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Abstract: In Spain, the COVID-19 pandemic has impacted the various regions of the country 

differently. The availability of reliable and up-to-date information has proved to be fundamental for 

the management of this health crisis. However, especially during the first wave of the pandemic 

(February–August 2020), the disparity in the recording criteria and in the timing of providing these 

figures to the central government created controversy and confusion regarding the real dimension 

of the pandemic. It is therefore necessary to have objective and homogeneous criteria at the national 

level to guide health managers in the correct recording and evaluation of the magnitude of the 

pandemic. Within this context, we propose using Benford’s Law as an auditing tool to monitor the 

reliability of the number of daily COVID-related deaths to identify possible deviations from the 

expected trend. 
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1. Introduction 

It is clear that in order to face a health crisis of the magnitude of COVID-19, public 

health managers and administrators need to have the necessary tools to collect data 

correctly and predict the latest trends of the different pandemic indicators. 

The COVID-19 health crisis has filled the health-management literature with 

countless publications about methodologies for the prediction of incidence, transmission 

dynamics or number of cases. Most of these models are based on mathematical and 

statistical tools [1,2], such as machine learning [3–5] linear generalized models [6], logistic 

growth models [7], ANFIS model [8] or neuronal networks [9]. In other cases, the search 

for keywords in social media and Google trends is used to predict infections [10,11]. 

Other scholars focus on analyzing the reproduction numbers. For instance, in the 

paper [12], the authors estimate the proportion of the population needing to be 

immunized to achieve herd immunity. In the work [13], the authors analyze how to 

estimate the reproduction number related with the rate of growth, according to different 

types of assumptions. One of the assumptions that cover that paper is the exponentially 

distributed growth, which is the assumption that we consider in our work. 

Indeed, it is desirable that such tools are as operational and simple as possible, so 

that they can be implemented at all levels of the health and policy organizational 

hierarchy [14]. Therefore, in this paper we propose using Benford’s Law (BL) [15] as a 

guide to monitor the correct recording of Covid-related deaths. 

In many real-life data sets, the frequency of the first digit does not follow a uniform 

distribution. In addition, the first digit tends to be small, and so the probability of 

occurrence of the number 1 in the first position is 30.1%, while the probability of that 

number being 9 is 4.5% [16]. BL empirically discovered the pattern for the frequency 
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distribution of first digits for many collections of numbers. Therefore, a good approach to 

analyze a potential manipulation of data recording is to check for the validity of BL. 

In this line, BL has been used to detect fraud or errors in data recording in a wide 

variety of areas. For instance, [17–20] use BL as a tool for fraud detection in the insurance 

industry or in other commercial trades. Other authors have also applied BL to test the 

veracity of scientific data [21] or data with public health relevance, as is the case of the 

work of Stoerk [22] who focuses on the recording of air quality data in Beijing. 

A recent study already uses BL as a tool to assess the effectiveness of the control 

interventions in flattening the curve and the spread of COVID [16]. Results from this work 

suggest that BL is a suitable approach to analyze COVID-related trends and potential 

manipulations or registration errors in the number of cases and deaths, because of the 

data characteristics. When numbers follow an exponential distribution, as is the case of 

the number of COVID infections or deaths, it has been demonstrated that they follow 

Benford’s Law. This audit methodology has also already been used for other infectious 

diseases. For instance, in Uruguay [23], authors use BL to evaluate the dengue case-

reporting system. 

As a result, BL may be a useful tool for testing the reliability of data provided by 

different countries or indeed regions within the same country. As shown by [24], the 

authors applied BL to test the reliability of COVID-19 death-case reporting in countries 

with authoritarian regimes. They concluded that countries with democratic regimes do 

conform better to BL than the authoritarian ones regarding COVID-19 death-case figures 

reported. 

In the case of Spain, the decentralization of some competences, such as health, has 

caused some difficulties for the central government in collecting homogeneous 

information on the number of COVID-related cases and deaths. This was especially the 

case during the first months of the pandemic, when there was a continuous readjustment 

of COVID figures provided by the different regions. Within this context, it is essential to 

set a common tool to assess the validity of COVID data recorded across the country. 

