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Abstract: We consider risk sharing among individuals in a one-period setting under uncertainty that
will result in payoffs to be shared among the members. We start with optimal risk sharing in an
Arrow–Debreu economy, or equivalently, in a Borch-style reinsurance market. From the results of
this model we can infer how risk is optimally distributed between individuals according to their
preferences and initial endowments, under some idealized conditions. A main message in this theory
is the mutuality principle, of interest related to the economic effects of pandemics. From this we
point out some elements of a more general theory of syndicates, where in addition, a group of people
are to make a common decision under uncertainty. We extend to a competitive market as a special
case of such a syndicate.
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arbitrage pricing; state prices
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1. Introduction

We analyze optimal risk sharing in society at large. We consider a one-period model
of uncertainty where Pareto optimal risk sharing, or equivalently, optimal consumption is
characterized. The article is primarily a review paper, where the possible originality is in
the presentation and composition of the various subject matters, in some of the proofs, in
extensions, and within various applications that are pointed out.

We discuss the no-arbitrage question and the associated state prices, both issues
important in the financial literature, and also in optimal risk sharing. Here we use the
most basic framework, and this material can be found in an appendix. We characterize
Pareto optimality in Section 3, with examples. A competitive equilibrium is a special Pareto
optimal sharing rule, which we treat in Section 4, also with examples.

In Section 5, we work with syndicates, where a group of individuals must make a
common decision under uncertainty that will result in a payoff to be shared jointly among
the members. Here we present conditions under which the syndicate behaves as a Savage
rational decision maker. This was first treated in [1] as an extension of the general model
by [2].

In this section we review conditions under which any member of the syndicate can
be relegated the task of making decisions under certainty on behalf of the group. This
problem is considered both when the members of the group have homogeneous beliefs,
and when the probabilities are heterogeneous. Interestingly enough, even in the latter case
it is possible to find some common ground.

An illustration is given of unanimity within a group via an example of optimal
diversification, where some classical results are recovered. Existence of an evaluation
measure of a syndicate is of importance in this theory.

The framework may be used to study risk sharing at various levels in society, like the
risk sharing problem in mutual insurance companies, reinsurance markets, or at the state
level of a given nation, and also between nations via international organizations.
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The paper ends with an application of the theory of syndicates to financial markets
and general equilibrium.

2. The Basic Risk-Exchange Model

In this section we study the following basic one period model having two time points,
0 and 1. LetN = {1, 2, . . . , N} be a group of N agents having preferences�i over a suitable
set of random variables, or gambles with realizations (outcomes) in some subset A ⊆ R,
i = 1, 2, . . . , N. Here R = (−∞, ∞). This preference relation is a binary relation on the
relevant set of probability distributions that is transitive and complete, and that satisfies
the von Neumann–Morgenstern axioms (the substitution axiom and the continuity axiom).

The model is rather general, and the agents could be insurers, reinsurers, consumers,
or even countries or regions. For convenience, we shall phrase the model in terms of
individuals, consumers, or insurers.

The preferences are represented by expected utility, meaning that there is a set
of continuous utility functions (indices) ui : R → R, such that x �i y if and only if
Eui(x) ≥ Eui(y), where x and y are random variables signifying final consumption, or
final portfolios. The reader may recognize this as a hybrid of the Savage approach and
the von Neumann–Morgenstern theory. Viewed in light of interpretations in a business
world, however, it is in the spirit of the Savage theory provided all the agents have the
same (subjective) probability measure P. This is illustrated later.

We assume monotonic preferences, and risk aversion, so that, granted enough smooth-
ness, we have u′i(w) > 0, u′′i (w) ≤ 0 for all w in the relevant domains (note that the concepts
of monotonicity and risk aversion make perfect sense without assuming the existence of
these derivatives). Each agent is endowed with a random payoff xi, a random variable at
time 0, called an initial endowment (or portfolio). More precisely, there exists a probability
space (Ω,F , P) such that agent i is entitled to payoff xi(ω) at time 1 if ω ∈ Ω occurs, i ∈ N .
This means that uncertainty is objective and external, and all the uncertainty is revealed
at time 1. There is no informational asymmetry. All parties agree upon (Ω,F , P) as the
probabilistic description of the stochastic environment, the latter being unaffected by their
actions. It will be convenient to posit that both expected values and variances exist for all
these initial portfolios, which means that all xi ∈ L2(Ω,F , P), or just xi ∈ L2 for short.

We suppose the agents can negotiate any affordable contracts among themselves,
resulting in a new set of random variables yi, i ∈ I , representing the possible final con-
sumption to the different members of the group, or final portfolios (in a one-period model
final consumption equals final wealth).

In the equilibrium version of our model, transactions are carried out right away at
“market prices”, where Π(c) represents the market price for any c ∈ L2, i.e., it signifies the
group’s valuation of the random variable c relative to the other random variables in L2

at time 0. Notice that this trade, or risk exchange, takes place at time 0, and results in the
random final consumption bundles yi, i ∈ N , also at time 0. Then if ω ∈ Ω happens, the
consumption of agent i is yi(ω), here a real number at time 1. The essential objective is
then to determine:

(a) Pareto optimal sharing rules.
(b) The market price Π(c) of any consumption bundle c ∈ L2 from the set of prefer-

ences of the agents and the joint cumulative probability distribution function F(x1, x2, . . . , xN)
of the random vector x = (x1, x2, . . . , xN).

(c) For each i ∈ N , the final consumption bundle yi most preferred by agent i among
those satisfying their budget constraint Π(yi) ≤ Π(xi).

In case (a) market prices as in Equation (1) below, are not part of the program.

2.1. Some Basic References

References to this type of problem are plentiful, both in the economic literature, in the
actuarial literature, and otherwise scattered around in various journals. The model related
to optimal consumption in a world of uncertainty is treated in [3–5] in the economics
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literature. In the actuarial literature we have, for example, [6] as well as the basic treatment
by [7–9] , where the focus is on insurance and reinsurance. In the economics literature, we
also have [2,10–12] , here directed at the economics of insurance. These models have been
reviewed and extended in, for example, [13–17]. This type of model has also been extended
to a dynamic setting in [18] related to insurance, and there is a large literature in economic
dynamics, where elements of this model are central, several of them treated in [19,20].

