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Abstract: Human skin is the most exposed part of the human body that needs constant protection
and care from heat, light, dust, and direct exposure to other harmful radiation, such as UV rays.
Skin cancer is one of the dangerous diseases found in humans. Melanoma is a form of skin cancer
that begins in the cells (melanocytes) that control the pigment in human skin. Early detection and
diagnosis of skin cancer, such as melanoma, is necessary to reduce the death rate due to skin cancer.
In this paper, the classification of acral lentiginous melanoma, a type of melanoma with benign
nevi, is being carried out. The proposed stacked ensemble method for melanoma classification
uses different pre-trained models, such as Xception, Inceptionv3, InceptionResNet-V2, DenseNet121,
and DenseNet201, by employing the concept of transfer learning and fine-tuning. The selection of
pre-trained CNN architectures for transfer learning is based on models having the highest top-1
and top-5 accuracies on ImageNet. A novel stacked ensemble-based framework is presented to
improve the generalizability and increase robustness by fusing fine-tuned pre-trained CNN models
for acral lentiginous melanoma classification. The performance of the proposed method is evaluated
by experimenting on a Figshare benchmark dataset. The impact of applying different augmentation
techniques has also been analyzed through extensive experimentations. The results confirm that the
proposed method outperforms state-of-the-art techniques and achieves an accuracy of 97.93%.

Keywords: deep learning; transfer learning; skin cancer; acral lentiginous melanoma; melanoma
classification; ensemble learning; data augmentation

1. Introduction

Skin is the most curious and outer layer of the human body, protecting the body
from heat, light, dust, and other harmful radiations, such as ultra-violet. Human skin is
made up of two layers called the dermis and epidermis. The outermost layer of the skin is
called the epidermis, composed of three types of scaly and flat cells on the surface called
squamous cells. The cells that protect the skin from damage and provide skin color are
basal cells and melanocytes cells. Many diseases can harm the skin, and cancer is one of
the most aggressive and deadly diseases in human skin. In skin cancer, melanoma and
non-melanoma are the two most known types [1]. Melanoma is the deadliest and most
severe skin cancer that is the cause of almost all types of skin cancers whose growth starts
with the cells of melanocytes present on the outermost layer of the skin. Melanoma is
also called malignant melanoma, which can grow and affect nearby healthy cells. This
process is commonly known as metastasis. Malignant melanoma has four major subtypes:
superficial spreading melanoma, nodular melanoma, lentigo malignant melanoma, and
acral lentiginous melanoma [2]. The acral lentiginous melanoma is most commonly found
in people with darker skin, such as Hispanic, African, and Asian ancestries. As compared
to men, this type of melanoma frequently occurs more in women [3]. One reason for
the increase in melanoma cases is due to UV radiation from sunshine or burning of the
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skin in sun rays. Acral lentiginous melanoma appears as a tiny (about 6 mm) flat spot of
discolored skin, often black or dark brown. It usually grows on the soles, palms, or under
nails sometimes and mainly occurs on the back of men and fingers and legs in women [4].
It has poor diagnosis because it is hard to differentiate between an acral melanoma and
an acral nevus. Usually, it is identified at the later stages of melanoma development that
reduces the survival rates of patients [5]. Melanoma is a curable disease if it is diagnosed at
an earlier stage [6]. Early diagnosis techniques for melanoma include biopsy, pathology
report, and medical imaging analysis, such as dermoscopy. Dermoscopy is a non-invasive
imaging technique usually used to diagnose melanoma early to improve survival chances.
In the dermoscopy, a magnified image of the cancerous region is taken at high resolution to
locate the region on the skin, which is then analyzed by the dermatologists for melanoma
detection [7]. The analysis of dermoscopy images by dermatologists is expensive and
requires a high level of expertise to precisely determine the disease [8]. This issue has raised
the need for developing accurate computer-aided diagnosis techniques that could assist in
the early detection of melanoma from dermoscopy images. However, it is a challenging
task due to several reasons. First of all, melanoma may include a high degree of visual
similarity between cancerous and non-cancerous cells, making it hard to discriminate
between melanoma and non-melanoma skin cancer. Secondly, it is difficult to segment
the skin lesion from normal skin regions because of the low contrast. Thirdly, melanoma
and non-melanoma are visually similar, and the skin conditions in different peoples have
visually different melanoma. Third, the high intra-class variation of melanoma size, color,
shape, and location in dermoscopic images makes it hard to detect melanoma. In addition,
other artifacts, such as color calibration charts, hair, ruler marks, and veins, also cause
blurriness and occlusions, making this problem more complicated [1,9,10]. Numerous
automated techniques have been proposed to assist dermatologists in melanoma diagnosis
in recent years. These techniques include traditional machine learning and deep learning-
based methods [5,11]. Recently, deep learning-based methods have produced excellent
results in medical image analysis, such as segmentation, detection, and classification. Hence,
more attention is being paid to deep learning-based methods for melanoma detection. This
research proposes a transfer learning-based approach for acral lentiginous melanoma
identification from dermoscopy images. The main contribution of this paper is as follows:

