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Abstract

:

To provide more external knowledge for training self-supervised learning (SSL) algorithms, this paper proposes a maximum mean discrepancy-based SSL (MMD-SSL) algorithm, which trains a well-performing classifier by iteratively refining the classifier using highly confident unlabeled samples. The MMD-SSL algorithm performs three main steps. First, a multilayer perceptron (MLP) is trained based on the labeled samples and is then used to assign labels to unlabeled samples. Second, the unlabeled samples are divided into multiple groups with the k-means clustering algorithm. Third, the maximum mean discrepancy (MMD) criterion is used to measure the distribution consistency between k-means-clustered samples and MLP-classified samples. The samples having a consistent distribution are labeled as highly confident samples and used to retrain the MLP. The MMD-SSL algorithm performs an iterative training until all unlabeled samples are consistently labeled. We conducted extensive experiments on 29 benchmark data sets to validate the rationality and effectiveness of the MMD-SSL algorithm. Experimental results show that the generalization capability of the MLP algorithm can gradually improve with the increase of labeled samples and the statistical analysis demonstrates that the MMD-SSL algorithm can provide better testing accuracy and kappa values than 10 other self-training and co-training SSL algorithms.
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1. Introduction


Semi-supervised learning (SSL) is an important branch of data mining and machine learning [1], which uses a large number of unlabeled samples to improve the generalization capability of classifiers trained on a small number of labeled samples. Different from active learning [2], SSL focuses on the selection of easily classified samples rather than the selection of easily misclassified samples. The goal of active learning is to minimize the number of samples labeled by domain experts, while the goal of SSL is to maximize the usage of information from unlabeled samples without the intervention of domain experts. The lower labor and time costs achieved using SSL make it more suitable than active learning for a wide range of real-world applications such as automatic query classification [3], image recognition [4], fraudulent cash-out detection [5], and biological sequence analysis [6].



Up to now, researchers have proposed many useful methods to deal with SSL problems [7]. These methods can be categorized as self-training models, co-training models, generative models, semi-supervised SVM, and graph models. Self-training [8] and co-training [9] methods have attracted much attention as they are simple-to-implement and easy-to-interpret SSL paradigms. The former is a single-view SSL paradigm, which iteratively updates a classifier based on the combination of labeled samples and pseudo-labeled samples, while the latter is a multiple-view SSL paradigm that iteratively updates multiple classifiers based on the combination of labeled samples and pseudo-labeled samples. The objective of self-training and co-training SSL is to create one or more classifiers that are as good as possible by efficiently using a large number of unlabeled samples. Some key studies about each paradigm are summarized as follows.



	
Self-training methods. Li and Zhou [10] devised a self-training algorithm named SETRED (self-training with editing), which introduced a data editing technique into the self-training process to filter out the noise in self-labeled examples. Wang et al. [11] proposed a self-training nearest neighbor rule using cut edges (SNNRCE) method, which is based on a nearest neighbor rule for classification and cuts edges in the relative neighborhood graph. Halder et al. [12] presented an advanced aggregation pheromone density based semi-supervised classification (APSSC) algorithm which makes no assumption on the data distribution and has no user-defined parameters. Wu et al. [13] designed a self-training semi-supervised classification (self-training SSC) framework based on density peaks of data, where the structure of the data space is integrated into the self-training process of SSC to help train a better classifier.



	
Co-training methods. Zhou and Goldman [14] proposed a democratic co-learning (DemoCoL) method, which employs a set of different learning algorithms to train a set of classifiers separately on the labeled data and then combines the outputs using weighted voting to predict the labels of unlabeled examples. Zhou and Li [15] designed an extended co-training semi-supervised learning algorithm named Tri-Training, which generates three classifiers from the original labeled samples and then refines them using the unlabeled samples in the tri-training process. Wang et al. [16] proposed a random subspace co-training (RASCO) method which trains many classifiers based on feature subspaces of the original feature space. Yaslan and Cataltepe [17] improved the classical RASCO algorithm and gave a relevant RASCO named Rel-RASCO, which produces relevant random subspaces by considering the mutual information between features and class labels. Huang et al. [18] presented a classification algorithm based on local cluster centers (CLCC) for SSL, which was able to reduce the interference of mislabeled data.






Although the aforementioned SSL methods have shown good performance in experiments, they still have some important drawbacks that can be further improved for the self-training and co-training SSL paradigms. In particular, the selection of the most confident pseudo-labeled samples for self-training SSL mainly depends on internal judgment rather than external judgment, i.e., a classifier teaches itself using its own cognition until it is satisfied with its own learning. Moreover, for co-training SSL, the assumption that multiple views are conditionally independent always results in a high computational complexity.



To address these issues, this paper presents a novel SSL algorithm, named maximum mean discrepancy-based semi-supervised learning (MMD-SSL) that performs three main steps. First, unlabeled samples are divided into different groups using the k-means clustering algorithm. Then, the k-means-labeled samples are used as external knowledge to train a multilayer perceptron (MLP), which is then used to assign labels to unlabeled samples. The MLP-classified samples are used as internal information for the classifier training. Third, the maximum mean discrepancy (MMD) criterion measures the distribution consistency between the k-means-clustered samples and MLP-classified samples. Then, samples having a consistent distribution are labeled and used to retrain the MLP. We conduced extensive experiments on 29 benchmark data sets to validate the rationality and effectiveness of the MMD-SSL algorithm. Results show that the generalization capability of the MLP algorithm can gradually improve with the increased number of labeled samples. Moreover, a statistical analysis demonstrates that the MMD-SSL algorithm provides better testing accuracy and kappa values than 10 other self-training and co-training SSL algorithms, i.e., SETRED, SNNRCE, APSSC, Self-Training-NN, DemoCoL, Tri-Training, RASCO, Rel-RASCO, CLCC, and Co-Training-NN, where Self-Training-NN and Co-Training-NN are the classical self-training [8] and co-training [9] paradigms using neural networks as classifiers.



The remainder of this paper is organized as follows. In Section 2, we introduce the preliminaries of SSL. In Section 3, we propose the MMD-SSL method. In Section 4, we describe the experimental evaluation method and analyze the results. Finally, in Section 5, we conclude this paper and discuss future works.




2. Preliminaries


Assume there is a labeled data set containing  N  samples, described using  D  condition attributes and one class attribute as


   D ¯  =       x ¯  n  ,   y ¯  n           x ¯  n  =     x ¯   n 1   ,   x ¯   n 2   , ⋯ ,   x ¯   n D     ,   y ¯  n  ∈    c 1  ,  c 2  , ⋯ ,  c K    , n = 1 , 2 , ⋯ , N         








and an unlabeled data set having  M  samples with  D  condition attributes as


  D =      x m  ,  y m          x m  =    x  m 1   ,  x  m 2   , ⋯ ,  x  m D     ,  y m  = null , m = 1 , 2 , ⋯ , M        ,  








where    c 1  ,  c 2  , ⋯ ,  c K    are  K  discrete labels of the data set   D ¯  . The initial classifier    L   0    is trained with the small number of samples from the data set   D ¯  . The generalization capability of    L   0    is restricted due to the insufficient sample size. The data set  D  is easier to obtain than   D ¯   because the class labels of samples are ignored in  D . It is very expensive to label unlabeled samples with the help of experts. How to use the unlabeled samples to improve the generalization capability of a classifier    L   0    trained with labeled samples is the primary focus of semi-supervised learning (SSL). Self-training and co-learning are two classical SSL paradigms. A brief description of these paradigms is given next.



2.1. SSL with Self-Training Paradigm


The origin of the self-training SSL paradigm can be traced back to Scudder [8]. After that, several extended self-training SSL methods have been developed [10,11,12,13,19]. The main algorithmic steps of the self-training SSL paradigm are listed below.



	Step 1: 

	
Train a classifier  L  on the labeled data set   D ¯  ;




	Step 2: 

	
Label the unlabeled samples in  D  with  L ;




	Step 3: 

	
Evaluate the confidence scores of these newly labeled samples and obtain the data set   D ̲   including the samples with high confidence scores;




	Step 4: 

	
Update the labeled data as    D ¯  ←  D ¯  ∪  D ̲   ;




	Step 5: 

	
Update the unlabeled data as   D ← D −  D ̲   .




	Step 6: 

	
Repeat Step 1–5 until the stopping criteria are met.







To design an effective self-training SSL method, the key aspect is how to calculate confidence scores for the labels given to unlabeled samples. Here, we only introduce the simplest way of selecting samples with high confidence scores for reference. Assume that the probability output of an unlabeled sample   x m   is     p 1  m   ,  p 2  m   , ⋯ ,  p  K   m     , where     ∑  k = 1  K    p k  m   = 1  . The confidence score of   x m   is calculated as


  c  s m  =     1   ,     if  there  exists   k ∈   1 , 2 , ⋯ , K     such  that    p k  m   > γ  holds      0   ,   otherwise     ,  



(1)




where   γ ∈   0 , 1     is a threshold used to produce a hard label for   x m  . The samples having a confidence score of 1 are selected to update the classifier. This method usually leads to many incorrectly labeled samples and can yield relatively poor training performance.




2.2. SSL with Co-Training Paradigm


The co-training SSL paradigm [9,20,21] requires two different views of a data set, i.e., two different feature subsets to label the unlabeled samples. Ideally, these two feature subsets are conditionally independent given the class and the class of samples can be correctly predicted using each view. The main algorithmic steps of the co-training SSL paradigm are provided as follows.



	Step 1: 

	
Partitioning the labeled data set   D ¯   into two labeled data sets    D ¯  1   and    D ¯  2   according to two different views   A  ( 1 )    and   A  ( 2 )   ;




	Step 2: 

	
Train two classifiers   L 1   and   L 2   on the labeled data sets    D ¯  1   and    D ¯  2  , respectively;




	Step 3: 

	
Label the unlabeled samples in  D  with   L 1  ;




	Step 4: 

	
Evaluate the confidence scores of these newly labeled samples with   L 1   and obtain the   A  ( 2 )   -view data set    D ̲  2   including the samples having high confidence scores;




	Step 5: 

	
Label the unlabeled samples in  D  with   L 2  ;




	Step 6: 

	
Evaluate the confidence scores of these newly labeled samples with   L 2   and obtain the   A  ( 1 )   -view data set    D ̲  1   including the samples having high confidence scores;




	Step 7: 

	
Update the labeled data as    D 1  ←  D 1  ∪   D ̲  2   ;




	Step 8: 

	
Update the labeled data as    D 2  ←  D 2  ∪   D ̲  1   ;




	Step 9: 

	
Update the unlabeled data as    D ¯  ←  D ¯  −  D ̲   , where   D ̲   is composed of the samples in    D ̲  1   and    D ̲  2   with full views.