2.2. The No Arbitrage Requirement

Before we start, some basic facts are in order. First, observe that the possible events
F = F x := σ(x1, x2, . . . , xN) is the sigma-field generated by the initial random variables x,
so that any random variable can be written in the form y = f (x1, x2, . . . , xN) for f a suitable
Borel-measurable function (this is a result that is known from measure theory, e.g., [21].
This means that for the optimal final portfolios yi = fi(x1, x2, . . . , xN) for some appropriate
functions fi. In order to avoid trivialities, we assume that F x is complete, i.e., augmented
with all the sets of P-measure zero.

Second, for (b) and (c) above we require that there is no arbitrage. By an arbitrage, or an
arbitrage possibility, we mean the possibility of receiving a strictly positive amount at time
1 in some states ω ∈ A of positive probability (P(A) > 0), without paying anything net at
time 0. Alternatively, an arbitrage would also exist if an agent obtains a strictly positive
amount at time 0 with no further payments at time 1. In other words, an arbitrage possibility
would yield a strictly positive amount with positive probability, either at time 0, or at time
1, or possibly at both time points, and with no payout at any time, i.e., the possibility of
receiving something net with no risk. It is hardly surprising that this possibility can not be
allowed in a simple and rational model of an insurance or financial market.

Let us assume that market prices exist, denote the market price of any risk y by Π(y),
and consider risks in the space L2. Then we can show that unless the functional Π(·) is
linear and strictly positive, there would be arbitrage possibilities.

The following theorem can be shown:

Theorem 1. There is no arbitrage if and only if there exists a strictly positive random variable π,
the state price deflator, representing prices through the relation:

Π(y) = E(yπ) for all y ∈ L2. (1)

Proof: See Appendix A.
An analogue of the above theorem in financial markets, where only common stocks

can be traded, is known as “The Fundamental Theorem of Asset Pricing”. In the finite
case, the theorem is due to Steven Ross [22] in the one period framework, and the same
reasoning carry over to the dynamic case having a finite number of time periods. There is
an extensive literature on the infinite dimensional case, some of which is reviewed in [19].

Readers familiar with the economics of uncertainty will typically be acquainted with
the concept of state prices; here π is the Arrow–Debreu state price in units of probability.

My experience is that while this concept is well known to economists, it is lesser
known or not quite appreciated by mathematicians. In order to explain its importance, we
provide a basic exposition in Appendix B.

3. Pareto Optimality

Next we introduce the concept of (strong) Pareto optimality of an allocation. This is
a criterion of the outcome of a negotiations process between individuals that does not
depend on the probability distribution of the initial portfolios.

We need the following definition:
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Definition 1. An allocation z = (z1, z2, . . . , zN) is called feasible if:

N

∑
i=1

zi ≤
N

∑
i=1

xi := xM.

The concept of Pareto optimality offers a minimal and uncontroversial test that any
social optimal economic outcome should pass. In words, an economic outcome is Pareto
optimal if it is impossible to make some individuals better off without making some other
individuals worse off. Formally we have:

Definition 2. A feasible allocation y = (y1, y2, . . . , yN) is called Pareto optimal if there is no
feasible allocation z = (z1, z2, . . . , zN) with Eui(zi) ≥ Eui(yi) for all i and with Euj(zj) >
Euj(yj) for some j.

Next we give a few useful results in establishing Pareto optimality.

3.1. The Characterization of a Pareto Optimum

First we focus on the following “representative agent” result:

Theorem 2. Suppose ui are concave and increasing for all i. Then the allocation y = (y1, y2, . . . , yN)
is Pareto optimal if and only if there exists a nonzero vector of agent weights λ ∈ RN

+ such that
(y1, y2, . . . , yN) solves the problem:

E(u(xM|λ)) := sup
(z1,...,zN)

N

∑
i=1

λiEui(zi) subject to
N

∑
i=1

zi ≤ xM. (2)

In the above u(·|λ), or equivalently uλ(·), is defined as the function, possibly de-
pending on the agent weights λ, satisfying the real optimization problem u : R → R
defined by:

u(x|λ) = sup
z∈RN

N

∑
i=1

λiui(zi) subject to z1 + z2 + · · ·+ zN ≤ x. (3)

This problem is referred to as the sup convolution problem, and the function u(·|λ)
is called the utility function of the representative agent in economics and finance, or the
evaluation measure of the group of individuals in the reinsurance literature and in the
theory of syndicates. Below we shall show how it is linked to the Lagrange multiplier
associated with problem (3).

Let us first explain the connection between the solutions of problems (2) and (3). In
that regard we assume all the random variables are defined on the same probability space
(Ω,F , P) with generic element ω ∈ Ω. A subset A ⊂ Ω, A ∈ F , where P(A) = 0 we call a
P-null set for short. Problem (3) can be interpreted as a real-valued problem for any given
state ω ∈ Ω.

Problem (3) can be interpreted as a decision problem in which the group must share
a “cake” of size x(ω) in order to maximize a weighted sum of the member’s utilities.
The proof that the optimal solution (y1, y2, . . . , yN) generated by the sequence of “cake-
sharing” programs (3) is the optimal solution of problem (2) can be obtained by contradic-
tion. The reason is the additive nature of utility. Suppose that this is not the case. Then
there is a feasible allocation ŷ other than the one generated by sequence (3) that satisfies
∑N

i=1 λiui(ŷi(ω)) > ∑N
i=1 λiui(yi(ω)) for all ω ∈ Ω except for a P-null set. But then, by Fu-

bini’s Theorem, E
(

∑N
i=1 λiui(ŷi)

)
> E

(
∑N

i=1 λiui(yi)
)
, contradicting the fact that y solves

problem (2).
We can now return to the proof of the theorem itself, which can be found in Appendix C.
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This basic result gives rise to the following characterization of a Pareto optimum. This
result is known as Borch’s Theorem:

Theorem 3. A Pareto optimum y is characterized by the existence of non-negative agent weights
λ1, λ2, . . . , λN and the real function u : R→ R such that:

λ1u′1(y1) = λ2u′2(y2) = . . . = λNu′N(yN) := u′(xM|λ) a.s. (4)

The proof of Theorem 3 can be found in Appendix C.
First, to be noticed here is that the yi’s only depend on the marginal utility functions,

not on the probability distribution of the random vector (x1, x2, . . . , xN) of the agents’
initial holdings. Thus it is not necessary to know this probability distribution in order to
characterize Pareto optimal allocations.