• A novel stacked ensemble framework based on transfer learning is presented to
address the task of acral lentiginous melanoma classification;

• Extensive experiments have been performed on the benchmark dataset with and
without data augmentation to show the impact of data augmentation in improving
the accuracy of the proposed model;

• The proposed method outperforms state-of-the-art methods for acral lentiginous
melanoma classification.

The rest of the paper is organized as follows: In Section 2, an extensive literature
review of the existing studies based on deep learning, transfer learning, and deep ensemble
learning. In Section 3, the proposed stacked ensemble approach for the classification of
acral lentiginous melanoma is elaborated. Section 4 details experiments performed on the
dermoscopy imaging dataset. Finally, the paper is concluded in Section 5.

2. Background

In this section, a brief introduction of transfer learning followed by an overview of each
pre-trained CNN architectures that are used in the methodology is being discussed. Deep
learning-based models can achieve promising results when large datasets are available
for training the model. However, it is not always possible to increase training samples for
some domains, such as medical imaging, due to the scarcity of data. In these domains,
transfer learning can be useful. In transfer learning, a model trained on a large dataset,
such as ImageNet, can be used for applications similar to domains with comparatively
smaller datasets, as is shown in Figure 1.
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Figure 1. Concept of transfer learning.

In transfer learning, the knowledge gained by training on an extremely large dataset
with thousands of classes is transferred to similar problems through weight sharing. In this
way, the weights that are already being trained and adjusted can be utilized and shared
with another problem, such as the classification of acral lentiginous melanoma in this case.
Transfer learning has been successfully and widely used for different applications, such as
video analytics, automation, manufacturing, medical imaging, and baggage screening [12].

In this paper, different pre-trained models including, VGG16 [13], Xception [14],
InceptionResnetV2 [15], DenseNet121 [16], DenseNet169 [16], and DenseNet210 [16] are
fine-tuned for melanoma classification. Instead of designing a CNN architecture from
scratch, the proposed methodology is based on fine-tuning a few top layers in which
weights in early layers are frozen. Early layers of any CNN-based models are responsible
for extracting low-level features, such as edges, lines, blobs, etc. The efficient extraction of
these low-level features is extremely important for any image classification problem. Since
pre-trained deep CNN architecture weights are already highly optimized on a large dataset,
the proposed methodology is based on the fine-tuning of top layers only to optimize
high-level features while keeping initial layers frozen. Then, an ensemble of the models
mentioned above is created to achieve excellent results. The background information on
each model is presented in the subsequent sections.