A good clinical recording system is at the core of good health planning at all levels of 

management, from a single hospital to a nation-wide level. Likewise, in the case of COVID 

crisis management, the correct recording of cases, fatality, mortality or incidence rates is 

essential to reduce inefficiencies in the field of health management [25]. 

An incorrect registration or updating of data can cause significant inefficiencies, both 

in the allocation of resources and in the enactment of control measures. Within this 

context, authors such as Koch et al. 2020 [26], already use BL to assess the veracity of 

COVID data in China. 

Italy was the first European country where the pandemic had a strong impact. Within 

the Italian context, some authors have stressed the importance of correctly interpreting 

fatality-rate data and discussing the correct recording of deaths, to optimize a health 

policy [27] as well as to analyze the different impacts of the pandemic across the regions 

of a country [28]. 

In Spain, the basic providers of health information and data are the Ministry of 

Health, the Health Departments (Consejerías de Salud) and the Public Health 

Departments of the regions (known as Autonomous Communities (ACs)). Previously, 

health care beneficiaries and standards were defined centrally, but since 2002, when the 

decentralization process for health care responsibilities concluded, the responsibility for 

services delivery and funding has been devolved to the 17 ACs [29]. This organizational 

model has sometimes led to a lack of homogeneity in the registration of some health 

phenomena, as in the case of COVID-19. Specifically, during the first wave of the 

pandemic, there has been great controversy over the lack of homogeneity of criteria when 

counting COVID cases and deaths in the different ACs. The Ministry of Health itself has 

not always had updated data at any given time for all regions. The Ministerial Order BOE-

A-2020-3953, from 21 March 2020 [30], established that the ACs must provide the central 

government with the aggregated COVID data on a weekly basis. All the ACs provided 



Mathematics 2022, 10, 46 3 of 17 
 

 

their data by filling the related template, which included information such as number of 

confirmed cases, number of hospitalized cases and number of deaths. However, the 

protocol for recording this information may vary across ACs. Specifically, the recording 

of the number of COVID-related deaths is particularly sensitive, as the cause of death is 

not always clear, especially among the elderly population or those with chronic 

comorbidities. In addition, many deaths may be recorded as “unknown cause”. All these 

elements can lead to divergences from the actual situation. 

The issue of the updating of tools and protocols for recording health information, as 

well as the establishment of homogeneous health information systems among ACs are 

topics already addressed in the literature [31,32]. This discussion takes on particular 

relevance in a public health crisis such as the current one. 

It is essential that health administrations base their policy and management decisions 

on reliable data and objective criteria in order to avoid inefficiencies. Therefore, the 

establishment of common mechanisms to detect possible errors and data deviations is 

fundamental to helping provide a map of the pandemic situation at the national level, as 

well as identifying the specificities of regional figures. 

In this line, this paper proposes using BL as a methodological approach in COVID 

crisis management to monitor the registration of deaths. Specifically, the aim of this paper 

is to provide an objective tool capable of detecting possible errors or deviations from the 

expected trend in the recording of the number of COVID deaths per day in Spain. We 

focus our analysis on the Spanish case, so the methodology proposed in this paper can be 

used as a guide to monitor the reliability of COVID-related figures for the health 

administration both at a regional and central level. In addition, this analysis allows us to 

look into the pandemic’s impact on the different regions in terms of number of deaths. 

This paper is organized as follows: Section 2 describes the methods and empirical 

procedures. In Section 3 data and sources are presented. Section 4 captures the results, 

and finally, in Section 5 we discuss our conclusions. 

2. Methods and Empirical Procedure 

2.1. Description of Benford’s Law 

Benford’s Law is a mathematical rule conjecture that most sets of numbers verify. It 

is more frequent for an arbitrary set to verify BL than not. In other words, it is easier to 

enumerate the set of data that does not verify BL than the set of data that verifies the 

property [33]. This mathematical law has been used in various scientific fields, such as 

physics [34] and economics [35]. One of its most frequently used applications is to detect 

tax fraud [36,37]. 

Thus, BL establishes the (hypothetical) distribution of the digits of the same sequence 

of numbers. The distribution depends on the position of the digit or digits considered. 