Second, as a by-product we have a characterization of the state price deflator π of the
last sections, and this key quantity is connected to the economy via the identity:

π = cu′(xM|λ) a.s.

where c > 0 is some normalizing constant. We return to this later when we consider a
competitive equilibrium.

Alternatively, the above step can be further formalized by a theorem of Zahl [23], who
analyzed the part of infinite dimensional analysis where the Lagrange multiplier must be a
function of the state variable. In our case, it means that the Lagrange multiplier computed
at xM is stochastic, since xM is a random variable.

Next we illustrate by an example. For this we need the following definition: The
relative risk aversion is defined by the function Ru(x) = − u′′(x)x

u′(x) for any utility function u.
First we consider the case of constant relative risk aversion.

Example 1. Consider the case of power utility, where ui(x) = (x1−γi − 1)/(1− γi) for x >
0, γi 6= 1 and ui(x) = ln(x) for x > 0 when γi = 1, where the natural logarithm results as a
limit when γi → 1. This example only makes sense in the no-bankruptcy case where xi > 0 P-a.s.
for all i. The parameters γi > 0 are then the relative risk aversions of the agents, which are given by
positive constants for this class of preferences.

Consider first the case where γ1 = γ2 = . . . = γN = γ. Here all the marginal utilities are
given by u′i(x) = x−γ, and using Theorem 3, the first order condition for Pareto optimality is:

λiu′i(yi) = u′(xM), a.s. for all i,

which implies that yi = λ
1/γ
i (u′(xM))−1/γ, a.s. Using the market clearing condition xM =

∑i∈N yi, a.s., which only says that no risk disappears during the process of risk sharing, we obtain:

u′(xM) = (∑
i∈I

λ
1/γ
i )γx−γ

M a.s.,

showing that the marginal utility of the representative agent is of the same type as that of the
individual agents. The optimal sharing rules are linear, and given by:

yi =
λ

1/γ
i

∑j∈N λ
1/γ
j

xM a.s. for all i ∈ N .

From this example, we notice that the optimal allocations depend on the initial ones
only through the aggregate xM. Thus we may write yi = yi(xM) for all i ∈ N . This is quite
general, and follows from (2) of Theorem 2, as well as Equation (3) and Equation (4) of
Theorem 3.
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The linearity of the optimal allocations is lost when the relative risk aversions are
allowed to be different for the various agents. This leads to non-linear contracts.

In addition, notice that we have dropped the λ-dependence in the marginal utility
function of the representative agent. The explanation for this will come later, but notice that
prices are determined modulo a normalization, which can here be taken to be (∑i∈I λ

1/γ
i )γ.

This means that the evaluation measure u does not depend on the sharing rule λ.

3.2. Risk Tolerance and Aggregation

Consider a group of individuals, let us call such a group a syndicate, where the sharing
rules are Pareto optimal. Of interest now are two basic and useful results. For this we first
define what we mean by the absolute risk aversion of an agent with utility function u. It is
given by A(x) = − u′′(x)

u′(x) , and is strictly positive under our assumptions. The risk tolerance
of an agent is defined by ρ(x) = 1/A(x).

The first result relates the Pareto optimal allocations to a solution of a system of
ordinary differential equations. It says the following:

The Pareto optimal contracts yi(x) as a real function of the real variable x ∈ B ⊆ R,
satisfies the non-linear, first-order ordinary differential equation:

y′i(x) =
Aλ(x)

Ai(yi(x))
, yi(x0) = bi, x, x0 ∈ B ⊆ R, i ∈ N , (5)

where Aλ(x) = − u′′λ(x)
u′λ(x) is the absolute risk aversion function of the representative agent,

and Ai(yi(x)) = − u′′i (yi(x))
u′i(yi(x)) is the absolute risk aversion of agent i at the Pareto optimal

allocation function yi(x), i ∈ N . The notations uλ and Aλ have the same meaning as u(·|λ)
in that the functions u and A may depend on the sharing rule λ. Here yi(x0) = bi represent
the initial conditions of these differential equations, where ∑N

i=1 bi = x0.
The second result says that the risk tolerance of the representative agent is the sum

or the risk tolerances of the individual members at the Pareto optimal allocations. More
precisely,

ρλ(xM) = ∑
i∈N

ρi(yi(xM)) a.s. (6)

as an equality between random variables. This allows us to rewrite the differential
Equations (5) as follows:

dyi(x)
dx

=
ρi(yi(x))

ρλ(x)
, yi(x0) = bi, x, x0 ∈ B ⊆ R. (7)

We summarize these two results as:

Theorem 4. (a) The risk tolerance of the syndicate ρλ(xM) equals the sum of the risk tolerances of
the individual agents in a Pareto optimum.

(b) The real, Pareto optimal allocation functions yi(x) : B→ R, i ∈ N satisfy the first order
ordinary, nonlinear differential Equations (5), or equivalently, (7).

Since these two results are central in the theory, in Appendix C we present a simple
proof.

The result (6) has several interesting interpretations. One is that the syndicate can
better carry risk than the individuals can in autarky. For example, a mutual insurance
company can be interpreted as a syndicate, where the syndicate members are the customers.
This means that the members smooth their individual risks in a pool, and in a Pareto
optimum, their individual liability is a real function of the aggregate risk.