2.1. Pre-Trained Xception Model

The first model chosen for the methodology is a pre-trained Xception network [14],
also known as an extreme version of Inception. Xception is a deep CNN architecture
developed by Google researchers having a total depth of 71 layers. It is a modified version
of Inception-V3 architecture that has surpassed VGG16, ResNet, and Inception-V3 in many
classification tasks. It consists of a modified version of depthwise separable convolution and
max-pooling layers, all linked together as a residual network. These modified depthwise
separable convolutions in Xception consist of pointwise convolutions (1 × 1 convolution)
followed by depthwise convolutions (n × n convolution). The illustration of the idea of
modified depthwise separable convolutions is shown in Figure 2. The architecture diagram
of Xception comprises three important sections; Entry flow, Middle flow, and Exit flow, as
shown in Figure 3. The input image is passed into the entry flow, followed by a middle
flow that is repeated eight times, and finally, it is passed into the exit flow for classification
at the end.
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Figure 2. Illustration of modified depthwise separable convolution in Xception network

Fine-tuning of the pre-trained Xception model is carried out by unfreezing the top five
Xception blocks while keeping other bottom layers frozen to extract the most relevant and
detailed features from dermoscopic images. Fine-tuning is performed on the middle flow
and an exit flow of Xception network architecture, as shown in Figure 3. The separable
convolution layers in the middle flow are retrained followed by exit flow, and weights are
updated to extract relevant features. After global average pooling, these extracted features
are passed to the top model containing four fully connected layers with 1024, 512, 256,
and 128 units, respectively, each with ReLU activation and an output layer with sigmoid
activation for binary classification.

Figure 3. The fine-tuning of proposed method of pre-trained Xception architecture.
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2.2. Pre-Trained InceptionResNet-v2 Model

The second model is pre-trained InceptionResNet-V2, based on inception networks
and has 164 layers. It integrates residual connections as in ResNet [17] architectures to
increase the performance with low computational costs. After the summation of residual
connections, batch normalization is added with each block. To stabilize the training process,
residual connections are scaled-down before feeding into the activations of the previous
layers. For this work, the top two blocks of this model are fine-tuned, and weights are
updated. Global average pooling layer is applied, and the last four fully connected layers
with 1024, 512, 256, and 128 units, respectively, and ReLU activation is used. For the last
layer, the sigmoid activation function is used for binary classification as shown in Figure 4.

Figure 4. The fine-tuning of proposed method of pre-trained Inception-ResNet-V2 architecture.

2.3. Pre-Trained DenseNet121 Model

The third pre-trained model is DenseNet121 [16]. DenseNets simplifies the connectiv-
ity pattern by ensuring information flow between layers compared to other state-of-the-art
Deep CNN architectures. This exploits network potential through feature reuse instead of
drawing feature representational capability from extremely deep or wide architecture reuse.
It requires fewer parameters than an equivalent traditional CNN, as there is no need to
learn redundant feature maps. The feature maps in DenseNets are concatenated after each
Dense block that acts as an input for the next dense block. This model contains four dense
blocks followed by a transition block. The top layer containing dense blocks is fine-tuned,
and weights are updated. Global average pooling layer followed by four fully connected
layers with 1024, 512, and 256 units, respectively, with ReLU activation are added on top of
the pre-trained model. Lastly, a sigmoid layer with two units is used as the output layer.
The proposed methodology for fine-tuning of pre-trained models is shown in Figure 5.

Figure 5. The fine-tuning of proposed method of pre-trained DenseNet121 and DenseNet201
architecture.

2.4. Pre-Trained DenseNet201 Model

The last pre-trained model is DenseNet201. It has 201 convolutional layers. The
fine-tuning of this model is also carried out by un-freezing Dense block 4. Global aver-
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age pooling layer followed by four fully connected layers with 1024, 512, and 256 units,
respectively, with ReLU activation are added on top of the model. Lastly, a sigmoid layer
with two units is used as the output layer. The proposed methodology for fine-tuning this
model is shown in Figure 5.

3. Related Work

Skin cancer is a life-threatening disease that must be classified and diagnosed in its
early stage. Before the deep learning era, classical machine learning approaches were used,
dependent on hand-crafted feature engineering. In recent years, the emergence of deep
learning in medical imaging enables the model to learn complex features automatically.
This section presents a comprehensive literature review of the existing methods based on
deep learning, transfer learning, and ensemble learning.