Therefore, according to BL, the significant digit distribution does not follow a uniform 

distribution; they are skewed toward the smaller numbers. 

The expression of BL states that the probability that the first digit of a magnitude is a 

specific figure “n” is provided by equation 1: 

𝑃(𝑛) = 𝑙𝑜𝑔
10

(𝑛 + 1) − 𝑙𝑜𝑔
10 

(𝑛) = 𝑙𝑜𝑔
10

(
𝑛 + 1

𝑛
) = 𝑙𝑜𝑔

10
(1 +

1

𝑛
) (1) 

where P(n) is the probability of a number having the first non-zero digit n. 

According with expression 1, BL provides the theoretical proportion for each of the 

digits from 1 to 9 to be first significant digit. Figure 1 shows the distribution of the first 

significant digit predicted by BL. 
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Figure 1. Frequency distribution of the first digit according to BL. 

An extension of the formula, generalized to any set of “k” first digits, is provided by 

equation 2. 

𝑃(𝑛1𝑛2 … 𝑛𝑘) = 𝑙𝑜𝑔10 [ 1 + ( 
1

𝑛1 𝑛2 … . 𝑛𝑘 
)] (2) 

where P(𝑛1𝑛2 … 𝑛𝑘) is the probability that an arbitrary number 𝑥 having the first set of 

digits the k-tuple (𝑛1𝑛2 … 𝑛𝑘). 

Therefore, we can obtain the probability of occurrence of each digit according to its 

position. Thus, for instance, the probability of the first digit is 1 is: 

𝑙𝑜𝑔10 [1 +
1

1
] = 0,301 ∗ 100% = 30,1%  

The probability of the first two digits of the pair 37, is: 

𝑙𝑜𝑔10 [1 +
1

37
] = 0,0116 ∗ 100% = 1,16%  

The probability of the first three digits being the triad 280 is: 

𝑙𝑜𝑔10 [1 +
1

280
] = 0,0015 ∗ 100% = 0,15% [18]  

2.2. Chi-Square Test 

As a goodness-of-fit of the analysis, we used the χ2 (Chi-square) test. Through the χ2 

test we tested whether the n entries in a set of data were compatible with BL (Equation 

(2)). That is to say, we tested the null hypothesis for the first digit probabilities, 𝑝𝑖 = 𝑃𝑟 

(𝐷1 = 𝑖). Thus, we tested the hypothesis specified below [38]. 

Considering 𝐹 ≡ {𝑞1, 𝑞2, … 𝑞9}  as a discrete distribution of probability, and this 

probability is 𝑞𝑖 = 𝑙𝑜𝑔10 (
1+1

𝑖
) . In addition, 𝑞𝑖  verifies that 𝑞𝑖 ≥ 0 𝑓𝑜𝑟 𝑖 =

1,2, … .9; ∑ 𝑞𝑖
9
𝑖=1 = 1. Then, we tested the following hypothesis: 

 𝐻0 ∶ {𝑝𝑖}𝑖=1
9  𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝐹,  
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𝐻1 : {𝑝𝑖}𝑖=1
9  𝑑𝑜 𝑛𝑜𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝐹  

The chi-square statistics provide a measure of the distance between real data and 

Benford distribution. Therefore, the higher the chi-square value, the larger the deviation 

between real data and Benford distribution [16]. 

Then, with the chi-square test we tested the null hypothesis (H0) that the first digit is 

the same as expected on BL basis. Hence, the chi-square test points to those sets of 

numbers in which we must look into the possible causes of noncompliance with BL, and 

are those for which we can reject the H0. 

2.3. Sensitivity Analysis Steps 

In order to verify the results provided by the χ2 test, we designed a sensitivity 

analysis following the steps detailed below. As the observed figures are random, and that 

randomization depends on chance, we ran this sensitivity analysis to validate results. 

Step 1. First, the series of observed values were modified by random perturbations 

assuming that: 

(i) such a disturbance was unintentional; 

(ii) the applied perturbations were independent of each other; 

(iii) the perturbation size varied over a 20% range, and within that range any possible 

outcome was equally likely. This assumption implies consideration of the uniform 

probability distribution taking values within the interval [−0.1, +0.1]. Denoted as U [ 

−0.1; +0.1]. 