By (7) it follows that contracts yi(x) are all increasing in x. This yields the mutuality
principle. It means that an aggregate wealth increase will affect all members in a positive
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direction, and a wealth decrease will affect all the members negatively. The direction is the
same for all, but how much is individual.

The economic consequences of pandemics may be observed to have these features: It
affects most people negatively, but to a varying degree.

A nation, or any international organization like the EU, UN, or Red Cross, can be
considered as a syndicate, as can the whole world for that matter, where the members are
the inhabitants of the country, or nations of the organization, or in the world, respectively.
Since a nation is, by the above result, less risk averse than the individual people that make
it up, some projects are better undertaken by the state; they may simply be too grand for
individual citizens. Typical infrastructural projects like roads, tunnels, bridges, railways,
harbors, airports, museums, etc. are often undertaken by the state. Similar interpretations
are valid for organizations, or the world. For example, the climate problems facing earth
are too big for any nation to solve alone, which calls for international cooperation.

Pareto optimal contracts are characterized by a continuum of contracts along a Pareto
optimal frontier. Consider for example the case N = 2. The feasible contracts can then
be thought of as a bounded section of the first quadrant by a concave curve, the Pareto
frontier, from one axis to the other (see Figure 1).

Eu1(y1)

Eu2(y2)

Eu1(x1)

Eu2(x2)

Feasible region

Pareto frontier

Individually rational
PO-contracts

CE

Figure 1. The Pareto frontier for N = 2.

A tangent to the Pareto frontier is characterized by two numbers, the agent weights
(λ1, λ2) determining the slope of the tangent, which is −λ1/λ2. Imagine the line with this
slope, λ1Eu(z1) + λ2E(z2) = c, that cuts through the feasible region. It corresponds to a
particular sharing rule. Then move the line with this slope, by varying the constant c, until
it is tangency to the Pareto frontier. The point at which this happens corresponds to the
Pareto optimum for this particular sharing rule. By varying the weightings, and repeating
this process, the Pareto optimal frontier is spanned out.

The Pareto optimal frontier includes contracts that will not be likely outcomes of real
negotiations between the parties, since they may not satisfy individual rationality. For N
individuals this means that only the section of the Pareto optimal frontier that satisfies:

Eui(yi(xM)) ≥ Eui(xi), i ∈ N .

will be rational for all parties. This section is called the core. For N = 2 it is indicated in
Figure 1.

3.3. HARA-Utility Functions

The class of utility functions with affine risk tolerances is called the Hyperbolic
Absolute Risk Aversion (HARA) class, and plays a special role in this theory. The utility
functions in this class can be given by analytic expressions. Recall that with expected utility,
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if the utility function u(x) represents the preference relation, then au(x) + b represents the
same preference relation, where a and b are two scalars with a > 0.

The utility function u(·) : R → R such that ρ(x) = α + βx > 0 is HARA with
coefficients (α, β) if and only if there exists scalars a and b such that:

au(x) + b =


1

β−1 (α + βx)
(β−1)

β , if β 6= 0 and β 6= 1;

ln(α + x), if β = 1;
−α exp(− x

α ), if β = 0 and α > 0.

When the parameter β = −1, we have quadratic utility, which is also a member of the
HARA class.

In the paper we will be interested in optimal risk sharing, and in order to gain some
basic insight, it is an advantage to consider a class of utility functions where agents are
allowed to have different preferences, and where optimal sharing rules are affine. Our next
example satisfies both these criteria, and is included in the above list.

Example 2. Consider the case with negative exponential utility functions, with marginal utilities
u′i(z) = e−z/ρi , i ∈ N , where ρ−1

i is the absolute risk aversion of agent i, or ρi is the corresponding
risk tolerance. Using the characterization (4), the first order conditions for Pareto optimal sharing
rules are:

λie−yi/ρi = u′(xM), a.s., i ∈ N .

After taking logarithms in this relation, and summing over i, market clearing implies:

u′(xM) = e(K−xM)/ρ, a.s. where K :=
N

∑
i=1

ρi ln λi and ρ :=
N

∑
i=1

ρi.

Furthermore, from the same first-order conditions we also obtain that the optimal sharing rules
(or portfolios) can be written:

yi(xM) =
ρi
ρ

xM + bi, where bi = ρi ln λi − ρi
K
ρ

, i ∈ N . (8)

The “reinsurance contracts”, if we for the moment use this interpretation, involve optimal
sharing rules that are affine in xM. Market clearing holds here, since ∑i∈N y′i(xM) = 1 and
∑i∈N bi = 0. �

As we will show in the next section, the result of this example is consistent with theory,
since our utility functions belongs to the HARA class with identical cautiousness, or slope
ρ′(x) = 0.

Contracts of this type are termed proportional reinsurance (the more correct term,
affine, is not in industry use). The constants of proportionality ρi/ρ are simply equal to
to each agent’s risk tolerance, measured relative to the group. The more risk tolerant a
member is, the larger fraction of the aggregate risk is held.

In order to compensate for the fact that the least risk-averse reinsurer will hold the
larger proportion of the market, zero-sum side payments occur between the reinsurers,
here represented by the terms bi.

Without these side payments, an agent, with a “small” initial endowment but with
a large risk tolerance, would end up with a “large” final endowment, but this would not
be consistent with individual rationality, or as we will see below, with the agents’ budget
constraints.

This kind of treaty seems common in reinsurance practice, and is, moreover, easy to
interpret and understand.

An example with the more general form of HARA utility class is the following:
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Example 3. Consider the class ui(x) = 1
β−1 (αi + βx)

(β−1)
β , i ∈ N , when β 6= 1 and β 6= 0.

Using first-order characterization (4), we obtain the following:

λi(αi + βyi(xM))
− 1

β = u′(xM), a.s. i ∈ N .