3.1. Deep Learning-Based Techniques

In [18], authors survey about 19 studies conducted on skin lesions classification which
use CNN based classifier and then compared their performance with clinicians. These
experiments were conducted on single images of suspicious lesions. In [19], the author
surveyed automatic skin cancer detection and the application of image processing and
machine learning in cancer detection. In [20], authors surveyed about integrating patient
data into skin lesion classification using CNN. Another study [21] presented a survey on
the latest research efforts in detecting skin lesion and their classification through CNN,
transfer learning, and ensemble approaches. Several deep learning-based techniques have
been proposed for skin cancer detection using dermoscopic images, such as [5], a CNN-
based approach was proposed. In which, researchers created their dataset and used data
augmentation to enhance the quality of the dataset and achieved 80.23% accuracy. For better
results, another study used multiple CNN models for melanoma classification [9]. They
trained VGG-16, VGG-19 pre-trained models on their dataset and achieved an accuracy
of 76%, but their accuracy was not good enough. To cope with this issue, ref. [22] used
deep learning architecture. The main focus of their research was lesion attribute detection,
lesion boundary segmentation, and lesion diagnosis. They used multiple pre-trained
models such as AlexNet [23], Xception, ResNet [17], and VGGNet, and obtained the best
accuracy of 92.74% on ResNet. Another study [24] used deep learning models for three
main tasks: segmentation, feature extraction, and classification; these tasks were performed
on the ISIC-2017 dataset. Experimental results illustrate auspicious accuracy, 75% for
segmentation and 91% for classification. Several studies [25–28] used deep learning with
different architectures and algorithms on a well-known ISIC dataset for lesion classification.
Training deep learning-based models from scratch is time-consuming and needs more
computational resources. To overcome this issue, ref. [29] used pre-trained models such as
VGG-16, AlexNet, and ResNet for classification and achieved 83.83% accuracy on ISIC 2017
dataset. Another study [30] used VGG-16, VGG-19, and DCNN for training with different
types of data augmentation on the HAM 10000 dataset [31]. Some other studies, such as [32],
used CNN with GAN to improve the performance on the ISIC dataset [33]. GAN was used
to generate synthetic medical images to overcome the deficiency of data and achieved 71%
accuracy. In another study [34], melanoma skin cancer was detected by machine learning
and imaging biomarker cues on datasets provided by IBC’s and achieved 77% accuracy.
Furthermore, ref. [35] used pixel-based fusion and multilevel feature reduction to perform
two experiments on ISBI-2016, and ISIC-2017 datasets, for segmentation and classification
and achieved an accuracy of 95% melanoma classification. In [36], additional features of
skin lesions images were extracted for classification of melanoma type and to decrease the
false-positive rate. They applied SVM, neural network, and Random-Forest classifiers on
the heraldic13 dataset, and the highest accuracy of 90% was achieved with the random
forest classifier.
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3.2. Transfer Learning-Based Techniques

Transfer learning-based techniques have achieved high accuracy and significantly
reduced the need for large datasets for different classification tasks. For instance, ref. [37]
utilized a transfer learning-based method for Skin Lesion Classification and achieved 85.8%
accuracy. Another study [38] proposed two-stage frameworks; in the first stage, the inter-
class difference of data distribution was carried out, while in the second stage, training
of deep CNN on the ISIC-2016 dataset was performed and achieved a 94% of F-score. In
several other studies, such as [10,39,40], transfer learning has been applied using AlexNet
for classification on the HAM1000 dataset and achieved an accuracy of 96.87%. Some
other studies [37], and [41], used the transfer learning technique using VGG-16 for feature
extraction and SVM, decision tree, linear discriminant analysis, and K-nearest neighbor
algorithms for classification on HAM10000 and ISIC dataset.