	Step 10: 

	
Repeat Step 1–9 until the stopping criteria are met.







Developing an effective co-training SSL method requires selecting two conditionally independent and sufficient views. Prior studies [22] have shown that the generalization capability of a classifier can be improved when the dependence between the two views is weak.





3. The Proposed MMD-SSL Algorithm


This section presents the novel maximum mean discrepancy-based semi-supervised learning (MMD-SSL) algorithm. Its main steps are listed in Algorithm 1. MMD-SSL belongs to the self-training SSL paradigm and perform three main operations, i.e., training a multilayer perceptron (MLP) classifier on the labeled data set, clustering the unlabeled samples using the k-means algorithm, measuring the distribution consistency between the classification, and clustering results using the maximum mean discrepancy (MMD) criterion [23,24].



To train the MLP classifier and apply the k-means algorithm, we use the standard sklearn packages, i.e., MLPClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html, accessed on 21 December 2021), and KMeans (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html (accessed on 21 December 2021)). For the data sets


   Q i  =      x m  i   ,  y m  i              x m  i   =    x  m 1   i   ,  x  m 2   i   , ⋯ ,  x  m D   i     ,        y m  i   ∈    w 1  ,  w 2  , ⋯ ,  w  K ¯     , m = 1 , 2 , ⋯ ,  M i             








and


   D k  =       x ^  n  k   ,   y ^  n  k               x ^  n  k   =     x ^   n 1   k   ,   x ^   n 2   k   , ⋯ ,   x ^   n D   k     ,         y ^  n  k   ∈    v 1  ,  v 2  , ⋯ ,  v  K ¯     , n = 1 , 2 , ⋯ ,  N k            ,  








the MMD value between them is calculated as


  MMD    Q i  ,  D k    =        1  M i     ∑  m = 1   M i       ∑  n = 1   M i     κ    x m  i   ,  x m  i          +  1  N k     ∑  m = 1   N k       ∑  n = 1   N k     κ     x ^  m  k   ,   x ^  n  k             −  2   M i   N k      ∑  m = 1   M i       ∑  n = 1   N k     κ    x m  i   ,   x ^  n  k             1 2   ,  



(2)




where    x m  i   ,   x ^  n  k   ∈    x 1  ,  x 2  , ⋯ ,  x M     ,     v 1  ,  v 2  , ⋯ ,  v  K ¯     ,     w 1  ,  w 2  , ⋯ ,  w  K ¯     ⊂    c 1  ,  c 2  , ⋯ ,  c K    ,   M i   and   N k   are the numbers of samples in   Q i   and   D k  ,


  κ   a , b   = exp   −     ∑  d = 1  D        a d  −  b d     2    2   σ  2       



(3)




is the Gaussian kernel function to measure the distance between two vectors   a   =      a 1  ,  a 2  , ⋯ ,  a D      and   b   =      b 1  ,  b 2  , ⋯ ,  b D      in reproducing the kernel Hilbert space, and    σ  2   is the kernel radius.








	Algorithm 1: MMD-SSL Algorithm.



	Input: A labeled data set   D ¯   and an unlabeled data set  D .



	Output: The predicted labels    y 1  ,  y 2  , ⋯ ,  y M    and a multilayer perceptron (MLP)   L e a r n e r  .



	
	1:

	
repeat




	2:

	
 Train a MLP   L e a r n e r   with two hidden layers on the data set   D ¯  ;




	3:

	
 Predict the labels of samples from the unlabeled data set  D  with   L e a r n e r   and partition  D  into    K ¯     K ¯  ≤ K     disjoint data subsets    D 1  ,  D 2  , ⋯ ,  D  K ¯     according to the predicted labels;




	4:

	
 Apply the k-means clustering algorithm to partition  D  into   K ¯   disjointed data subsets    Q 1  ,  Q 2  , ⋯ ,  Q  K ¯    ;




	5:

	
 for   i = 1 ; i ≤  K ¯  ; i + +   do




	6:

	
  for   k = 1 ; k ≤  K ¯  ; k + +  do




	7:

	
   Calculate the maximum mean discrepancy (MMD) between   Q i   and   D k   as   MMD    Q i  ,  D k     ;




	8:

	
  end for




	9:

	
 end for




	10:

	
    D ̲  = ∅  ;




	11:

	
   M = N = ∅  ;




	12:

	
 repeat




	13:

	
  Determine the data pair     Q m  ,  D n     with the consistent probability distribution, where


    m , n   =   arg min     i , k   ∈     x , y     x ∈   1 , 2 , ⋯ ,  K ¯    − M , y ∈   1 , 2 , ⋯ ,  K ¯    − N         MMD    Q i  ,  D k      ;  












	14:

	
  Label the samples in   Q m   with the label of   D n  ;




	15:

	
    M ← M ∪  m   ;




	16:

	
    N ← N ∪  n   ;




	17:

	
     D ̲  ←  D ̲  ∪    Q m  ∩  D n     ;




	18:

	
 until   M =   1 , 2 , ⋯ ,  K ¯      or   N =   1 , 2 , ⋯ ,  K ¯     .




	19:

	
 Update the labeled data as    D ¯  ←  D ¯  ∪  D ̲   ;




	20:

	
 Update the unlabeled data as   D ← D −  D ̲   .




	21:

	
until The number of labels predicted with   L e a r n e r   for unlabeled data set  D  is 1 or the number of samples in the unlabeled data set  D  is less than the given threshold   ζ > 0  .












In the MMD-SSL algorithm, it is feasible to match the k-means-clustered data set   Q m   with the MLP-classified data set   D n  . Assume that   Q m   has a consistent probability distribution with   D n  , which indicates that


  MMD    Q m  ,  D n    < MMD    Q m  ,  D k     








holds for any   k ∈   1 , 2 , ⋯ ,  K ¯      and   k ≠ n  . This observation can be demonstrated by the following illustration in Figure 1. We can see that the unlabeled data sets are, respectively, partitioned into 5 parts by the k-means algorithm (   Q 1  ,  Q 2  ,  Q 3  ,  Q 4  ,  Q 5   ) and MLP classifier (   D 1  ,  D 2  ,  D 3  ,  D 4  ,  D 5   ). MMD values corresponding to different data pairs are calculated as


      MMD    Q i  ,  D k        D 1      D 2      D 3      D 4      D 5       Q 1     0.08      0.52      0.48      0.58      0.49       Q 2     0.45      0.30      0.43      0.26      0.44       Q 3     0.45      0.51      0.46      0.57      0.33       Q 4     0.44      0.48      0.00      0.54      0.44       Q 5     0.54      0.57      0.53      0.63      0.25     .  











Then, we can get the distribution consistency measure results as


      MMD    Q 4  ,  D 3    =  min   i = 1 , 2 , 3 , 4 , 5   k = 1 , 2 , 3 , 4 , 5      MMD    Q i  ,  D k      = 0.00       MMD    Q 1  ,  D 1    =  min   i = 1 , 2 , 3 , 5   k = 1 , 2 , 4 , 5      MMD    Q i  ,  D k      = 0.08       MMD    Q 5  ,  D 5    =  min   i = 2 , 3 , 5   k = 2 , 4 , 5      MMD    Q i  ,  D k      = 0.25       MMD    Q 2  ,  D 4    =  min   i = 2 , 3   k = 2 , 4      MMD    Q i  ,  D k      = 0.26       MMD    Q 3  ,  D 2    = 0.51      








for the data sets shown in Figure 1. It indicates that the k-means-clustered data sets    Q 1  ,  Q 2  ,  Q 3  ,  Q 4  ,  Q 5    have the same class labels as the MLP-classified data sets    D 3  ,  D 1  ,  D 5  ,  D 4  ,  D 2   , respectively. Taking the data pair     Q 4  ,  D 3     as example, the samples in both   Q 4   and   D 3   are labeled as class 3 and further added into the labeled data set to update the training of the MLP classifier in the next iteration.



The stopping criteria of the MMD-SSL algorithm is that there is only one class predicted by the MLP classifier in the unlabeled data set or that the number of unlabeled samples in the unlabeled data set is less than the threshold   ζ > 0  . The rationale of the first stopping criterion is that applying the k-means clustering algorithm is unnecessary for a data set having one cluster, that is, where the MLP classifier predicts the same label for all unlabeled samples. In this situation, the training of the MMD-SSL algorithm stops and all samples from the unlabeled data set obtain the predicted label. For the second stopping criterion, we adopt an adaptive threshold determination strategy, i.e, let   ζ =  K ¯   . It indicates that the training of MMD-SSL is stopped when the number of remaining unlabeled samples is equal to the number of labels predicted by the MLP classifier.




4. Experimental Results and Analysis


We conducted two experiments to validate the rationality and effectiveness of the proposed MMD-SSL algorithm. The MMD-SSL algorithm was implemented using the Python programming language and other SSL algorithms were downloaded from sci2s (https://sci2s.ugr.es/SelfLabeled (accessed on 21 December 2021)), which is a soft computing and intelligent information system developed by the University of Granada research group. All the experiments were carried out on a personal computer equipped with an Intel(R) Quad-core 3.00 GHz i5-7400 CPU and 16 GB of main memory.



4.1. Rationality Validation


The first experiment was done to evaluate the suitability of using the MLP classification algorithm and the k-means clustering algorithm in the MMD-SSL algorithm. We checked the testing performance of 28 different combinations of classification and clustering algorithms on a synthetic data set #1, which can be downloaded in any country from our BaiduPan online storage (https://pan.baidu.com/s/1aDm8n7AA2ETtSumM5LXVBQ (accessed on 21 December 2021)) with extraction code nc19. The classification algorithms included MLP, Bernoulli naive Bayes (BNB) BernoulliNB (https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html (accessed on 21 December 2021)), Gaussian naive Bayes (GNB) GaussianNB (https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html (accessed on 21 December 2021)), support vector machines (SVM) SVC (https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html (accessed on 21 December 2021)), k-nearest neighbors (k-NN) KNeighborsClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html (accessed on 21 December 2021)), decision tree DecisionTreeClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html (accessed on 21 December 2021)), and random forest RandomForestClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html (accessed on 21 December 2021)). The clustering algorithms included k-means, agglomerative clustering AgglomerativeClustering (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html (accessed on 21 December 2021)), spectral clustering SpectralClustering (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html (accessed on 21 December 2021)), and BIRCH Birch (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html (accessed on 21 December 2021)). There were five classes in the synthetic data set #1, which was divided into three parts, i.e., labeled training data set (356 samples), unlabeled training data set (692 samples), and labeled testing data set (298 samples). The labeled training data set was randomly generated by using the standard sklearn package make_blobs (https://scikit-learn.org/dev/modules/generated/sklearn.datasets.make_blobs.html (accessed on 21 December 2021)) with n_features = 2, centers = 5, and cluster_std = 0.3. The unlabeled training and labeled testing samples were generated by randomly adding small values in the interval   [ − 0.08 , 0.08 ]   to the feature values of labeled samples. The MLP classifier with a learning rate of 0.1 and a maximum iteration number of 300 used in this experiment had two hidden layers and each hidden layer included 400 ReLU activation nodes.