Some routine calculations show that the optimal sharing rules are given by:

yi(xM) = Ai + BixM

where

Ai =
λ

β
i

∑j λ
β
j

and Bi =
λ

β
i

β ∑j λ
β
j

α− αi
β

.

That is, the sharing rules are affine. Market clearing is seen to hold. �

Our general risk sharing model with N agents can also be specialized to two agents,
one insurance customer and one insurer. The first to have used the model for this basic
problem seems to have been [23].

3.4. Affine Contracts

In this section we formalize what we have demonstrated so far when it comes to
optimal risk sharing. Effectively we then rule out non-linear contracts.

Denote as above the absolute risk aversion function of an agent by A(x) = u′′(x)
u′(x) ,

x ∈ R, and the risk tolerance function by ρ(x) = 1
A(x) . The relative risk aversion function

is defined by R(x) = xA(x). Recall, HARA utility means that the risk tolerance functions
of the agents are affine, i.e., if ρi(x) = αi + βix, i ∈ N , where the αi and βi are all constants.
Then affine sharing rules obtain provided the agents have HARA utility functions with the
same cautiousness parameters, i.e., when ρ′i(x) = βi = β, for all i ∈ N . More precisely:

Theorem 5. The Pareto optimal sharing rules are affine if and only if the risk tolerances are affine
with identical cautiousness, i.e., yi(x) = Ai + Bix for some constants Ai, Bi, i ∈ N , ∑j Aj = 0,
∑j Bj = 1,⇔ ρi(x) = αi + βx, for some constants αi and β, i ∈ N .

A short, and we claim original, proof of this theorem can be found in Appendix C
based on the system of differential equations in (7).

There are several important insights when members belong to the class of utility
functions considered above, which we return to later.

We next consider the pricing issue in a competitive market, where the concept of an
equilibrium is central.

4. Equilibrium

The problem each agent i ∈ N is supposed to solve is the following:

sup
zi∈L2

Eui(zi) subject to π(zi) ≤ π(xi). (9)

An important issue is, of course, existence (and uniqueness) of solutions to (9). We
shall not elaborate on this here, suffice it is to note the following. If:

{zi ∈ L2 : Eui(zi) < ∞, π(zi) ≤ π(xi)}

is bounded (in L2-norm), then existence is guaranteed (by i.a., the Banach–Alaogher theo-
rem). In addition, a strictly concave ui suffices for uniqueness.

See [5,6,14,19,24–29] for existence and uniqueness of equilibrium (existence of Arrow–
Debreu equilibria in infinite-dimensional settings seems to have been first treated in [25].
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Definition 3. A competitive equilibrium is a collection (Π; y1, y2, . . . , yI) consisting of a price
functional Π and a feasible allocation y = (y1, y2, . . . , yI) such that for each i, yi solves the
problem (9) and markets clear; ∑N

i=1 yi = ∑N
i=1 xi (market clearing is usually defined by ∑N

i=1 yi ≤
∑N

i=1 xi. Since we have strictly monotonic preferences, equality will result in equilibrium).

We close the system by assuming rational expectations. This means that the market
clearing price Π implied by agent behavior is assumed to be the same as the price functional
π on which agent decisions are based. The main analytic issue is then the determination of
equilibrium price behavior.

In this section we characterize a competitive equilibrium (CE) assuming that it exists.
We take it that the initial portfolios are not identically equal to zero, and that a unique
equilibrium exists. We also assume quite naturally that Π(xi) > 0 for each i. In fact, it
seems reasonable that each agent is required to bring to the market an initial “endowment”
of positive value (this is of course a weaker requirement than the positivity assumption
xi ≥ 0 P-a.s. for all i found in consumer theory).

The computation of an equilibrium requires that the joint probability distribution of
the initial endowments (x1, x2, . . . , xN) is known. Only relative prices can be determined
in equilibrium, modulo a normalizing constant.

In this case we have the following:

Theorem 6. Suppose the preferences of the agents are strictly monotonic and convex, i.e., u′i > 0
and u′′i ≤ 0 for all i ∈ N , and assume that a competitive equilibrium exists, where Π(xi) > 0 for
each i. The equilibrium is then characterized by the existence of positive constants αi, i ∈ I , such
that for the equilibrium allocation (y1, y2, . . . , yI):

u′i(yi) = αiπ, a.s. for all i ∈ I , (10)

where π is the Riesz representation of the pricing functional Π.

Comparing this result to the first order conditions of a Pareto optimum, Equation (4)
of Theorem 3, we notice that the Lagrange multipliers αi are just the reciprocals of the
agent weights λi, αi = 1/λi, implying that a competitive equilibrium is, if it exists, Pareto
optimal.

We next explain the basics of the proof of this result, which can be found in Appendix C.
In order to illustrate the new feature here, the pricing question, we present a simple

example.

Example 4. Let us return to Example 2, where we now demonstrate how a single Pareto optimal
point is picked out by a competitive equilibrium. This is done by determining the ray λ of agent
weights.

In order to determine this vector λ = (λ1, . . . , λN), we employ the budget constraints:

E(yie(K−xM)/ρ) = E(xie(K−xM)/ρ), i ∈ N ,

which give that:

bi =
E{xie−xM/ρ − ρi

ρ eMe−xM/ρ}
E{e−xM/ρ}

, i ∈ N .

Hence, the optimal equilibrium allocations yi are completely determined in terms of the given
primitives of the model. The ray λ can also be determined modulo a normalization. Letting
K = ∑N

i=1 ai ln λi denote this normalization, then:

λi = ebi/ρi eK/ρ, i ∈ N .
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If we impose the normalization E{π} = 1 of the state price deflator, we obtain e−K/ρ =
E{e−eM/ρ}, in which case the constants λ are given by:

λi =
ebi/ρi

E{e−xM/ρ}
, i ∈ N .