3.3. Ensemble Learning-Based Techniques

Recent studies focued on making an ensemble of different models to achieve high
accuracy using dermoscopic images. The Ensemble technique has proven to be successful
in increasing the overall accuracy of different applications. Ensemble of a Deep Neural
Networks models, such as AlexNet, VGGNet, GoogLeNet was used in [42] for skin cancer
classification and achieved 84.8% accuracy on ISIC 2017 dataset. Other studies [43–45],
used an ensemble of different techniques for classification on ISIC 2017 datasets and
achieved an accuracy of 76%. The recent studies [5,11,22] suggest that little attention has
been paid to diagnose acral melanoma because of its infrequent occurrences. The prior
researches [7,24,46] mainly focused on the classification of skin lesions images into some
cancer types and did not provide further information about the subtype of cancer. For
example, the study [47] classified skin lesions into melanoma and non-melanoma. Another
research [1] was focused on the classification of skin lesions into different categories. The
classification of melanomas in subtypes is very important for better diagnosis, and it
can increase the patient’s survival rates [5,11]. This work is focused on acral lentiginous
melanoma detection from dermoscopy images.

4. Methodology

This section elaborates on the methodology adopted to classify acral melanoma and
benign nevi from dermoscopy images. Figure 6 shows a block diagram of the proposed
method. First, data augmentation is applied to increase the number of training samples
for each category. Second, pre-trained models, VGG16, Inception-V3, Xception and Incep-
tionResNetV2, DenseNet121, DenseNet169, and DenseNet201 are fine-tuned to make them
inline for classification. Finally, ensemble learning is applied to detect acral lentiginous
melanoma by creating a stacked ensemble of fine-tuned models. These steps have been
discussed in the subsequent sections.

4.1. Preprocessing

Before passing images into the CNN for training, preprocessing is applied to the
dermoscopy images. First of all, due to the difference in image dimension, all images
are resized automatically to a fixed 224 × 224 dimension using the open-cv library to
make it compatible to fit these images in the pre-defined shape of input tensors of selected
pre-trained CNN architectures. It has been observed that resizing images has little impact
on the prediction capability of the model. However, if we use the default image size, the
total number of parameters will increase exponentially, making our model computationally
expensive. Color channels of images are then transformed from BGR to RGB format. Finally,
all images are normalized to scale the pixel intensity values from 0–255 to 0–1. The class
labels are encoded to 0 and 1 for acral melanoma and benign nevi, respectively. For medical
imaging, especially for the classification of acral lentiginous melanoma, dataset samples
are not large enough to train the deep learning-based models. Literature suggests data
augmentation techniques, such as image translation, rotation, sheering, mirroring, width
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shift, height shift, horizontal, and vertical flipping can be applied on dermoscopy images
to increase dataset samples [48,49]. Five augmentation techniques are applied in this work,
including rotation, width shift, height shift, vertical flipping, and horizontal flipping.

Figure 6. Block diagram of the proposed methodology.

4.2. Stacked Ensemble of Fine-Tuned Pre-Trained CNN Architectures

Pre-trained Deep CNN architecture has a different depth and network structure. Thus,
the performance varies on different problems. Each pre-trained model has its strength
and limitation while applied to medical images. Multiple models are trained on the same
dataset, predictions are made on each model, and results are combined using the staked
ensemble learning method to achieve the best performance. The ensemble learning can
reduce variance and significantly improve the performance [50]. The simplest way to
combine the predictions of multiple trained models is to take an average of predictions
made by each model on a similar set of training and testing data. Averaging ensemble
equally combines predictions from multiple trained models and generates combined pre-
dictions [50]. On the other hand, the weighted average ensemble technique, also known
as model blending, assigns weights to the predictions of an individual model that is op-
timized using validation data [51]. Stacked generalization or stacking is the modified
version of an averaging ensemble that involves post-training the newly generated model
generated by combining multiple sub-models. The proposed methodology consists of
ensemble learning performed by stacking of four fine-tuned, pre-trained models; Xception,
Inception-ResNet-V2, DenseNet121, and DenseNet201, as shown in Figure 7.