The comparative results corresponding to 10 times the independent training of the MMD-SSL algorithms are summarized in Table 1. We can see that the clustering algorithms combined with the MLP classifier obtain better average testing accuracies than the clustering algorithms combined with other classifiers. The average testing accuracies of the MMD-SSL algorithm with MLP classification and k-means, agglomerative, spectral, and the BIRCH clustering algorithm are 0.975, 0.958, 0.996, and 0.954, respectively. Due to its better generalization capability, the MLP classifier was selected to carry out the classification in the MMD-SSL algorithm. For MMD-SSL with an MLP classifier, we used k-means to conduct the clustering task for the unlabeled data set due to its simple model structure and acceptable semi-supervised learning performance.



Secondly, the convergence of the proposed MMD-SSL algorithm on another synthetic data set #2 as shown in Figure 2 was validated. The synthetic data set #2 had the same data distribution as the synthetic data set #1. Figure 3 shows the convergence process of the MMD-SSL algorithm. We can see that the MMD-SSL algorithm reaches convergence with only six iterations, i.e., all unlabeled samples are labeled with the gradually updated MLP classifier. The testing accuracies of the MLP classifier corresponding to these six iterations in Figure 2d are 0.711, 0.819, 0.836, 0.859, 0.869, and 0.869. The increase rate of the testing accuracy reaches more than 15%. It indicates that the designed MMD-SSL algorithm is reasonable and able to improve the generalization capability of a classifier by properly utilizing the unlabeled training samples.




4.2. Effectiveness Validation


In this experiment, we compared the testing accuracy and kappa coefficient [25] of the MMD-SSL algorithm with 10 other self-training and co-training SSL algorithms, namely SETRED [10], SNNRCE [11], APSSC [12], Self-Training-NN [8], DemoCoL [14], Tri-Training [15], RASCO [16], Rel-RASCO [17], CLCC [18], and Co-Training-NN [9]. The parameters of these SSL algorithms were set as follows.



	
SETRED: the maximum number of iterations was 40 and the size of the initial unlabeled sample pool was 75;



	
SNNRCE: the rejection threshold to test the critical region was 0.5;



	
APSSC: the spread of Gaussian was 0.3, evaporation coefficient was 0.7, and MT was 0.7;



	
Self-Training-NN: the maximum number of iterations was 40 and the number of nearest neighbors was 3;



	
DemoCoL: the number of nearest neighbors was 3 and the confidence of pruned tree was 0.25;



	
RASCO: the maximum number of iterations was 40 and the number of views was 30;



	
Rel-RASCO: the maximum number of iterations was 40 and the number of views was 30;



	
CLCC: the number of random forests was 6, the manipulative beta parameter was 0.4, the number of initial clusters was 4, the running frequency was 10, and the number of best center sets was 6;



	
Co-Training-NN: the maximum number of iterations was 40, the number of nearest neighbors was 3, and the size of the initial unlabeled sample pool was 75.






We selected 29 data sets from the KEEL data repository (https://sci2s.ugr.es/keel/category.php?cat=clas&order=name#sub2 (accessed on 21 December 2021)) to test the performance of these SSL algorithms. The detailed descriptions of these data sets are summarized in Table 2. Each data set was randomly partitioned into three parts: labeled training data, unlabeled training data, and labeled testing data. The ratios of labeled training data were set as 10% and 30%. For each labeled data ratio, the percentages of unlabeled training data and labeled testing data were 70% and 30% of the rest of the data set. Each algorithm was trained using the labeled and unlabeled training data and tested based on the labeled testing data.



The testing accuracy and kappa value were calculated as the average value of 10 different testing accuracies and kappa values corresponding to 10 different data partitions. Table 3, Table 4, Table 5 and Table 6 present the detailed comparative results of these 11 SSL algorithms for the two labeled data ratios. We can see that (1) the MMD-SSL algorithm obtains higher testing accuracy and kappa values than the other 10 SSL algorithms for each labeled data ratio; (2) the testing accuracy and kappa value of the SSL algorithm increase gradually as the label training data increase. We also use the critical difference diagram [26] as shown in Figure 4 and Figure 5 to present the statistical analysis results for this comparison of 11 SSL algorithms. There are 11 algorithms which are compared based on 29 data sets. For the given significance level of 0.01, the critical difference (CD) value is calculated as    q  0.05      11 ×   11 + 1     6 × 29    = 2.516  , where   q  0.05    is the CD value of Tukey’s distribution corresponding to a significance level of 0.01. The statistical analysis results indicate that the MMD-SSL algorithm obtains (1) significantly better testing accuracy and kappa value than APSSC, Self-Training-NN, Tri-Training, RASCO, Rel-RASCO, CLCC, Co-Training-NN for SSL based on 10% labeled training data and (2) significantly better testing accuracy and kappa value than APSSC, SNNRCE, Tri-Training, RASCO, Rel-RASCO, CLCC, Co-Training-NN for SSL based on 30% labeled training data. Above all, the MMD-SSL algorithm obtains the highest average testing accuracy and kappa value among the compared SSL algorithms and thus demonstrates its effectiveness when dealing with the SSL problems. In addition, the comparative results indicate that MMD-SSL is more suitable for dealing with SSL for imbalanced data sets, because the kappa coefficient is one of the most popular indices to measure the ability to handle imbalanced classification of a learning algorithm and the average testing kappa values of MMD-SSL are higher than those of other SSL algorithms.





5. Conclusions and Future Work


In this paper, we proposed a maximum mean discrepancy-based semi-supervised learning (MMD-SSL) algorithm which is a data distribution-oriented SSL algorithm. The unlabeled samples were gradually labeled by considering the consistencies between the clustering and classification results. The MMD-SSL algorithm belongs to the category of self-training SSL and performs three main steps: the training of a multilayer perceptron (MLP) classifier, the clustering of unlabeled samples, and the consistent labeling of unlabeled samples. The experimental results demonstrated the rationality and effectiveness of the designed MMD-SSL algorithm by comparing it with 10 other SSL algorithms on 29 benchmark data sets. Here, we briefly summarized the technical advantages of the MMD-SSL algorithm.



	
Highly confident pseudo labeling. Because the MMD criterion is used to measure the distribution consistency between the k-means-clustered samples and MLP-classified samples, the pseudo labeling considers both the inherent features (k-means clustering results) and extrinsic characteristics (MLP classification results) of unlabeled samples. This kind of pseudo labeling provides more confidence than the pseudo labeling done using only the internal or external information.



	
Good generalization capability of the classifier. The MLP classifier is trained based on the samples with highly confident pseudo labels and thus its testing performance is gradually improved with the increase of training samples. The experimental results have demonstrated this conclusion. The highly confident pseudo labeling leads to the good generalization capability of the MLP classifier.



	
Easy implementation. The MMD-SSL algorithm is easy to understand and implement in any programming language. Moreover, training the MMD-SSL algorithm converges with the decrease of unlabeled samples.






Future work will focus on the following three directions. First, the MMD-SSL algorithm will be implemented on a distributed computation environment and used to deal with large-scale SSL problems. Second, an ensemble version of the MMD-SSL algorithm will be developed to further enhance labeling confidence of unlabeled samples. Third, the MMD-SSL algorithm will be applied in real-world applications, e.g., the identification of harassing phone calls and the detection of abnormal power consumption behavior.
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Acronyms




	MMD
	Maximum mean discrepancy.



	SSL
	Semi-supervised learning.



	MMD-SSL
	Maximum mean discrepancy-based semi-supervised learning.



	MLP
	Multilayer perceptron.



	SVM
	Support vector machine.



	SETRED
	Self-training with editing.



	SNNRCE
	Self-training nearest neighbor rule using cut edges.



	SSC
	Semi-supervised classification.



	APSSC
	Aggregation pheromone density based semi-supervised classification.



	DemoCoL
	Democratic co-learning.



	RASCO
	Random subspace co-training.



	Rel-RASCO
	Relevant RASCO.



	CLCC
	Classification algorithm based on local cluster centers.



	BNB
	Bernoulli naive Bayes.



	GNB
	Gaussian naive Bayes.



	SVM
	Support vector machines.



	k-NN
	k-nearest neighbors.



	sci2s
	Soft Computing and Intelligent Information Systems.



	KEEL
	Knowledge extraction based on evolutionary learning.



	CD
	Critical difference.
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Figure 1. Distribution consistency measures between k-means-clustered and MLP-classified data sets (σ2 = 0.01). 
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Figure 2. The synthetic data set generated with the make_blobs package. 
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Figure 3. The convergence of the MMD-SSL algorithm. 
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Figure 4. Critical difference diagrams corresponding to accuracy comparisons in Table 3 and Table 4. 
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Figure 5. Critical difference diagrams corresponding to kappa comparisons in Table 5 and Table 6. 
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Table 1. Testing accuracies of different combinations of classification and clustering algorithms in MMD-SSL algorithm.
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Classification Algorithm