Through this example, we also discover a “premium principle” in insurance, since market
prices are given by:

Π(z) =
E{z · e−xM/ρ}

E{e−xM/ρ}
, for any z ∈ L2. (11)

The pricing rule given by expression (11) is referred to as the “Esscher principle” in actuarial
mathematics, but then with the important distinction that the aggregate market index xM in (11) is
substituted by the risk z itself. For this latter “principle”, the pricing rule is of course no longer
a linear functional, which will, unfortunately, lead to arbitrage possibilities and other anomalies.
�

A CE picks out a point on the Pareto frontier that satisfies individual rationality, so
the competitive equilibrium allocation is located in the core. In the case of the two-agent
problem, this point is located in the individual rationality section of the Pareto frontier in
the NE-quadrant (see Figure 1).

Recall, that the first order conditions for optimality does not depend on probabilities,
but when we employ the budget constraints, probabilities enter.

In [30], risk sharing and contingent premiums is discussed in relation to the UK
Covid-19 economic losses.

We next include some results on Pareto optimal risk sharing in groups, where there is
a decision to be undertaken by the group. Here we also take a look at the situation where
agents can have different probability beliefs.

5. Syndicates I

A syndicate is defined to be a group of individuals who must make a common decision
under uncertainty that will result in a payoff to be shared jointly among the members. Let
us call the common decision a ∈ A, where A is the decision space. We limit ourselves to
A ⊂ R, a subset of the real numbers.

The first result we have in mind belongs to group decision theory, or the theory of
syndicates. It specifies a payoff to the group g(a, Z), where Z is a random variable with
realization z, and g is a real function: g : R×R→ R, assumed to be a smooth C2,2-function.

The syndicate is faced with an investment project with payoff function g. In this section
we assume that before action a is taken, the syndicate comes together and negotiates a
sharing rule, as we have described in the above. Here we only consider sharing rules that
do not depend on the decision itself. This means that the members of the syndicate are
motivated by income and not by the decision itself.

Individual sharing rules yi(x, Z) will accordingly all depend on the payoff x = g(a, Z)
and the random variable Z, but not on the decision a. Otherwise Pareto optimal sharing
rules are found by the same principles as before.

We shall here allow the various members to have individual probability beliefs re-
garding the random variable Z, represented by the probability density functions fi(z),
i = 1, 2, . . . , N. We assume the individuals to be Savage rational decision makers satisfying
Savage’s 7 axioms ([31]). The probability distributions are defined on the same support,
and we assume them to be mutually, absolutely continuous with respect to each other.
Suppose h1 and h2 represent two arbitrary, random prospects, members of some set F of
“acts”, facing agent i, defined on the same probability space. Savage’s expected utility
theorem then says:

There exist a utility index ui and a probability distribution pi such that h1 � h2 if and
only if

∫
R ui(h1(z))dpi(z) ≥

∫
Ω ui(h2(z))dpi(z), i ∈ N .
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In other words, the preference relation � defined on the set of random prospects
F has a numerical representation not only given by a utility index ui(x), but also by
a probability distribution pi(z). In our case, the pi(z) corresponds to the cumulative
probability distribution function Fi(z) where the derivative F′i (z) = fi(z). The strict
interpretation of this representation is that all uncertainty is subjective, while in the von
Neumann–Morgenstern framework, all uncertainty is objective.

It has been claimed that the Savage interpretation works better in a business world.
The following simple example illustrates:

Example 5. Consider the two following lotteries, called acts by Savage:
h1: You win 1000 Euro if the football (soccer) team Barcelona ends among the top three teams

in its division, Ecuardorian Serie A, next year, otherwise you get 0.
h2: You win 1000 Euro if a fair coin lands heads in 4 consecutive trials, otherwise you get 0.
Suppose you get the choice between h1 and h2, and your utility function is u. You would then

calculate:
Eu(h1) = pu(1000) + (1− p)u(0) = p.

Here we have normalized so that u(1000) = 1 and u(0) = 0, which we can do in both
frameworks. Also, p is the probability of success in lottery h1.

Similarly,

E(h2) = (
1
2
)4u(1000) + (1− (

1
2
)4)u(0) =

1
16

.

Notice that your choice does not depend on the utility function u. In the von Neumann–
Morgenstern framework, this is not a bona fide decision problem, since the choice only depends on
probabilities, which are objective and hence known to the decision maker. In the Savage approach
however, probabilities are subjective and part of the preference representation, and is accordingly a
decision problem. �

5.1. Homogeneous Probability Beliefs

When probabilities are the same across the agents, the numerical representation of
preferences looks the same as with the von Neumann–Morgenstern interpretation, where
the probabilities are considered to be objective, so it can in principal be interpreted either
way. However, recall Example 5.

If one happens to be a Bayesian however, one will argue a bit differently. According
to [32], if two people have the same priors, and their posteriors for an event A are common
knowledge, then these posteriors are equal.

The normal situation is that the weights λ = (λ1, λ2. . . . , λN) will affect the sharing
rules yi(xM), and by this the risk tolerance of the syndicate, via the inequalities within the
allocation (y1, y2, . . . , yN). This is true with or without homogeneous beliefs. However, if
the risk tolerances of the individual members are of the HARA type with equal cautiousness
parameter that is given by ρi(x) = αi + βx, we obtain from the result (6) that the risk
tolerance of the syndicate is given by:

ρ(x) =
N

∑
i=1

(αi + βyi(x, z)) = α + βx, ∀z (12)

where α = ∑N
i=1 αi is a constant, and where ∑N

i=1 yi(x, z) = x for all z by market clearing.
(Recall, no risk disappears after risk sharing; the total risk is, presumably now better
distributed among the members so that the ones who can carry more risk, do so at the
optimum.) Notice that the risk tolerance of the group does not depend on the weights λ, so
we have dropped the superscript on ρ. This also means that the evaluation measure of the
syndicate, what we earlier denoted by u(x|λ), does not depend on λ either, so we refer to
it as u(x) when this is the case. This means that the inequalities in the wealth distribution
does not affect the syndicate’s willingness to risk-taking.
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Because of this fact, we limit ourselves for the moment to the case of HARA-utility
functions ui(x) for the members of the group, where the risk tolerances are all affine with
the same cautiousness β = ρ′i(x), i = 1, 2, . . . , N. Here yi(x, z) = yi(x) for all i ∈ N when
probability beliefs are homogeneous.