Step 2. From the observed mortality rate of a specific AC, an arbitrarily large set of 

alternative series with a generated perturbation was obtained through a Montecarlo 

simulation. Specifically, we generated 1000 replications for each series. Therefore, 

given the observed series {𝑥1
𝑜𝑏𝑠, 𝑥2

𝑜𝑏𝑠, 𝑥3
𝑜𝑏𝑠 … 𝑥𝑛

𝑜𝑏𝑠}, we obtained the ith series modified 

as 𝑥𝑘
𝑖 =  𝑥𝑘

𝑜𝑏𝑠 ∙ (1 + 𝑢𝑘
𝑖 ), 𝑘 = 1, … . , 𝑛  where 𝑖 = 1,…..1000, {𝑢𝑘

𝑖 }
𝑘=1

𝑛
  

are n values obtained by simulation from the distribution U [ −0.1; +0.1].  

Step 3. The BL test was applied to each series 𝑖0, {𝑢𝑘
𝑖0}𝑘=1

𝑛       generated synthetically, by 

calculating the statistics distance of χ2 and the p-value test for that series. Then, we 

obtained 1000 synthetic series, with their 1000 p-values {𝑝1
𝑖 , 𝑝2

𝑖 , … , 𝑝𝑛
𝑖 }𝑖=1

1000 and their 

1000 χ2 distances.  

Summarizing, as a result of the previous steps, given an observed series, {𝑥𝑘
𝑜𝑏𝑠}𝑘=1

𝑛 , 

we could generate the 1000 synthetic simulations {{xik}𝑘=1
𝑛  }}𝑖=1

1000 and the 1000 p-values 

{𝑝1
𝑖 , 𝑝2

𝑖 , … , 𝑝𝑛
𝑖 }𝑖=1

1000  , then we calculated both the average p-value, �̅� ,and the average 

distance χ2. In addition, we calculated quantiles of α-order for those p-values, 𝑞𝛼. 

Step 4. From 𝑞𝛼  it was possible to obtain the equivalent of a confidence interval that 

allowed validation of the decision of BL fulfillment with the observed data. That is 

to say, our goal was to check if the decision for observed data could be kept for data 

with perturbations. Then, we set a 𝑞1−𝛼 value and took a decision according to the 

scheme displayed in Table 1: 

Table 1. Criteria to validate decision regarding BL fulfillment. 

Decision for Observed 

Data 

If q0:95 >α for Data with 

Perturbations 

If q0:95 <α for Data with 

Perturbations 

H0 Fail to Reject We can keep the decision We cannot keep the decision 

H0 Reject We cannot keep the decision We can keep the decision 

As we can see in the procedure described above (step 4), we used a confidence 

interval approach for summarizing test results, but actually, this approach was similar to 

the empirical test hypothesis procedure. 
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It should be noted that, in contrast to [39], we did not use the truncated Benford’s 

Law, but the classical one. Therefore, our analysis focused on validating the simulations 

generated to contrast the test. Considering both intermediate and maximum values 

achieved, we perturbed such values to generate the simulations and then compared them 

with Benford’s Law. 

3. Data and Source 

For the analysis carried out in this paper, we considered data from the Spanish 

population in the period from March to June 2020, the first important period of the 

pandemic (first wave). While we could have used other periods, as the aim of this work 

was to compare the impact of the pandemic through BL by region in Spain, this period 

maintains a homogeneous characteristic for all ACs in terms of lockdown measures. In 

the subsequent periods known as the second and third waves, the regions adopted 

different control measures that could affect the pandemic trend, and therefore the 

resulting figures would not be as comparable. In addition, the analyzed period matched 

the exponential growth phase of the pandemic. 

The data analyzed in this work represent the number of deaths per day recorded by 

the different ACs during the period under study. The data were downloaded from 

“datadista Git-Hub repository” [40] and the information was contrasted with the data 

available in the official website of the Spanish Government’s Department of Health 

(Ministerio de Sanidad). 

There are a few errors in the transcription of the government data. Some errors are 

just changes in the figures due to transcription errors, or changes in the cause of death for 

some of the deceased. These types of errors in the information were verified and treated 

by Datadista. 