	
Clustering Algorithm

	
Maximum

	
Minimum

	
Mean






	
BNB

	
k-means

	
0.673

	
0.673

	
0.673




	
Agglomerative

	
0.673

	
0.673

	
0.673




	
Spectral

	
0.673

	
0.673

	
0.673




	
BIRCH

	
0.673

	
0.673

	
0.673




	
GNB

	
k-means

	
0.957

	
0.947

	
0.952




	
Agglomerative

	
0.907

	
0.907

	
0.907




	
Spectral

	
0.947

	
0.930

	
0.937




	
BIRCH

	
0.937

	
0.937

	
0.937




	
SVM

	
k-means

	
0.953

	
0.953

	
0.953




	
Agglomerative

	
0.920

	
0.920

	
0.920




	
Spectral

	
0.997

	
0.997

	
0.997




	
BIRCH

	
0.920

	
0.920

	
0.920




	
k-NN

	
k-means

	
0.963

	
0.963

	
0.963




	
Agglomerative

	
0.930

	
0.930

	
0.930




	
Spectral

	
1.000

	
0.993

	
0.997




	
BIRCH

	
0.923

	
0.923

	
0.923




	
Decision tree

	
k-means

	
0.987

	
0.867

	
0.888




	
Agglomerative

	
1.000

	
0.873

	
0.919




	
Spectral

	
0.920

	
0.830

	
0.863




	
BIRCH

	
0.947

	
0.830

	
0.878




	
Random forest

	
k-means

	
0.993

	
0.890

	
0.930




	
Agglomerative

	
0.923

	
0.867

	
0.902




	
Spectral

	
0.970

	
0.807

	
0.892




	
BIRCH

	
0.930

	
0.813

	
0.867




	
MLP

	
k-means

	
0.990

	
0.967

	
0.975




	
Agglomerative

	
0.987

	
0.937

	
0.958




	
Spectral

	
0.997

	
0.990

	
0.996




	
BIRCH

	
0.967

	
0.930

	
0.954
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Table 2. Descriptions of the 29 benchmark data sets.
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	Data Sets
	Samples
	Features
	Classes
	Class Distribution





	appendicitis
	106
	7
	2
	85/21



	australian
	690
	14
	2
	383/307



	banana
	5300
	4
	3
	2924/2376



	chess
	3196
	36
	2
	1527/1669



	coil2000
	9822
	85
	2
	9236/586



	magic
	19,020
	10
	2
	12332/6688



	mammographic
	830
	5
	2
	427/403



	monk-2
	432
	6
	2
	204/228



	nursery
	12,960
	8
	5
	4320/4266/2/4044/328



	page-blocks
	5472
	10
	5
	4913/329/28/87/115



	penbased
	10,992
	16
	10
	1143/1143/1144/1055/1144/1055/1056/1142/1055/1055



	phoneme
	5404
	5
	2
	3818/1586



	pima
	768
	8
	2
	500/268



	ring
	7400
	20
	2
	3664/3736



	saheart
	462
	9
	2
	302/160



	satimage
	6435
	36
	7
	1533/703/1358/626/707/1508



	segment
	2310
	19
	7
	330/330/330/330/330/330/330



	sonar
	208
	60
	2
	111/97



	spambase
	4597
	57
	2
	2785/1812



	spectfheart
	267
	44
	2
	55/212



	texture
	5500
	40
	11
	500/500/500/500/500/500/500/500/500/500/500



	thyroid
	7200
	21
	3
	166/368/6666



	tic-tac-toe
	958
	9
	2
	332/626



	titanic
	2201
	3
	2
	1490/711



	twonorm
	7400
	20
	2
	3703/3697



	vowel
	990
	13
	11
	90/90/90/90/90/90/90/90/90/90/90



	wine
	178
	13
	3
	59/71/48



	wisconsin
	683
	9
	2
	444/239



	zoo
	101
	16
	7
	41/20/5/13/4/8/10
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Table 3. Accuracy comparison of MMD-SSL and 10 other SSL algorithms on 10% labeled data.
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MMD-SSL

	
Self-Training Methods

	
Co-Training Methods




	
Data Sets

	
SETRED (2005)

	
SNNRCE (2010)

	
APSSC (2013)

	
Self-Training (NN)

	
DemoCoL (2004)

	
Tri-Training (2005)

	
Rasco (2008)

	
Rel-Rasco (2010)

	
CLCC (2010)

	
Co-Training (NN)




