization–Markov Chain Monte Carlo for accurate visual tracking with adaptive template update.

Appl. Soft Comput. 2020, 97, 105443. [CrossRef]
29. Chou, C.W.; Lin, J.H.; Yang, C.H.; Tsai, H.L.; Ou, Y.H. Constructing a Markov Chain on Particle Swarm Optimizer. In Proceedings

of the 2012 Third International Conference on Innovations in Bio-Inspired Computing and Applications, Kaohsiung, Taiwan,
26–28 September 2012; pp. 13–18. [CrossRef]

30. Di Cesare, N.; Chamoret, D.; Domaszewski, M. A New Hybrid PSO Algorithm Based on a Stochastic Markov Chain Model. Adv.
Eng. Softw. 2015, 90, 127–137. [CrossRef]

31. Jeong, B.; Han, J.H.; Lee, J.Y. Metaheuristics for a Flow Shop Scheduling Problem with Urgent Jobs and Limited Waiting Times.
Algorithms 2021, 14, 323. [CrossRef]

32. Panteleev, A.V.; Lobanov, A.V. Application of Mini-Batch Metaheuristic Algorithms in Problems of Optimization of Deterministic
Systems with Incomplete Information about the State Vector. Algorithms 2021, 14, 332. [CrossRef]

33. Zhang, Y.; Wang, J.; Li, X.; Huang, S.; Wang, X. Feature Selection for High-Dimensional Datasets through a Novel Artificial Bee
Colony Framework. Algorithms 2021, 14, 324. [CrossRef]

34. Ebrahimi Moghadam, M.; Falaghi, H.; Farhadi, M. A Novel Method of Optimal Capacitor Placement in the Presence of Harmonics
for Power Distribution Network Using NSGA-II Multi-Objective Genetic Optimization Algorithm. Math. Comput. Appl. 2020,
25, 17. [CrossRef]

35. Hedar, A.R.; Deabes, W.; Almaraashi, M.; Amin, H.H. Evolutionary Algorithms Enhanced with Quadratic Coding and Sensing
Search for Global Optimization. Math. Comput. Appl. 2020, 25, 7. [CrossRef]

36. Juárez-Smith, P.; Trujillo, L.; García-Valdez, M.; Fernández de Vega, F.; Chávez, F. Pool-Based Genetic Programming Using
Evospace, Local Search and Bloat Control. Math. Comput. Appl. 2019, 24, 78. [CrossRef]

37. Berberler, M.E.; Guler, A.; Nurıyev, U.G. A Genetic Algorithm to Solve the Multidimensional Knapsack Problem. Math. Comput.
Appl. 2013, 18, 486–494. [CrossRef]
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