In this situation, we define the ‘derived’ utility vi of member i as follows:

vi(x) := ui(yi(x)), i = 1, 2, · · · , N.

This means that once the group has been established and the members have agreed
upon a Pareto optimal sharing rule y = y(x), we consider the individual’s utility function
after this sharing rule has been implemented, as a function of the aggregate wealth x. Since
there is an element of optimization behind this construction, we call this the derived utility
functions of the members (or, perhaps, the indirect utility functions). We can then show the
following:

Theorem 7. Let the members of the group all have affine risk tolerances with the same cautiousness.
Then the risk tolerance of any member’s derived utility functions vi, i ∈ N , is the same as the risk
tolerance of the syndicate.

As a consequence of this result, any member of such a group can be given the task
of making decisions under uncertainty on behalf of the group. There is unanimity on
the management of risk followed by the planner. Such a group is called an unanimous
syndicate, which we formalize later.

Since the result is rather central, in Appendix C we present a proof.
The attitude towards the aggregate risk of each member of the pool is identical, and

equal to the one of the central planner, despite the fact that the members have different
preferences to start with. These important properties hold only in the case of HARA-utility
functions with identical cautiousness β, as will be pointed out later.

This theorem is of course a bit special, but is nevertheless a remarkable result. If
the conditions were true in practical life, there would not be much disagreement among
us. However recall that the individuals are assumed to be equally well informed and,
moreover, have homogeneous probability beliefs.

In other contexts than purely financial, ‘group thinking’ may imply more agreement
than is desirable, in that the ability of flexibility and critical thinking may be lost.

With differential information and/or heterogeneous probabilities, results might be
different, and, perhaps, more realistic. We shall return to this below.

To illustrate, we consider an example, where the individual members have different
preferences of the negative exponential type described earlier, a HARA class of utilities
with equal cautiousness across the population.

5.2. Example: Optimal Diversification

Suppose that a partnership (syndicate) has the opportunity to invest its capital of
1 USD in a project with an uncertain return of Z per dollar invested. The partnership
can borrow, or lend capital in any amount a at interest rate r, so a payoff g(a, Z) =
(1+ a)Z− ar is available, and the decision problem is to choose an optimal amount of debt,
or equivalently, an optimal amount (1 + a) invested in the risky project.

Suppose that all members agree that Z is normally distributed with probability density
fZ(z) having mean m and variance v, and moreover the individuals have all negative
exponential utility functions ui(x) = 1− ρie−x/ρi , i ∈ N , where ρi are the risk tolerances
of the individuals.

Then we know that the syndicate has risk tolerance ρ = ∑i ρi and evaluation measure
u(x) = 1− ρe−x/ρ, which does not depend on λ.

Before the decision is made, the members have decided on a Pareto optimal sharing
rule, which under our assumptions is given by yi(x, z) = yi(x) = ρi

ρ x + bi for some zero
sum constants bi, as explained in Example 2.
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The syndicates decision problem consists in finding the value of a which maximizes:

Eu(g(a, Z)) =
∫ ∞

−∞
u(g(a, z)) fZ(z)dz =∫ ∞

−∞

(
1− ρe−

1
ρ ((1+a)z−ar)) 1√

2πv
e−

1
2
(z−m)2

v dz. (13)

The first order condition is both necessary and sufficient for a maximum here, so we
solve d

da
(
Eu(g(a, Z))

)
= 0, which has solution:

1 + a∗ =
ρ

v
(m− r). (14)

We show the calculation below.
The interpretation of this expression is:
(i) More is invested in the risky project the larger the risk tolerance ρ of the syndicate.
(ii) More is invested risky the larger the “risk premium” (m− r).
(iii) Less is invested risky the larger the variance v.
For those familiar with the optimal portfolio selection theory in finance, the above

solution has the same basic features. See [33–36]. The two first consider intertemporary
models in discrete time, the next uses continuous time with continuous dynamics, while
the last one uses continuous time and continuous dynamics with jumps included.

Let us look at the calculations:

d
da
(
Eu(g(a, Z))

)
=
∫ ∞

−∞
(z− r)e−

1
ρ ((1+a)z−ar) 1√

2πv
e−

1
2v (z−m)2

dz = 0.

Utilizing the form of the normal distribution and forming a full square, this is equiva-
lent to: ∫ ∞

−∞

1√
2πv

ze−
1

2v (z−(m−v 1+a
ρ ))2

e(
ar
ρ −

1
2v m2)+ 1

2v (m−v+ 1+a
ρ )2

dz =

r
∫ ∞

−∞

1√
2πv

ze−
1

2v (y−(m−v 1+a
ρ ))2

e(
ar
ρ −

1
2v m2)+ 1

2v (m−v+ 1+a
ρ )2

dz.

Using that the integral of a probability distribution equals 1, and the definition of
expected value of a normal variate, we now have after canceling the constants:

m− v
1 + a

ρ
= r,

which proves our result (14).
Now we come to the more interesting point, the one of agreement in the syndicate.

Consider any member of the group, let us say member i. This agent’s decision problem
after the syndicate has been formed and a Pareto optimal sharing rule yi(x) = ρi

ρ x + bi has
been established, is the following:

maxa

∫ ∞

−∞
ui(yi(x)) fX(x)dx = maxa

∫ ∞

−∞
(1− ρie

− 1
ρi

yi(x)
) fX(x)dx =

maxa

∫ ∞

−∞
(1− ρie

− 1
ρi
(

ρi
ρ [(1+a)z−ar]+bi)) fZ(z)dz =

maxa

∫ ∞

−∞
(1− ρie

− bi
ρi e−

1
ρ ((1+a)z−ar)

)
1√
2πv

e−
1

2v (z−m)2
dz.