	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std






	
appendicitis

	
0.7500

	
0.0395

	
0.7373

	
0.1304

	
0.7927

	
0.0900

	
0.6773

	
0.2126

	
0.7573

	
0.1229

	
0.8218

	
0.0471

	
0.7382

	
0.0728

	
0.7936

	
0.0682

	
0.7555

	
0.0837

	
0.8500

	
0.0939

	
0.7827

	
0.0721




	
australian

	
0.7981

	
0.0323

	
0.8043

	
0.0362

	
0.8087

	
0.0329

	
0.8377

	
0.0404

	
0.8043

	
0.0362

	
0.8449

	
0.0268

	
0.8029

	
0.0421

	
0.7087

	
0.0699

	
0.7435

	
0.0389

	
0.8536

	
0.0293

	
0.8058

	
0.0319




	
banana

	
0.8725

	
0.0076

	
0.8638

	
0.0119

	
0.8662

	
0.0125

	
0.8240

	
0.0208

	
0.8638

	
0.0119

	
0.8417

	
0.0226

	
0.8681

	
0.0101

	
0.8513

	
0.0129

	
0.8472

	
0.0121

	
0.5804

	
0.0419

	
0.8460

	
0.0166




	
chess

	
0.9341

	
0.0126

	
0.8104

	
0.0283

	
0.8220

	
0.0184

	
0.8326

	
0.0218

	
0.8098

	
0.0292

	
0.9199

	
0.0175

	
0.8309

	
0.0294

	
0.7991

	
0.0278

	
0.8010

	
0.0267

	
0.6640

	
0.0374

	
0.7994

	
0.0272




	
coil2000

	
0.9147

	
0.0047

	
0.8926

	
0.0052

	
0.9128

	
0.0076

	
0.6838

	
0.0364

	
0.8904

	
0.0067

	
0.9322

	
0.0078

	
0.8795

	
0.0109

	
0.8932

	
0.0071

	
0.8946

	
0.0045

	
0.9403

	
0.0005

	
0.9009

	
0.0058




	
magic

	
0.8480

	
0.0035

	
0.7840

	
0.0074

	
0.7918

	
0.0060

	
0.7379

	
0.0114

	
0.7840

	
0.0074

	
0.7842

	
0.0164

	
0.7678

	
0.0072

	
0.7800

	
0.0070

	
0.7812

	
0.0078

	
0.7594

	
0.0187

	
0.7812

	
0.0061




	
mammographic

	
0.6528

	
0.0883

	
0.7580

	
0.0594

	
0.7773

	
0.0534

	
0.8022

	
0.0417

	
0.7591

	
0.0606

	
0.7963

	
0.0551

	
0.7699

	
0.0629

	
0.7277

	
0.0595

	
0.7151

	
0.0585

	
0.7985

	
0.0405

	
0.7128

	
0.0629




	
monk-2

	
0.7492

	
0.0618

	
0.6459

	
0.0409

	
0.6923

	
0.0831

	
0.6563

	
0.0784

	
0.6459

	
0.0452

	
0.9075

	
0.0452

	
0.6460

	
0.0751

	
0.6530

	
0.0565

	
0.6852

	
0.0894

	
0.7082

	
0.0766

	
0.6373

	
0.0823




	
nursery

	
0.9654

	
0.0075

	
0.8101

	
0.0081

	
0.7499

	
0.0111

	
0.6683

	
0.0158

	
0.7143

	
0.0145

	
0.8951

	
0.0041

	
0.8698

	
0.0061

	
0.4587

	
0.0162

	
0.4573

	
0.0117

	
0.3603

	
0.0159

	
0.7698

	
0.0094




	
page-blocks

	
0.9436

	
0.0125

	
0.9359

	
0.0082

	
0.9373

	
0.0087

	
0.8012

	
0.1202

	
0.9256

	
0.0105

	
0.9077

	
0.0956

	
0.9364

	
0.0080

	
0.8467

	
0.0129

	
0.8538

	
0.0111

	
0.8993

	
0.0033

	
0.9329

	
0.0104




	
penbased

	
0.9779

	
0.0044

	
0.9778

	
0.0054

	
0.9730

	
0.0047

	
0.8552

	
0.0079

	
0.9778

	
0.0054

	
0.9474

	
0.0117

	
0.9801

	
0.0049

	
0.9054

	
0.0101

	
0.9104

	
0.0112

	
0.7281

	
0.0483

	
0.9752

	
0.0062




	
phoneme

	
0.8106

	
0.0068

	
0.8046

	
0.0204

	
0.8059

	
0.0112

	
0.6832

	
0.0213

	
0.8044

	
0.0206

	
0.7874

	
0.0177

	
0.8046

	
0.0192

	
0.7998

	
0.0282

	
0.7951

	
0.0241

	
0.7585

	
0.0271

	
0.8059

	
0.0212




	
pima

	
0.7411

	
0.0130

	
0.6565

	
0.0542

	
0.6383

	
0.0660

	
0.7332

	
0.0339

	
0.6565

	
0.0542

	
0.6967

	
0.0586

	
0.6265

	
0.0562

	
0.6407

	
0.0478

	
0.6341

	
0.0560

	
0.6954

	
0.0350

	
0.6486

	
0.0497




	
ring

	
0.9024

	
0.0108

	
0.6691

	
0.0203

	
0.5573

	
0.0081

	
0.5049

	
0.0007

	
0.6691

	
0.0203

	
0.8741

	
0.0120

	
0.6041

	
0.0098

	
0.6668

	
0.0218

	
0.6692

	
0.0220

	
0.6388

	
0.0490

	
0.6776

	
0.0183




	
saheart

	
0.6446

	
0.0641

	
0.6300

	
0.0835

	
0.6215

	
0.0740

	
0.6559

	
0.0772

	
0.6408

	
0.0784

	
0.6819

	
0.0472

	
0.6277

	
0.0690

	
0.6039

	
0.0627

	
0.6080

	
0.0835

	
0.6538

	
0.0273

	
0.6364

	
0.0557




	
satimage

	
0.8542

	
0.0061

	
0.8570

	
0.0131

	
0.8547

	
0.0160

	
0.8011

	
0.0153

	
0.8466

	
0.0151

	
0.8462

	
0.0142

	
0.8521

	
0.0130

	
0.7818

	
0.0207

	
0.7855

	
0.0223

	
0.7944

	
0.0216

	
0.8491

	
0.0180




	
segment

	
0.8954

	
0.0165

	
0.9065

	
0.0172

	
0.9022

	
0.0200

	
0.8519

	
0.0248

	
0.9061

	
0.0170

	
0.9026

	
0.0169

	
0.9074

	
0.0126

	
0.7052

	
0.0474

	
0.7260

	
0.0539

	
0.7359

	
0.0333

	
0.8827

	
0.0339




	
sonar

	
0.6635

	
0.0597

	
0.6633

	
0.0964

	
0.6490

	
0.0961

	
0.7017

	
0.1273

	
0.6633

	
0.0964

	
0.6005

	
0.1112

	
0.6345

	
0.1276

	
0.6205

	
0.0797

	
0.6250

	
0.1276

	
0.5633

	
0.0940

	
0.6867

	
0.1160




	
spambase

	
0.9049

	
0.0103

	
0.8281

	
0.0189

	
0.8327

	
0.0176

	
0.6324

	
0.1340

	
0.8281

	
0.0189

	
0.8777

	
0.0188

	
0.8110

	
0.0204

	
0.8164

	
0.0175

	
0.8138

	
0.0213

	
0.7966

	
0.0234

	
0.8140

	
0.0206




	
spectfheart

	
0.7852

	
0.0060

	
0.7201

	
0.1189

	
0.7426

	
0.0729

	
0.3742

	
0.0744

	
0.6865

	
0.1170

	
0.7379

	
0.0828

	
0.6905

	
0.0911

	
0.7264

	
0.0860

	
0.7009

	
0.0621

	
0.7942

	
0.0166

	
0.5110

	
0.1227




	
texture

	
0.9708

	
0.0041

	
0.9513

	
0.0080

	
0.9515

	
0.0078

	
0.8733

	
0.0135

	
0.9513

	
0.0076

	
0.8944

	
0.0156

	
0.9524

	
0.0056

	
0.8124

	
0.0216

	
0.8211

	
0.0243

	
0.7182

	
0.0338

	
0.9480

	
0.0070




	
thyroid

	
0.9597

	
0.0031

	
0.9090

	
0.0093

	
0.9204

	
0.0053

	
0.6554

	
0.1572

	
0.8963

	
0.0111

	
0.9393

	
0.0175

	
0.9067

	
0.0107

	
0.8956

	
0.0096

	
0.8962

	
0.0081

	
0.9258

	
0.0025

	
0.9072

	
0.0077




	
tic-tac-toe

	
0.6722

	
0.0248

	
0.7255

	
0.0406

	
0.7360

	
0.0298

	
0.6701

	
0.0494

	
0.7150

	
0.0457

	
0.6900

	
0.0309

	
0.7067

	
0.0268

	
0.6754

	
0.0536

	
0.7005

	
0.0532

	
0.6461

	
0.0392

	
0.7193

	
0.0443




	
titanic

	
0.7628

	
0.0098

	
0.6402

	
0.1419

	
0.6416

	
0.1423

	
0.7756

	
0.0293

	
0.6402

	
0.1419

	
0.7756

	
0.0282

	
0.7415

	
0.0353

	
0.6402

	
0.1415

	
0.6402

	
0.1419

	
0.6979

	
0.0193

	
0.6402

	
0.1419




	
twonorm

	
0.9740

	
0.0017

	
0.9358

	
0.0074

	
0.9459

	
0.0071

	
0.9759

	
0.0075

	
0.9358

	
0.0074

	
0.9645

	
0.0082

	
0.9109

	
0.0065

	
0.9242

	
0.0102

	
0.9265

	
0.0057

	
0.9589

	
0.0104

	
0.9364

	
0.0081




	
vowel

	
0.4148

	
0.0226

	
0.4808

	
0.0533

	
0.4838

	
0.0591

	
0.4343

	
0.0517

	
0.4879

	
0.0521

	
0.4162

	
0.0639

	
0.4980

	
0.0491

	
0.3152

	
0.0778

	
0.3172

	
0.0842

	
0.2273

	
0.0362

	
0.4859

	
0.0680




	
wine

	
0.9815

	
0.0117

	
0.9438

	
0.0249

	
0.9271

	
0.0664

	
0.9605

	
0.0359

	
0.9438

	
0.0249

	
0.9493

	
0.0390

	
0.9265

	
0.0446

	
0.6686

	
0.1034

	
0.6180

	
0.1399

	
0.9490

	
0.0400

	
0.8716

	
0.0963




	
wisconsin

	
0.9600

	
0.0037

	
0.9478

	
0.0428

	
0.9622

	
0.0294

	
0.9593

	
0.0219

	
0.9478

	
0.0428

	
0.9650

	
0.0257

	
0.9462

	
0.0366

	
0.8642

	
0.0601

	
0.8629

	
0.0595

	
0.9522

	
0.0351

	
0.9434

	
0.0481




	
zoo

	
0.8800

	
0.0340

	
0.9347

	
0.0548

	
0.9228

	
0.0937

	
0.9347

	
0.0548

	
0.9236

	
0.0683

	
0.9314

	
0.0650

	
0.9347

	
0.0548

	
0.6019

	
0.1902

	
0.6619

	
0.0879

	
0.8364

	
0.1369

	
0.8367

	
0.1171




	
Average

	
0.8339

	
0.0201

	
0.8008

	
0.1263

	
0.8007

	
0.1315

	
0.7432

	
0.1474

	
0.7957

	
0.1256

	
0.8320

	
0.1247

	
0.7990

	
0.1275

	
0.7302

	
0.1370

	
0.7327

	
0.1358

	
0.7409

	
0.1675

	
0.7843

	
0.1295








Testing accuracies of the 10 other SSL algorithms: https://sci2s.ugr.es/sites/default/files/files/ComplementaryMaterial/SelfLabeled/SelfLabeled10.ods (accessed on 21 December 2021).
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Table 4. Accuracy comparison of MMD-SSL and 10 other SSL algorithms on 30% labeled data.
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MMD-SSL

	
Self-Training Methods

	
Co-Training Methods




	
Data Sets

	
SETRED (2005)

	
SNNRCE (2010)

	
APSSC (2013)

	
Self-Training (NN)

	
DemoCoL (2004)

	
Tri-Training (2005)

	
Rasco (2008)

	
Rel-Rasco (2010)

	
CLCC (2010)

	
Co-Training (NN)