In this regard, each pre-trained model is fine-tuned, retrained, evaluated, and saved
independently, as shown in Figures 3–5 for Xception, Inception-ResNet-V2, DenseNet121,
and DenseNet20, respectively. These saved models are then loaded independently and
combined to form a new architecture by stacking mechanism. This design is efficient in
terms of complexity because late fusion is used instead of early fusion for staking different
models. Top layers of a newly formed stacked ensemble model consist of global average
pooling followed by a fully connected layer with 10 neurons and a sigmoid activation
function for classification.
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Figure 7. Block diagram of proposed stacked ensemble model.

5. Experimentations and Results

This section presents the experimental setup adopted to classify acral lentiginous
melanoma with benign nevi and compares the proposed method with state-of-the-art
methods.

5.1. Experimental Setup

Different hyper-parameters are tuned to train the model for achieving high accuracy,
as shown in Table 1, and binary cross-entropy is used as a loss function. Adam [52] is used
as an optimizer for all pre-trained models, and the learning rate is set to 0.00001 (1 × 10−4)
with a batch size of 32. The number of epochs varies for the top 4 fine-tuned pre-trained
CNN architectures. The ensemble of these pre-trained models is trained for ten epochs. All
these hyper-parameters are learned empirically.

Table 1. Hyper-parameters settings.

Hyper-Parameter Parameter Value

Optimizer Adam
Learning Rate 0.0001
Loss Function binary crossentropy

The dataset used for the experimentation has been taken from [53]. This dataset
consists of 724 dermoscopy images; out of these, 350 belong to the acral lentiginous class,
and 347 belong to benign nevi class. The sample images from this dataset are shown in
Figure 8. This dataset was collected from January 2013 to March 2014 at Severance Medical
Clinic, Yonsei University, Seoul, Korea, and from March 2015 to April 2016 at Dongsan
Clinic in KeiMyung University Daegu, Korea. For experimentation, the dataset is divided
into a 70:10:20 ratio for training, validating, and testing, respectively, where 506 images are
randomly selected for the training set and 72 images for the validation set while the test set
included 146 images. The class-wise distribution of the dataset is shown in Table 2.

Figure 8. Acral melanoma and benign nevi sample images.



Mathematics 2022, 10, 26 10 of 15

Table 2. Class-wise distribution of dataset.

Dermoscopy Images Number of Instances

Acral Melanoma 350
Benign Nevi 374

Total 724

Two experiments are carried out to compare the impact of data augmentation on
the performance of pre-trained CNN architectures. In this regard, Table 3 shows the
performance of fine-tuned pre-trained models without data augmentation. In contrast,
Table 4 shows the performance of fine-tuned pre-trained models with data augmentation.
Data augmentation increases the overall performance of fine-tuned pre-trained models,
especially in the case of the Xception model, accuracy is increased from 90% to 95%, which is
a significant gain in performance. Data augmentation is also helpful in avoiding overfitting
and improving the model’s overall performance as models are trained on small datasets
leads to overfitting.

Table 3. Pre-trained model results without data augmentation.

Pre-Trained Model Validation Accuracy Test Accuracy

VGG16 91.03% 91.72%
InceptionV3 87.59% 87.85%

Xception 90.34% 90.34%
InceptionResnetV2 91.72% 91.72%

DenseNet121 91.72% 91.72%

Table 4. Pre-trained model results with data augmentation.

Pre-Trained Model Validation Accuracy Test Accuracy

VGG16 91.03% 91.03%
InceptionV3 93.10% 93.10%

Xception 95.17% 95.17%
InceptionResnetV2 95.17% 95.17%

DenseNet121 94.48% 94.48%

To validate the performance of the proposed model, accuracy, precision, recall, F1
score, sensitivity, and specificity are used as performance metrics, as shown in Table 5.

Table 5. Class-wise performance of the proposed method.