In addition to testing those regions that follow BL in recording the number of daily 

deaths, we used a ranking of the mortality rate (mortality rate defined as number of 

COVID deaths within the considered period divided by the population size at the 

beginning of the period) for the different Spanish regions as a reference. That is to say, we 

observed whether those regions that deviate from BL are in the first or last positions of 

the mortality rate ranking. This comparison suggested the potential causes of the 

deviation from BL. Such causes may relate to errors in the records or low-quality data 

recording, a stronger impact of the pandemic than in other regions, or better real data than 

in other regions, i.e., regions with few or no deaths per day. 

As discussed in the introduction, BL has been used for a wide variety of phenomena 

due to its versatility. For BL to be applied, the following recommendations must be met: 

The data must follow a geometrical sequence and must not contain a theoretical maximum 

or minimum. In addition, BL is independent of the scale of measurement on which the 

data are being processed. 

Therefore, according to the data characteristics described above, BL was a suitable 

methodology to achieve the objective proposed in this paper; that is to say, the goal was 

to test whether the number of daily COVID-related deaths registered by the different ACs 

followed BL. Hence, it was necessary to focus the analysis on those regions that showed a 

deviation from what is expected according to BL in the daily death register, in order to 

identify the possible causes of this deviation. As explained before, we proposed to use BL 

as an auditing guide to identify possible errors or deviations in the COVID figures 

recorded by the ACs, in order to set a common tool of reliability data assessment at any 

level of the health administration hierarchy. 

In view of the above, our research question focuses on whether the number of COVID 

deaths reported by the different ACs during the first four months of the pandemic follows 

Benford’s Law, in such a way that it is easy to identify those ACs whose figures deviate 

from the expected trend, and that it is therefore possible to analyze possible errors in the 

recording of the data. 
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4. Results 

The summary of the main results of our analysis are displayed in Table 2, where we 

compare the goodness-of-fit to BL with the mortality rate in order to identify recording 

errors or deviations from the expected trend in the daily death figures by ACs. No 

standardization variables, such as age or gender, were used in the mortality rate 

calculation. Disaggregated official data were not available, at least at the beginning of the 

pandemic period, because of which we considered the global number of deaths. 

Table 2. Regions ranked by χ2 test. 

ACs Code 

Autonomous 

Communities 

(ACs) 

χ2 Value 

Estimator 

χ2 Test 

p-Value 

Mortality 

Rate 

Mortality 

Rate 

Ranking (x105) 

9 Cataluña 291.947 0.000293 *** 74.5 7 

15 Navarra 217.510 0.005398 *** 81.5 6 

12 Galicia 214.966 0.005938 *** 23.4 14 

13 Madrid 195.582 0.012143 ** 127.4 2 

17 La Rioja 178.412 0.022448 ** 116.2 4 

7 Castilla y León 177.992 0.022782 ** 117.2 3 

11 Extremadura 169.880 0.030233 * 49.2 10 

8 Castilla La Mancha 164.449 0.036437 * 143.4 1 

2 Aragón 139.270 0.083687 * 82.2 5 

0 Spain 128.710 0.116364 60.9 9 

1 Andalucía 118.706 0.157069 17.3 16 

6 Cantabria 114.593 0.177005 36.0 11 

10 C. Valenciana 98.378 0.276588 29.0 13 

16 País Vasco 93.121 0.316654 70.9 8 

4 Baleares 55.347 0.699181 19.8 15 

3 Asturias 54.368 0.710025 32.8 12 

14 Murcia 34.197 0.905324 10.0 17 

Reject H0 at levels * 5%,** 3%, *** 1%. 

Table 2 includes both results of compliance with BL (χ2 test) and the COVID mortality 

rate by ACs. Among those regions for which we reject the hypothesis that BL is fulfilled, 

two kinds of interpretation can be offered. The majority of the ACs for which we reject the 

H0 are ranked at the top of the mortality rate ranking (above the Spanish rate). In these 

cases, the explanation for the deviation from BL relates to mistakes in the registration of 

the daily number of deaths, or an uncontrolled pandemic crisis providing skyrocketing 

figures. The region with the largest χ2 value is Catalonia, that is to say, the one with the 

largest deviation from what was expected according to BL. In fact, Catalonia rectified up 

to approximately 20% of the data initially supplied to the Ministry, confirming that there 

had been errors in the registry or in the counting of cases. 