	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std






	
appendicitis

	
0.8563

	
0.0424

	
0.8109

	
0.1389

	
0.8209

	
0.1305

	
0.8291

	
0.0947

	
0.8300

	
0.1240

	
0.8691

	
0.0734

	
0.8027

	
0.1039

	
0.7218

	
0.1410

	
0.7873

	
0.2023

	
0.8482

	
0.0983

	
0.8391

	
0.1194




	
australian

	
0.8510

	
0.0199

	
0.8101

	
0.0229

	
0.8130

	
0.0307

	
0.8594

	
0.0275

	
0.8101

	
0.0229

	
0.8536

	
0.0300

	
0.8000

	
0.0323

	
0.7710

	
0.0414

	
0.7797

	
0.0377

	
0.8522

	
0.0462

	
0.8101

	
0.0188




	
banana

	
0.8914

	
0.0035

	
0.8700

	
0.0124

	
0.8725

	
0.0110

	
0.8326

	
0.0220

	
0.8700

	
0.0124

	
0.8728

	
0.0133

	
0.8687

	
0.0114

	
0.8645

	
0.0118

	
0.8651

	
0.0127

	
0.5813

	
0.0304

	
0.8609

	
0.0131




	
chess

	
0.9564

	
0.0062

	
0.8648

	
0.0239

	
0.8673

	
0.0120

	
0.9083

	
0.0188

	
0.8651

	
0.0240

	
0.9596

	
0.0174

	
0.7991

	
0.0247

	
0.8604

	
0.0237

	
0.8608

	
0.0213

	
0.6755

	
0.0377

	
0.8542

	
0.0257




	
coil2000

	
0.9209

	
0.0078

	
0.8992

	
0.0075

	
0.9158

	
0.0073

	
0.7317

	
0.0358

	
0.8977

	
0.0081

	
0.9320

	
0.0036

	
0.8820

	
0.0112

	
0.9001

	
0.0079

	
0.8965

	
0.0101

	
0.9403

	
0.0005

	
0.9018

	
0.0083




	
magic

	
0.8526

	
0.0057

	
0.7950

	
0.0098

	
0.7952

	
0.0060

	
0.7450

	
0.0096

	
0.7950

	
0.0098

	
0.8016

	
0.0081

	
0.7776

	
0.0125

	
0.7940

	
0.0098

	
0.7940

	
0.0103

	
0.7531

	
0.0166

	
0.7932

	
0.0092




	
mammographic

	
0.7600

	
0.0188

	
0.7620

	
0.0752

	
0.7876

	
0.0782

	
0.8033

	
0.0405

	
0.7620

	
0.0752

	
0.8300

	
0.0556

	
0.7557

	
0.0784

	
0.7401

	
0.0714

	
0.7353

	
0.0736

	
0.7902

	
0.0462

	
0.7329

	
0.0662




	
monk-2

	
0.9677

	
0.0185

	
0.7513

	
0.0588

	
0.7421

	
0.0396

	
0.7807

	
0.0707

	
0.7581

	
0.0579

	
0.9452

	
0.0434

	
0.6795

	
0.0663

	
0.7350

	
0.0640

	
0.7467

	
0.0513

	
0.7393

	
0.0975

	
0.7017

	
0.0688




	
nursery

	
0.9968

	
0.0016

	
0.8357

	
0.0115

	
0.7673

	
0.0171

	
0.7143

	
0.0094

	
0.7687

	
0.0114

	
0.9212

	
0.0107

	
0.7415

	
0.0116

	
0.6737

	
0.0115

	
0.6833

	
0.0110

	
0.3633

	
0.0127

	
0.8355

	
0.0118




	
page-blocks

	
0.9496

	
0.0014

	
0.9461

	
0.0060

	
0.9450

	
0.0058

	
0.8520

	
0.0177

	
0.9428

	
0.0062

	
0.9289

	
0.0523

	
0.9468

	
0.0075

	
0.8818

	
0.0143

	
0.8765

	
0.0133

	
0.8978

	
0.0005

	
0.9448

	
0.0062




	
penbased

	
0.9857

	
0.0011

	
0.9901

	
0.0028

	
0.9740

	
0.0047

	
0.8877

	
0.0069

	
0.9901

	
0.0028

	
0.9729

	
0.0047

	
0.9888

	
0.0051

	
0.9664

	
0.0035

	
0.9640

	
0.0044

	
0.7325

	
0.0326

	
0.9902

	
0.0028




	
phoneme

	
0.8560

	
0.0019

	
0.8470

	
0.0192

	
0.8436

	
0.0155

	
0.7150

	
0.0260

	
0.8470

	
0.0192

	
0.8029

	
0.0224

	
0.8464

	
0.0147

	
0.8420

	
0.0206

	
0.8434

	
0.0190

	
0.7716

	
0.0153

	
0.8464

	
0.0188




	
pima

	
0.7117

	
0.0089

	
0.6694

	
0.0494

	
0.6903

	
0.0537

	
0.7253

	
0.0285

	
0.6733

	
0.0475

	
0.7305

	
0.0474

	
0.6590

	
0.0610

	
0.6511

	
0.0434

	
0.6563

	
0.0278

	
0.7267

	
0.0366

	
0.6550

	
0.0582




	
ring

	
0.9566

	
0.0026

	
0.7104

	
0.0131

	
0.6007

	
0.0197

	
0.5049

	
0.0007

	
0.7104

	
0.0131

	
0.9089

	
0.0093

	
0.6453

	
0.0099

	
0.7097

	
0.0126

	
0.7099

	
0.0134

	
0.6170

	
0.0215

	
0.7132

	
0.0130




	
saheart

	
0.6935

	
0.0264

	
0.6644

	
0.0441

	
0.6733

	
0.0481

	
0.6472

	
0.0969

	
0.6644

	
0.0408

	
0.7080

	
0.0520

	
0.6687

	
0.0451

	
0.6753

	
0.0264

	
0.6275

	
0.0565

	
0.6753

	
0.0565

	
0.6513

	
0.0590




	
satimage

	
0.8694

	
0.0038

	
0.8862

	
0.0118

	
0.8723

	
0.0200

	
0.7972

	
0.0172

	
0.8822

	
0.0105

	
0.8693

	
0.0104

	
0.8738

	
0.0110

	
0.8553

	
0.0172

	
0.8544

	
0.0131

	
0.7863

	
0.0258

	
0.8850

	
0.0109




	
segment

	
0.9432

	
0.0060

	
0.9411

	
0.0173

	
0.9368

	
0.0140

	
0.8887

	
0.0193

	
0.9411

	
0.0173

	
0.9416

	
0.0144

	
0.9459

	
0.0156

	
0.8797

	
0.0244

	
0.8775

	
0.0232

	
0.7589

	
0.0389

	
0.9377

	
0.0149




	
sonar

	
0.8444

	
0.0119

	
0.7645

	
0.0840

	
0.7450

	
0.1232

	
0.7829

	
0.1025

	
0.7645

	
0.0840

	
0.7310

	
0.0739

	
0.7690

	
0.0807

	
0.6864

	
0.1072

	
0.7119

	
0.1064

	
0.6200

	
0.0758

	
0.7688

	
0.0849




	
spambase

	
0.9264

	
0.0042

	
0.8695

	
0.0091

	
0.8658

	
0.0139

	
0.8095

	
0.0252

	
0.8695

	
0.0091

	
0.9052

	
0.0168

	
0.8488

	
0.0159

	
0.8662

	
0.0104

	
0.8653

	
0.0096

	
0.7881

	
0.0207

	
0.8669

	
0.0087




	
spectfheart

	
0.7704

	
0.0346

	
0.7127

	
0.0988

	
0.7534

	
0.0874

	
0.4309

	
0.0591

	
0.7010

	
0.0925

	
0.7121

	
0.0799

	
0.7346

	
0.0757

	
0.7044

	
0.1260

	
0.6744

	
0.0908

	
0.7942

	
0.0166

	
0.5769

	
0.1289




	
texture

	
0.9919

	
0.0011

	
0.9805

	
0.0049

	
0.9605

	
0.0047

	
0.8867

	
0.0123

	
0.9800

	
0.0055

	
0.9331

	
0.0108

	
0.9733

	
0.0055

	
0.9256

	
0.0099

	
0.9225

	
0.0141

	
0.7240

	
0.0481

	
0.9780

	
0.0055




	
thyroid

	
0.9631

	
0.0072

	
0.9183

	
0.0080

	
0.9285

	
0.0049

	
0.4918

	
0.0903

	
0.9100

	
0.0068

	
0.9521

	
0.0059

	
0.9153

	
0.0046

	
0.9064

	
0.0063

	
0.9089

	
0.0052

	
0.9258

	
0.0025

	
0.9144

	
0.0049




	
tic-tac-toe

	
0.7917

	
0.0496

	
0.7923

	
0.0348

	
0.7955

	
0.0385

	
0.7264

	
0.0461

	
0.7975

	
0.0274

	
0.7630

	
0.0482

	
0.7192

	
0.0197

	
0.7798

	
0.0359

	
0.7882

	
0.0267

	
0.6608

	
0.0168

	
0.7861

	
0.0307




	
titanic

	
0.8000

	
0.0049

	
0.6407

	
0.1414

	
0.6552

	
0.1464

	
0.7774

	
0.0338

	
0.6407

	
0.1414

	
0.7792

	
0.0272

	
0.7083

	
0.0309

	
0.6407

	
0.1414

	
0.6402

	
0.1419

	
0.7197

	
0.0190

	
0.6407

	
0.1414




	
twonorm

	
0.9726

	
0.0008

	
0.9439

	
0.0093

	
0.9493

	
0.0095

	
0.9758

	
0.0067

	
0.9439

	
0.0093

	
0.9701

	
0.0072

	
0.9131

	
0.0134

	
0.9405

	
0.0094

	
0.9411

	
0.0098

	
0.9573

	
0.0105

	
0.9435

	
0.0098




	
vowel

	
0.6765

	
0.0145

	
0.7737

	
0.0240

	
0.7566

	
0.0232

	
0.6990

	
0.0393

	
0.7889

	
0.0273

	
0.5960

	
0.0509

	
0.7889

	
0.0245

	
0.6101

	
0.0507

	
0.6162

	
0.0344

	
0.2263

	
0.0268

	
0.7606

	
0.0239




	
wine

	
0.9704

	
0.0189

	
0.9275

	
0.0557

	
0.8869

	
0.0627

	
0.9549

	
0.0336

	
0.9382

	
0.0461

	
0.9660

	
0.0373

	
0.9386

	
0.0631

	
0.7121

	
0.1182

	
0.6856

	
0.1316

	
0.9327

	
0.0597

	
0.8526

	
0.0757




	
wisconsin

	
0.9737

	
0.0024

	
0.9535

	
0.0435

	
0.9637

	
0.0214

	
0.9578

	
0.0234

	
0.9535

	
0.0435

	
0.9666

	
0.0280

	
0.9635

	
0.0225

	
0.9170

	
0.0540

	
0.9083

	
0.0563

	
0.9593

	
0.0236

	
0.9372

	
0.0480




	
zoo

	
0.9067

	
0.0133

	
0.9331

	
0.0714

	
0.9264

	
0.0627

	
0.9397

	
0.0679

	
0.9331

	
0.0714

	
0.9133

	
0.0848

	
0.9347

	
0.0548

	
0.8036

	
0.0782

	
0.8222

	
0.0928

	
0.8806

	
0.0881

	
0.9164

	
0.0830




	
Average

	
0.8830

	
0.0117

	
0.8367

	
0.1001

	
0.8312

	
0.1022

	
0.7812

	
0.1361

	
0.8355

	
0.1004

	
0.8633

	
0.0996

	
0.8238

	
0.1045

	
0.7936

	
0.1027

	
0.7946

	
0.1034

	
0.7482

	
0.1649

	
0.8240

	
0.1096








Testing accuracies of the 10 other SSL algorithms: https://sci2s.ugr.es/sites/default/files/files/ComplementaryMaterial/SelfLabeled/SelfLabeled30.ods (accessed on 21 December 2021).
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Table 5. Kappa comparison of MMD-SSL algorithm and 10 other SSL algorithms on 10% labeled data.
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MMD-SSL

	
Self-Training Methods

	
Co-Training Methods




	
Data Sets

	
SETRED (2005)

	
SNNRCE (2010)

	
APSSC (2013)

	
Self-Training (NN)

	
Democratic-Co (2004)

	
Tri-Training (2005)

	
Rasco (2008)

	
Rel-Rasco (2010)

	
CLCC (2010)

	
Co-Training (NN)