Class Performance Metrics Results

Acral Melanoma Precision 98%
Recall 97%

F1-score 98%
Sensitivity 97%
Specificity 98%
Accuracy 96.77%

Benign Nevi Precision 98%
Recall 99%

F1-score 98%
Sensitivity 98.63%
Specificity 97%
Accuracy 98.79%
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The accuracy metric is the standard metrics in terms of classification problems, and is
defined by:

Accuracy =
TruePositive + TrueNegative

TruePositive + TrueNegative + FalsePositive + FalseNegative

The results confirm that the proposed stacked ensemble model successfully classified
acral melanoma and benign nevi. In comparison, benign nevi is the most correctly classified
with an accuracy of 98.79% and acral melanoma with an accuracy of 96.77%. The sample
classification results of acral melanoma and benign nevi through the proposed model are
shown in Figure 9.

5.2. Comparison with State-of-the-Art Methods

The proposed method of fine-tuning pre-trained Xception and Inception-ResNet-V2,
DenseNet121, and DenseNet201 achieved overall test accuracy of 95.17%, 95.17%, 94.48%,
and 95.86% respectively. The stacked ensemble of these models is generated to increase
the model’s overall performance. As shown in Table 6, the proposed ensemble technique
obtained a test accuracy of 97.93% which shows significant improvement in terms of
accuracy. The confusion matrix of the proposed model is shown in Figure 10.

Figure 9. Sample classification results of pre-trained model.

Figure 10. Stacked ensemble model confusion matrix.
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Table 6. Performance comparison of each pre-trained model and stacked ensemble model.

Models No. of Epochs Training Accuracy Validation Accuracy Test Accuracy

Xception 25 100% 95.17% 95.17%
Inception-ResNet-V2 50 98.90% 95.17% 95.17%

DenseNet121 50 94.92% 94.48% 94.48%
DenseNet201 45 99.82% 95.86% 95.86%

Stacked Ensemble Model 10 100% 100% 97.93%

The confusion matrix is also known as the error matrix. It is a specific type of tabular
layout that gives information about the ground truth class and a predicted class, showing
the model’s performance for each class. The ground truths are shown along the y-axis and
predicted class labels are along the x-axis of the confusion matrix.

The comparison of the performance of the proposed model is shown in Table 7, which
confirms that the proposed method outperforms state-of-the-art methods.

Table 7. Comparison of stacked ensemble model with existing models.

Authors and Year Method Evaluation Metric Results

C. Yu et al. [5] (2018) Data Augmentation and Transfer Learning using Pre-trained VGG16
Accuracy 80.3%
Sensitivity 92%
Specificity 75%

S. Lee et al. [11] (2020) Transfer Learning using Pre-trained ResNet50
Accuracy 83.51%
Sensitivity N.A
Specificity N.A

J. A. A [54] (2018) Transfer Learning using Pre-trained AlexNet Without Hair Removal
Accuracy 82.5%
Sensitivity 74%
Specificity 74%

J. A. A [54] (2018) Transfer Learning using Pre-trained AlexNet With Hair Removal
Accuracy 92.5%
Sensitivity 90%
Specificity 90%

Proposed Method Stacking ensemble of fine-tuned models
Accuracy 97.93%

Sensitivity 97.83%
Specificity 97.50%

6. Conclusions

This research proposed a stacked ensemble-based method for acral lentiginous
melanoma classification, the most common type of melanoma in Asians. Four pre-trained
models, i.e., InceptionV3, Xception, InceptionresnetV2, and DenseNet121, are trained and
ensembled to achieve excellent results. The ensemble-based approach has significantly out-
performed all four individual models in terms of accuracy on the acral melanoma dataset.
As the size of the dataset is not big enough, data augmentation and transfer learning is
applied to train all these models. The proposed model achieved 97.83% sensitivity, 97.50%
specificity, and 97.93% accuracy for the classification of acral melanoma and benign nevi
dermoscopy images. It has been concluded that the proposed method can be helpful for
dermatologists in identifying skin lesions effectively. This technique can be extended for
other skin cancer diseases as future work. In addition to this, segmentation of skin lesions
can also be considered to assist dermatologists in identifying an affected skin region.
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