The exceptions within this group of regions are the cases of Galicia and Extremadura, 

for which we reject the null hypothesis but which both show low mortality rates. In these 

cases, the number of daily deaths does not comply with BL probably because of the low 

number of daily deaths recorded; the number of deaths recorded daily was only one or 

two. 

Therefore, the fact that the number of daily deaths does not follow BL may be due to 

either incorrect recording of cases (daily deaths in this case), or to a favorable evolution of 

the pandemic within the region. Thus, in some cases, a region may show a good outcome 

(a number of daily deaths that remains low over time). Thus, as it records few deaths per 
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day, the phenomenon does not follow the exponential trend described by BL. However, 

in other cases, non-compliance with BL indicates those regions that may have extremely 

high daily death rates. (Even if the meaning of death rate is not the same than growth rate 

(of the number of deaths), somehow, they are related. For instance, if the growth rate 

increases, the death rate is expected to increase, since the population size (denominator) 

decreases as the number of deaths increase.) 

For those ACs for which we cannot reject the null hypothesis, in other words, where 

the number of daily deaths follows BL, lower mortality rates are observed. That is, 

although the figures follow an exponential shift, the expected trend is observed, and this 

can be considered an indicator that the data have been correctly recorded. However, we 

can find one exception. This is the case of País Vasco, which is in the middle of the 

mortality rate ranking, but the number of daily deaths follows BL. In this case, although 

the COVID mortality rate was high, slightly higher than the Spanish rate, we can say that 

this information is reliable and the daily number of deaths was well recorded. 

In Figure 2, we can graphically observe the frequencies of recording actual daily 

deaths versus the trend defined by BL for the figures at a national level. Specifically, bars 

represent the frequency distribution of the first digit of the number of COVID deaths per 

day in Spain during the period under study (from March to June 2020) while the line 

represent the theoretical distribution of BL. 

 

Figure 2. Frequency distribution of the first digit of the number of deaths per day by COVID in 

Spain. 

As we can observe in Figure 2, the frequency of daily deaths recorded at a national 

level are quite in line with the trend described by BL. 

In addition, Figure 3 shows the graphic comparison for each AC, and we can observe 

that regions such as Cataluña, Navarra or La Rioja show a divergence in the frequency of 

the first digits from the trend defined by BL. As shown in Table 2, none of these regions 

fit BL., while regions such as Comunidad Valenciana or Murcia have first figure 

frequencies that are very similar to that described by BL. These are regions for which the 

number of daily deaths fulfil BL. 
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Figure 3. Frequency distribution of the first digit of the number of COVID deaths per day by AA.CC. 

(As in Figure 2, in Figure 3, the Y axes represent the frequency and X axes represent the first digit of 

the number of COVID deaths.). 

Then, as described within Section 2, in order to verify the reliability of results 

showing in Table 2 regarding whether the AC data follow BL, we ran a sensitivity analysis. 

Figure 4 graphically shows a set of simulations modifying the observed values by random 

perturbations. Specifically, the figure displays the Benford count (colored lines) of the 

Spain observed data series (black line) and the Benford curve is taken as a reference 

(dotted line), for the considered period. 

 

Figure 4. Benford count. Observed series and simulations. 

The sensitivity analysis allowed us to verify results provided by the chi-square test. 

Therefore, following the criteria detailed in Table 1, results of the sensitivity analysis for 

each AC are shown in Table 3 (As in figure 2, in figure 3, the Y axes represent the frequency 

and X axes represent the first digit of the number of COVID deaths.). 

Table 3. Showing the sensitivity analysis results for each AC. 