	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std






	
appendicitis

	
0.3858

	
0.2156

	
0.0982

	
0.4071

	
0.1343

	
0.3257

	
0.3360

	
0.2999

	
0.1607

	
0.3967

	
0.1231

	
0.2462

	
0.0502

	
0.2347

	
0.1929

	
0.2756

	
−0.0089

	
0.2613

	
0.3487

	
0.4145

	
0.0787

	
0.2266




	
australian

	
0.6122

	
0.0581

	
0.5994

	
0.0762

	
0.6071

	
0.0707

	
0.6727

	
0.0804

	
0.5994

	
0.0762

	
0.6826

	
0.0567

	
0.5956

	
0.0911

	
0.4073

	
0.1459

	
0.4756

	
0.0827

	
0.7025

	
0.0629

	
0.6006

	
0.0695




	
banana

	
0.7714

	
0.0138

	
0.7238

	
0.0243

	
0.7287

	
0.0253

	
0.6451

	
0.0422

	
0.7238

	
0.0243

	
0.6789

	
0.0460

	
0.7328

	
0.0203

	
0.6986

	
0.0267

	
0.6905

	
0.0241

	
0.0755

	
0.1045

	
0.6862

	
0.0343




	
chess

	
0.8504

	
0.0276

	
0.6196

	
0.0568

	
0.6431

	
0.0366

	
0.6638

	
0.0438

	
0.6183

	
0.0588

	
0.8392

	
0.0353

	
0.5142

	
0.0612

	
0.5968

	
0.0559

	
0.6008

	
0.0538

	
0.3114

	
0.0794

	
0.5967

	
0.0551




	
coil2000

	
0.0809

	
0.0242

	
0.0529

	
0.0350

	
0.0385

	
0.0363

	
0.0777

	
0.0331

	
0.0515

	
0.0329

	
0.0404

	
0.0444

	
0.0491

	
0.0328

	
0.0412

	
0.0419

	
0.0450

	
0.0511

	
0.0000

	
0.0000

	
0.0490

	
0.0362




	
magic

	
0.6577

	
0.0107

	
0.5163

	
0.0157

	
0.5252

	
0.0132

	
0.4042

	
0.0202

	
0.5163

	
0.0157

	
0.4722

	
0.0472

	
0.4795

	
0.0160

	
0.5074

	
0.0141

	
0.5100

	
0.0168

	
0.4040

	
0.0587

	
0.5066

	
0.0127




	
mammographic

	
0.5607

	
0.0774

	
0.5160

	
0.1201

	
0.5543

	
0.1077

	
0.6064

	
0.0826

	
0.5183

	
0.1224

	
0.5937

	
0.1088

	
0.5393

	
0.1270

	
0.4548

	
0.1208

	
0.4303

	
0.1190

	
0.5981

	
0.0806

	
0.4223

	
0.1273




	
monk-2

	
0.5329

	
0.0688

	
0.2912

	
0.0790

	
0.3751

	
0.1710

	
0.3098

	
0.1565

	
0.2914

	
0.0877

	
0.8150

	
0.0885

	
0.2856

	
0.1557

	
0.2962

	
0.1094

	
0.3641

	
0.1786

	
0.4094

	
0.1452

	
0.2811

	
0.1653




	
nursery

	
0.9380

	
0.0211

	
0.7201

	
0.0119

	
0.6333

	
0.0162

	
0.5751

	
0.0229

	
0.5828

	
0.0213

	
0.8448

	
0.0058

	
0.5619

	
0.0096

	
0.2059

	
0.0240

	
0.2039

	
0.0162

	
0.0556

	
0.0253

	
0.6627

	
0.0141




	
page-blocks

	
0.7381

	
0.0384

	
0.6409

	
0.0397

	
0.6419

	
0.0528

	
0.3701

	
0.1119

	
0.6073

	
0.0525

	
0.6415

	
0.2004

	
0.6445

	
0.0369

	
0.1928

	
0.0499

	
0.2339

	
0.0590

	
0.0640

	
0.1288

	
0.6282

	
0.0513




	
penbased

	
0.9761

	
0.0047

	
0.9753

	
0.0060

	
0.9700

	
0.0052

	
0.8391

	
0.0088

	
0.9753

	
0.0060

	
0.9416

	
0.0130

	
0.9779

	
0.0054

	
0.8949

	
0.0112

	
0.9004

	
0.0124

	
0.6978

	
0.0536

	
0.9724

	
0.0069




	
phoneme

	
0.5840

	
0.0148

	
0.5192

	
0.0548

	
0.5220

	
0.0287

	
0.3994

	
0.0306

	
0.5186

	
0.0556

	
0.5024

	
0.0418

	
0.5193

	
0.0506

	
0.5074

	
0.0732

	
0.4975

	
0.0622

	
0.3605

	
0.1412

	
0.5177

	
0.0595




	
pima

	
0.4098

	
0.0260

	
0.2652

	
0.1026

	
0.1994

	
0.1139

	
0.4025

	
0.0809

	
0.2652

	
0.1026

	
0.3122

	
0.1445

	
0.1963

	
0.0805

	
0.2376

	
0.0944

	
0.2135

	
0.1166

	
0.2649

	
0.1305

	
0.1913

	
0.1035




	
ring

	
0.8170

	
0.0274

	
0.3338

	
0.0412

	
0.1068

	
0.0164

	
0.0000

	
0.0000

	
0.3338

	
0.0412

	
0.7475

	
0.0241

	
0.2019

	
0.0202

	
0.3293

	
0.0442

	
0.3341

	
0.0447

	
0.2725

	
0.0991

	
0.3511

	
0.0370




	
saheart

	
0.2037

	
0.1129

	
0.1896

	
0.1880

	
0.1325

	
0.1633

	
0.2835

	
0.1496

	
0.2162

	
0.1796

	
0.2508

	
0.0979

	
0.1078

	
0.1798

	
0.0968

	
0.1586

	
0.1217

	
0.1846

	
0.0694

	
0.1052

	
0.1286

	
0.1405




	
satimage

	
0.8376

	
0.0068

	
0.8235

	
0.0159

	
0.8206

	
0.0196

	
0.7561

	
0.0190

	
0.8108

	
0.0183

	
0.8102

	
0.0174

	
0.8177

	
0.0159

	
0.7304

	
0.0256

	
0.7350

	
0.0274

	
0.7424

	
0.0278

	
0.8135

	
0.0223




	
segment

	
0.8874

	
0.0255

	
0.8909

	
0.0201

	
0.8859

	
0.0234

	
0.8273

	
0.0289

	
0.8904

	
0.0198

	
0.8864

	
0.0197

	
0.8919

	
0.0147

	
0.6561

	
0.0553

	
0.6803

	
0.0628

	
0.6919

	
0.0388

	
0.8631

	
0.0396




	
sonar

	
0.2193

	
0.1694

	
0.3072

	
0.2097

	
0.2813

	
0.2017

	
0.3927

	
0.2639

	
0.3078

	
0.2100

	
0.1688

	
0.2429

	
0.2520

	
0.2665

	
0.2133

	
0.1834

	
0.2229

	
0.2788

	
0.0940

	
0.2049

	
0.3742

	
0.2352




	
spambase

	
0.7920

	
0.0205

	
0.6393

	
0.0389

	
0.6465

	
0.0350

	
0.3420

	
0.2042

	
0.6393

	
0.0389

	
0.7439

	
0.0382

	
0.6034

	
0.0396

	
0.6136

	
0.0345

	
0.6093

	
0.0434

	
0.5646

	
0.0505

	
0.6138

	
0.0406




	
spectfheart

	
0.0352

	
0.0431

	
0.2229

	
0.3057

	
0.1883

	
0.2330

	
0.1020

	
0.0540

	
0.1466

	
0.2706

	
0.3629

	
0.1527

	
0.1686

	
0.2238

	
0.2078

	
0.2188

	
0.0924

	
0.1830

	
0.0000

	
0.0000

	
0.1152

	
0.1792




	
texture

	
0.9722

	
0.0056

	
0.9464

	
0.0088

	
0.9466

	
0.0085

	
0.8606

	
0.0149

	
0.9464

	
0.0084

	
0.8838

	
0.0172

	
0.9476

	
0.0062

	
0.7936

	
0.0237

	
0.8032

	
0.0268

	
0.6900

	
0.0371

	
0.9428

	
0.0077




	
thyroid

	
0.6701

	
0.0164

	
0.2564

	
0.0685

	
0.2164

	
0.0508

	
0.0764

	
0.0258

	
0.2238

	
0.0621

	
0.2620

	
0.2377

	
0.2153

	
0.0591

	
0.1646

	
0.0310

	
0.1652

	
0.0619

	
0.0000

	
0.0000

	
0.2465

	
0.0571




	
tic-tac-toe

	
0.3618

	
0.0213

	
0.3692

	
0.0916

	
0.4150

	
0.0563

	
0.3077

	
0.1102

	
0.3648

	
0.1022

	
0.2599

	
0.1340

	
0.2087

	
0.0785

	
0.2805

	
0.1135

	
0.3224

	
0.1165

	
0.0721

	
0.1256

	
0.3317

	
0.1058




	
titanic

	
0.4533

	
0.0415

	
0.2700

	
0.1939

	
0.2717

	
0.1946

	
0.4376

	
0.0786

	
0.2700

	
0.1939

	
0.4378

	
0.0800

	
0.2584

	
0.1352

	
0.2701

	
0.1924

	
0.2700

	
0.1939

	
0.1595

	
0.1113

	
0.2700

	
0.1939




	
twonorm

	
0.9454

	
0.0033

	
0.8716

	
0.0147

	
0.8919

	
0.0141

	
0.9519

	
0.0150

	
0.8716

	
0.0147

	
0.9289

	
0.0163

	
0.8219

	
0.0130

	
0.8484

	
0.0205

	
0.8530

	
0.0115

	
0.9178

	
0.0208

	
0.8727

	
0.0162




	
vowel

	
0.4663

	
0.0069

	
0.4289

	
0.0586

	
0.4322

	
0.0651

	
0.3778

	
0.0569

	
0.4367

	
0.0573

	
0.3578

	
0.0702

	
0.4478

	
0.0540

	
0.2467

	
0.0856

	
0.2489

	
0.0926

	
0.1500

	
0.0398

	
0.4344

	
0.0748




	
wine

	
0.9327

	
0.0225

	
0.9154

	
0.0370

	
0.8908

	
0.0987

	
0.9404

	
0.0540

	
0.9154

	
0.0370

	
0.9235

	
0.0587

	
0.8887

	
0.0678

	
0.5022

	
0.1535

	
0.4174

	
0.2122

	
0.9230

	
0.0604

	
0.8103

	
0.1384




	
wisconsin

	
0.9280

	
0.0182

	
0.8824

	
0.0992

	
0.9158

	
0.0659

	
0.9088

	
0.0490

	
0.8824

	
0.0992

	
0.9238

	
0.0564

	
0.8787

	
0.0829

	
0.6870

	
0.1442

	
0.6792

	
0.1433

	
0.8914

	
0.0803

	
0.8711

	
0.1109




	
zoo

	
0.6286

	
0.0771

	
0.9080

	
0.0790

	
0.8963

	
0.1251

	
0.9079

	
0.0790

	
0.8917

	
0.0970

	
0.9031

	
0.0925

	
0.9083

	
0.0788

	
0.4530

	
0.2920

	
0.5034

	
0.1747

	
0.7838

	
0.1694

	
0.7538

	
0.1957




	
Average

	
0.6293

	
0.0421

	
0.5446

	
0.2831

	
0.5349

	
0.2959

	
0.5095

	
0.2838

	
0.5371

	
0.2799

	
0.5979

	
0.2855

	
0.5091

	
0.3007

	
0.4251

	
0.2406

	
0.4212

	
0.2525

	
0.3902

	
0.3137

	
0.5168

	
0.2798








Testing kappas of 10 other SSL algorithms: https://sci2s.ugr.es/sites/default/files/files/ComplementaryMaterial/SelfLabeled/SelfLabeled10.ods (accessed on 21 December 2021).
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Table 6. Kappa comparison of MMD-SSL algorithm and 10 other SSL algorithms on 30% labeled data.






Table 6. Kappa comparison of MMD-SSL algorithm and 10 other SSL algorithms on 30% labeled data.





	

	
MMD-SSL

	
Self-Training Methods

	
Co-Training Methods




	
Data Sets

	
SETRED (2005)

	
SNNRCE (2010)

	
APSSC (2013)

	
Self-Training (NN)

	
Democratic-Co (2004)

	
Tri-Training (2005)

	
Rasco (2008)

	
Rel-Rasco (2010)

	
CLCC (2010)

	
Co-Training (NN)