AC 
Initial Decision (for 

Observed Data) 
q95% 

Final Decision (for 

Data with 

Perturbations) 

Cataluña Rejection 0.00013 Rejection 
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Navarra Rejection 0.00610 Rejection 

Madrid Rejection 0.00058 Rejection 

La Rioja Rejection 0.00633 Rejection 

Galicia Rejection 0.00583 Rejection 

Castilla León Rejection 0.04743 Rejection 

Spain Fail to reject 0.67138 Fail to reject 

C. Valenciana Fail to reject 0.34756 Fail to reject 

Andalucía Fail to reject 0.47747 Fail to reject 

Cantabria Fail to reject 0.28642 Fail to reject 

Baleares Fail to reject 0.33385 Fail to reject 

As displayed in Table 3, we maintain the initial decision regarding BL fulfilment for 

all ACs. The sensitivity analysis, therefore, verifies and confirms the initial decision taken 

using the χ2 test. 

In summary, we can use the BL fit test as an indicator of the reliability of the data 

recorded in terms of daily COVID deaths for the different regions. Furthermore, 

comparing this result with the mortality rate can help to interpret the specificities of each 

AC and identify whether we are dealing with an error in the data recording or a 

particularity in the trend of the pandemic for that specific region. 

Actually, deviations and errors in the recording of data provided by the different 

ACs occurred above all in the first months of the pandemic. Subsequently, the records 

have improved and refined. In fact, if we apply the chi-square test for the second, third 

and fourth waves, the number of ACs that meet BL increases. 

Our analyses reveal diversity in the profile across the different ACs, and point out 

those cases with greater deviations, which, therefore, require special attention as to the 

possible causes of such divergence. 

In a country with the characteristics of Spain in terms of health organization, it is 

crucial to set common tools for the verification of data, in order to have reliable and 

homogeneous information available throughout the Spanish territory to serve as a basis 

for public health decisions. 

5. Discussion 

BL has already been used with different purposes within the COVID-19 pandemic 

context [16,26,41]. However, the proposal of this paper is to use BL as a health crisis 

management tool to audit the correctness of the recording of COVID figures for the 

different ACs and to identify deviations from the expected trend. Specifically, we use BL 

for detecting possible errors in the accounting of COVID deaths within the context of the 

Spanish ACs. 

The first wave of the COVID pandemic has generated a great deal of controversy in 

Spain due to the discrepancy in the figures regarding the number of daily deaths provided 

by the different ACs. Differences both in the magnitudes of figures and the rate at which 

they are updated have created doubts about their reliability. 

To understand the statistical deficiencies detected in the records of deaths due to 

COVID, several situations that have influenced this problem must be taken into account. 

In the first place, since it was an emerging and unknown disease until 2019, public 

administrations have had to face significant problems, such as the lack of homogenization 

and consensus at the time of registering COVID-related deaths. Likewise, the death 

registration system used in each region may have presented logical deficiencies in its 

operational dynamics in the face of a totally unforeseen situation. Thus, the clinical and 

diagnostic criteria to confirm a death due to COVID could differ from one administration 

to another. For example, especially at the beginning of the pandemic, it was very difficult 

to establish whether a death was due to COVID-19, since it was not possible to carry out 

confirmatory diagnostic tests on all suspected cases, nor was it possible to carry out 
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diagnostic tests that would allow the evolution of the disease to be followed. This was 

especially evident in the social health centers, where, due to the lack of healthcare 

resources, it was very difficult to carry out an optimal follow-up of the disease. 

Furthermore, both under-registration and over-registration of deaths generate a distortion 

in the information that prevents a correct planning and management of the health 

resources to contain and control the pandemic. In addition, it also creates a situation of 

mistrust and misinformation among public opinion. 

However, having reliable and homogenous information on the state of the pandemic 

throughout the country is crucial for good pandemic management. For this reason, the 

development of models and indicators that serve as guidelines for the correct recording 

of data is a key ally for health administrations at all management levels. 

This article shows how BL can be taken as a reference for the control of the 

registration of the number of daily COVID-related deaths. Specifically, we proposed to 

test the hypothesis that the frequency of the daily number of deaths follows BL through a 

chi-square test as an audit test for data reliability. Non-compliance with BL points to those 

regions that may have errors in the recording of COVID deaths. This tells us where the 

focus should be placed to analyze the possible causes of these deviations from the 

expected trend. While accepting the hypothesis of BL, compliance is a good indicator of 

the reliability of the data. 