	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std






	
appendicitis

	
0.2580

	
0.1411

	
0.4948

	
0.3553

	
0.4203

	
0.3990

	
0.5251

	
0.2277

	
0.4850

	
0.3679

	
0.5746

	
0.1911

	
0.4284

	
0.2312

	
0.1479

	
0.2958

	
0.3976

	
0.4958

	
0.4593

	
0.3375

	
0.4029

	
0.4151




	
australian

	
0.6318

	
0.0837

	
0.6139

	
0.0487

	
0.6194

	
0.0661

	
0.7178

	
0.0553

	
0.6139

	
0.0487

	
0.7024

	
0.0606

	
0.5919

	
0.0688

	
0.5358

	
0.0854

	
0.5532

	
0.0776

	
0.7007

	
0.0966

	
0.6135

	
0.0398




	
banana

	
0.7872

	
0.0119

	
0.7368

	
0.0251

	
0.7417

	
0.0225

	
0.6619

	
0.0441

	
0.7368

	
0.0251

	
0.7415

	
0.0273

	
0.7343

	
0.0231

	
0.7258

	
0.0238

	
0.7269

	
0.0255

	
0.0802

	
0.0792

	
0.7178

	
0.0263




	
chess

	
0.9620

	
0.0058

	
0.7290

	
0.0479

	
0.7339

	
0.0241

	
0.8160

	
0.0377

	
0.7296

	
0.0482

	
0.9190

	
0.0350

	
0.5921

	
0.0507

	
0.7201

	
0.0477

	
0.7208

	
0.0428

	
0.3368

	
0.0807

	
0.7072

	
0.0518




	
coil2000

	
0.0617

	
0.0189

	
0.0696

	
0.0542

	
0.0430

	
0.0451

	
0.0963

	
0.0308

	
0.0672

	
0.0540

	
0.0296

	
0.0325

	
0.0629

	
0.0576

	
0.0680

	
0.0541

	
0.0722

	
0.0506

	
0.0000

	
0.0000

	
0.0693

	
0.0588




	
magic

	
0.6747

	
0.0123

	
0.5407

	
0.0200

	
0.5321

	
0.0124

	
0.4270

	
0.0221

	
0.5407

	
0.0200

	
0.5144

	
0.0225

	
0.4989

	
0.0292

	
0.5385

	
0.0201

	
0.5384

	
0.0212

	
0.3945

	
0.0561

	
0.5353

	
0.0187




	
mammographic

	
0.5692

	
0.0736

	
0.5236

	
0.1505

	
0.5753

	
0.1562

	
0.6083

	
0.0807

	
0.5236

	
0.1505

	
0.6598

	
0.1111

	
0.5104

	
0.1568

	
0.4797

	
0.1427

	
0.4704

	
0.1473

	
0.5812

	
0.0918

	
0.4644

	
0.1319




	
monk-2

	
0.9012

	
0.0932

	
0.5029

	
0.1140

	
0.4734

	
0.0869

	
0.5595

	
0.1415

	
0.5152

	
0.1139

	
0.8903

	
0.0861

	
0.3553

	
0.1373

	
0.4699

	
0.1234

	
0.4923

	
0.0988

	
0.4773

	
0.1967

	
0.4090

	
0.1243




	
nursery

	
0.9944

	
0.0015

	
0.7590

	
0.0168

	
0.6583

	
0.0248

	
0.6361

	
0.0197

	
0.6621

	
0.0170

	
0.8836

	
0.0160

	
0.6233

	
0.0173

	
0.5219

	
0.0167

	
0.5360

	
0.0162

	
0.0639

	
0.0188

	
0.7590

	
0.0173




	
page-blocks

	
0.8214

	
0.0339

	
0.6910

	
0.0406

	
0.6793

	
0.0443

	
0.4276

	
0.0402

	
0.6817

	
0.0417

	
0.6625

	
0.1495

	
0.7065

	
0.0411

	
0.3615

	
0.0668

	
0.3528

	
0.0566

	
0.0000

	
0.0000

	
0.6923

	
0.0375




	
penbased

	
0.9887

	
0.0009

	
0.9890

	
0.0031

	
0.9711

	
0.0052

	
0.8752

	
0.0077

	
0.9890

	
0.0031

	
0.9699

	
0.0052

	
0.9876

	
0.0057

	
0.9627

	
0.0039

	
0.9600

	
0.0049

	
0.7026

	
0.0362

	
0.9891

	
0.0031




	
phoneme

	
0.6355

	
0.0284

	
0.6245

	
0.0503

	
0.6142

	
0.0410

	
0.4376

	
0.0414

	
0.6245

	
0.0503

	
0.5443

	
0.0435

	
0.6221

	
0.0400

	
0.6122

	
0.0519

	
0.6165

	
0.0492

	
0.4380

	
0.0448

	
0.6227

	
0.0489




	
pima

	
0.3189

	
0.0650

	
0.2757

	
0.1129

	
0.3010

	
0.1288

	
0.3865

	
0.0702

	
0.2867

	
0.1059

	
0.3952

	
0.1076

	
0.2427

	
0.1384

	
0.2385

	
0.0742

	
0.2430

	
0.0532

	
0.3356

	
0.1042

	
0.2154

	
0.1278




	
ring

	
0.9209

	
0.0096

	
0.4175

	
0.0262

	
0.1950

	
0.0401

	
0.0000

	
0.0000

	
0.4175

	
0.0262

	
0.8175

	
0.0186

	
0.2856

	
0.0201

	
0.4162

	
0.0253

	
0.4165

	
0.0268

	
0.2282

	
0.0441

	
0.4233

	
0.0261




	
saheart

	
0.2776

	
0.0351

	
0.2705

	
0.1113

	
0.2464

	
0.0947

	
0.2797

	
0.1599

	
0.2754

	
0.1003

	
0.3288

	
0.1133

	
0.2361

	
0.1437

	
0.2701

	
0.0663

	
0.1732

	
0.1392

	
0.1290

	
0.1913

	
0.1957

	
0.1408




	
satimage

	
0.8649

	
0.0082

	
0.8597

	
0.0146

	
0.8421

	
0.0247

	
0.7516

	
0.0211

	
0.8548

	
0.0130

	
0.8386

	
0.0129

	
0.8445

	
0.0134

	
0.8214

	
0.0215

	
0.8205

	
0.0163

	
0.7311

	
0.0333

	
0.8581

	
0.0136




	
segment

	
0.9459

	
0.0096

	
0.9313

	
0.0202

	
0.9263

	
0.0163

	
0.8702

	
0.0225

	
0.9313

	
0.0202

	
0.9318

	
0.0168

	
0.9369

	
0.0182

	
0.8596

	
0.0285

	
0.8571

	
0.0271

	
0.7187

	
0.0453

	
0.9273

	
0.0174




	
sonar

	
0.5223

	
0.1687

	
0.5266

	
0.1703

	
0.4818

	
0.2601

	
0.5594

	
0.2128

	
0.5266

	
0.1703

	
0.4582

	
0.1482

	
0.5294

	
0.1716

	
0.3671

	
0.2198

	
0.4167

	
0.2136

	
0.2351

	
0.1463

	
0.5354

	
0.1780




	
spambase

	
0.8373

	
0.0039

	
0.7262

	
0.0185

	
0.7170

	
0.0290

	
0.6136

	
0.0454

	
0.7262

	
0.0185

	
0.8016

	
0.0359

	
0.6828

	
0.0331

	
0.7195

	
0.0208

	
0.7175

	
0.0200

	
0.5468

	
0.0427

	
0.7212

	
0.0178




	
spectfheart

	
0.1314

	
0.1199

	
0.2046

	
0.2665

	
0.2864

	
0.2439

	
0.1405

	
0.0439

	
0.1895

	
0.2308

	
0.3549

	
0.1456

	
0.2702

	
0.2121

	
0.1679

	
0.3166

	
0.1066

	
0.2395

	
0.0000

	
0.0000

	
0.1484

	
0.1924




	
texture

	
0.9943

	
0.0016

	
0.9786

	
0.0054

	
0.9566

	
0.0052

	
0.8754

	
0.0135

	
0.9780

	
0.0061

	
0.9264

	
0.0119

	
0.9706

	
0.0060

	
0.9182

	
0.0109

	
0.9148

	
0.0155

	
0.6964

	
0.0529

	
0.9758

	
0.0060




	
thyroid

	
0.8235

	
0.0307

	
0.3216

	
0.0749

	
0.2808

	
0.0759

	
0.0764

	
0.0232

	
0.2996

	
0.0619

	
0.5177

	
0.0785

	
0.2948

	
0.0634

	
0.2549

	
0.0674

	
0.2653

	
0.0783

	
0.0000

	
0.0000

	
0.3080

	
0.0599




	
tic-tac-toe

	
0.4976

	
0.0696

	
0.5274

	
0.0733

	
0.5329

	
0.0888

	
0.4313

	
0.0897

	
0.5447

	
0.0560

	
0.4450

	
0.1232

	
0.2362

	
0.0560

	
0.4999

	
0.0784

	
0.5189

	
0.0568

	
0.0659

	
0.0699

	
0.5095

	
0.0696




	
titanic

	
0.4294

	
0.0443

	
0.2713

	
0.1921

	
0.2921

	
0.1991

	
0.4498

	
0.0861

	
0.2713

	
0.1921

	
0.4414

	
0.0793

	
0.1262

	
0.1190

	
0.2713

	
0.1921

	
0.2700

	
0.1939

	
0.2442

	
0.0604

	
0.2713

	
0.1921




	
twonorm

	
0.9474

	
0.0044

	
0.8878

	
0.0187

	
0.8986

	
0.0190

	
0.9516

	
0.0135

	
0.8878

	
0.0187

	
0.9403

	
0.0145

	
0.8262

	
0.0268

	
0.8811

	
0.0188

	
0.8822

	
0.0196

	
0.9146

	
0.0210

	
0.8870

	
0.0197




	
vowel

	
0.7630

	
0.0335

	
0.7511

	
0.0264

	
0.7322

	
0.0256

	
0.6689

	
0.0433

	
0.7678

	
0.0300

	
0.5556

	
0.0560

	
0.7678

	
0.0270

	
0.5711

	
0.0558

	
0.5778

	
0.0378

	
0.1489

	
0.0295

	
0.7367

	
0.0263




	
wine

	
0.9440

	
0.0251

	
0.8915

	
0.0826

	
0.8307

	
0.0931

	
0.9320

	
0.0504

	
0.9074

	
0.0682

	
0.9487

	
0.0560

	
0.9075

	
0.0948

	
0.5607

	
0.1858

	
0.5281

	
0.1968

	
0.8980

	
0.0905

	
0.7785

	
0.1145




	
wisconsin

	
0.9103

	
0.0371

	
0.8962

	
0.0967

	
0.9198

	
0.0469

	
0.9060

	
0.0516

	
0.8962

	
0.0967

	
0.9274

	
0.0612

	
0.9192

	
0.0495

	
0.8107

	
0.1226

	
0.7923

	
0.1300

	
0.9095

	
0.0521

	
0.8576

	
0.1092




	
zoo

	
0.8912

	
0.0539

	
0.9065

	
0.0987

	
0.8965

	
0.0877

	
0.9137

	
0.0972

	
0.9061

	
0.0988

	
0.8812

	
0.1110

	
0.9080

	
0.0789

	
0.7442

	
0.1357

	
0.7635

	
0.1346

	
0.8370

	
0.1094

	
0.8745

	
0.1311




	
Average

	
0.7002

	
0.0423

	
0.6179

	
0.2557

	
0.5999

	
0.2603

	
0.5722

	
0.2748

	
0.6150

	
0.2562

	
0.6759

	
0.2427

	
0.5758

	
0.2784

	
0.5350

	
0.2507

	
0.5414

	
0.2467

	
0.4094

	
0.3105

	
0.5933

	
0.2636








Testing kappas of 10 other SSL algorithms: https://sci2s.ugr.es/sites/default/files/files/ComplementaryMaterial/SelfLabeled/SelfLabeled30.ods (accessed on 21 December 2021).
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