In addition, in order to validate our results, we ran a sensitivity analysis that allowed 

us to confirm the decisions about the hypothesis of BL fulfilment. In fact, the sensitivity 

test yielded the same results as using the chi-square test, hence we maintained the decision 

on those ACs that do not follow BL. 

As already mentioned, the recording of the number of daily deaths is particularly 

sensitive as it presents medical and administrative difficulties. Moreover, in general 

terms, few administrations were ready to deal with a pandemic of the magnitude of 

COVID-19. However, professionals in the sector have reacted quickly and efficiently and 

have adapted processes and protocols to the new health reality, improving and refining 

the correct recording of data. In fact, if we were to carry out the same analysis presented 

in this paper with data from the third or fourth wave, we would find that the numbers of 

daily deaths for practically all the ACs complied with BL. As the recording of the numbers 

of daily deaths has improved and the data have become more reliable, there is more 

compliance with BL. 

We believe that this paper may be useful to set common tools for the verification of 

data, in order to have reliable and homogeneous information available throughout the 

Spanish territory to serve as a basis for public health decisions. 

However, we are considering future research lines to improve our work as a result 

of the identification of some limitations. For instance, in this paper we assumed a 

geometric growth of the pandemic, however we could consider other growth trends based 

on laws such as Weibull [42] or gamma [13,43], among others. 

Furthermore, in future research, it would be interesting to study the effects of 

different containment policies or lockdown measures on the pandemic exponential 

decline among the different ACs. 

6. Conclusions 

As already mentioned, we focused our analysis on the Spanish case, where 

significant differences in COVID figures have been found during the current pandemic 

among the different ACs. According to our results, while we accept the hypothesis for the 

aggregate data for Spain, in various ACs we observed some discrepancies, as not all the 

ACs fulfil BL. 

Once we identified those ACs whose recording of daily deaths did not comply with 

BL, we compared it with the ranking of the mortality rate as a reference to find possible 

causes for the deviation from the expected trend. In fact, the majority of ACs for which 

we rejected the H0 are ranked at the top of the mortality rate ranking (above the Spanish 
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rate). In these cases, the explanation for the deviation from BL relates to mistakes in the 

registration of the daily number of deaths (this is the case with Cataluña, Navarra and 

Madrid among others). These mistakes in data registration may be due to delays in 

information reporting (events on a specific day may be recorded afterwards), human error 

and differences in counting or recording criteria, among others. In fact, anomalous figures, 

such as the case of Catalonia, have been often reported in the press. In this AC, one of the 

main recording errors was the delay in reporting and recording information (sometimes 

attributing to a single day death cases from previous days) [44]. 

However, there are two ACs (Galicia and Extremadura) that do not fulfil BL but 

present a mortality rate below the average. In these cases, the non-accomplishment of BL 

is due to the low number of daily deaths. When on the majority of the days there were just 

one, two or zero deaths, this set of numbers did not grow exponentially, and therefore the 

probability distribution for the leading digit does not follow BL. 

For those ACs for which we cannot reject the null hypothesis, or in other words, for 

which the number of daily deaths follows BL, this can be considered as an indicator of 

data reliability. 

To summarize, by comparing the results of the BL hypothesis test with the mortality 

rate, we can better interpret the results. Thus, we obtain two possible explanations for 

those ACs that do not conform to BL: either there was an error in the recording of the data, 

or the pandemic was following a positive evolution and the number of deaths per day 

was very low, therefore the phenomenon does not follow the exponential trend described 

by BL. 

In this way, BL can be used as an auditing tool in the recording of COVID data, 

specifically for the number of daily deaths, and therefore can help to provide reliable data 

to health administrations in their different management levels. Thus, BL can be used as 

an epidemiological tool to generate information on the precision in the registration of 

notified cases and number of daily deaths for the evaluation of different intervention 

strategies [27]. Especially in contexts where health competencies are decentralized, as is 

the case in Spain, coordination among CAs and the provision of homogenous information 

are crucial for public health management. This coordination requires the setting of 

common tools and procedures for data auditing at a national level. 
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