The latter optimization problem is seen to give the same result as the problem of

the central planner, since the two different constants, ρ versus ρie
− bi

ρi , multiplying the
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exponential function, simply cancel in both cases after differentiation, equating the result
to 0, and thus do not affect the optimal solution a∗.

Hence we have an application of Theorem 7.

5.3. Heterogeneous Probability Beliefs

With different probability functions in the Savage representations, we choose to
interpret these distributions as posterior probability distributions, which may be the result
from different priors where information may, or may not, be different. Below we shall also
make use of the dispersion functions ϕi(z) =: f ′i (z)/ fi(z), assuming fi(z) > 0 for all z and
for all i.

In a syndicate, the dispersion of the individuals result in a syndicate dispersion at
a Pareto optimum, which is a mixture of individual dispersions and the derivatives of
the sharing rules with respect to x. Since the latter depend on the utility functions of the
members, the resulting probability distribution f (z) of the central planner is a mixture of
the individual probability distributions and the corresponding utility functions via the
sharing rules.

We do not obtain a simple separation between some probability distribution of the
syndicate that depend solely on the members probability distributions, and a utility func-
tion which is related to a sup-convolution problem. However, we characterize conditions
under which we obtain a separation between a resulting probability distribution of the
syndicate, f (z), and its utility function u(x|λ), which comprises the evaluation measure,
call it u(x, z|λ) = u(x|λ) f (z) of the syndicate. Since the resulting probability density f
will also depend on the member’s utility functions through the sharing rules, this brings
the theory well into the framework of [31]. Below we follow [1,37,38], where many of the
proofs that we omit can be found.

Unlike our treatment in Sections 3 and 4, we now have both a decision a and a random
variable Z that affect the payoff x = g(a, Z). In order to be precise, this calls for some
definitions.

By a sharing rule, we mean a set of functions:

y = {yi(x, z|λ); i ∈ N} such that
N

∑
i=1

yi(x, z|λ) = x, ∀z.

A contract is an ordered pair, (y, a), of a sharing rule y and a decision a. A contract
(y, a) Pareto dominates another contract (ŷ, â) if, for all i:

Ei{ui(yi(g(a, Z), Z|λ))} ≥ Ei{ui(ŷi(g(â, Z), Z|λ))}

with strong inequality for at least one i. The operator Ei denotes expectation with respect to
the density fi(z). A contract is Pareto optimal if there does not exist any Pareto dominating
contract. This generates a partial order over contracts. The associated preference order is
called the Pareto order of contracts.

A decision a is Pareto-preferred to a decision â if there exists a sharing rule y such that:

Ei{ui(yi(g(a, Z), Z))} ≥ Ei{ui(ŷi(g(â, Z), Z))} ∀ ŷ and i ∈ N ,

where we have dropped the possible λ-dependence for notational convenience. When we
wish to take account of the the dependence of the sharing rule on decision a, we write
yi(x, z|a).

This defines a partial order on A and is called the Pareto order on A.
A sharing rule y is Pareto optimal for some a ∈ A provided there does not exist a ŷ

such that:
Ei{ui(yi(g(a, Z), Z))} ≤ Ei{ui(ŷi(g(a, Z), Z))} ∀i ∈ N ,

with strong inequality for at least one agent j.
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Generalizing the results of Section 3, let y be a Pareto optimal sharing rule for a ∈ A.
Then there exists a vector of agent weights λ(a) = (λ1(a), λ2(a), . . . , λN(a)) such that
y = (y1, y2, . . . , yN) maximizes:

N

∑
i=1

λi(a)Ei{ui(yi[g(a, Z), Z)|a]} subject to
N

∑
i=1

yi(x, z|a) = x ∀(x, z|a).

Assume that fi(z) > 0 for all z and that λi(a) > 0 for all i ∈ N . By optimizing the
Lagrange function of the above problem, we can show the following:

Theorem 8. First order necessary and sufficient conditions for Pareto optimality of the sharing
rule y is that there exists non-negative weights λ(a) = (λ1(a), λ2(a), . . . , λN(a)) and a function
µ(x, z|a) such that:

(1)
N

∑
i=1

yi(g(a, z), z|a) = g(a, z), ∀z

and
(2) λi(a)u′i(yi(g(a, z), z|a)) fi(z) = µ(g(a, z), z|a), ∀z and i ∈ N .

We say that a complete order on A can be derived from an evaluation measure if there
exists a function M(x, z) such that a is preferred to â if and only if:∫

M(g(a, z), z)dz ≥
∫

M(g(â, z), z)dz.

We now assume as in Sections 5.1 and 5.2 that a sharing rule is chosen before decision
a is considered, in which case the agent weights λi do not depend on a. We seek conditions
for the existence of an evaluation measure representing group decision processes.

Towards this end we start with a sufficiently rich set A and suppose that the group
must choose a Pareto optimal contract. Let (y, a) be such a contract. Then y must be a
Pareto optimal sharing rule for a, and since this is characterized by the weights λi, which
do not depend on a, y is also Pareto optimal for all a ∈ A.

Now, let λ be the weights corresponding to y. Then it must be the case that:

a ∈ Argmaxα∈A

N

∑
i=1

λiEi[ui(yi(g(α, Z), Z))]. (15)

The reason is that the feasible set over α ∈ A is convex from our assumption about
the structure of A.

We now define:

M(x, z) =
N

∑
i=1

λiui(yi(x, z)) fi(z). (16)

Then we can reformulate (15) to:

a ∈ Argmaxα∈A

∫
M(g(α, z), z)dz.

We now define an order � on A by:

a � â iff
∫

M(g(a, z), z)dz ≥
∫

M(g(â, z), z)dz.

An order � is said to be Pareto-inclusive if a is Pareto-preferred to â to imply that
a � â.

Here it can be shown that � is Pareto inclusive. The order � selects the same optimal
decision as the group chooses.
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We now assume that an evaluation measure M(x, z) exists independent of a. Then by
the use of Theorem 8 notice that:

∂M(x, z)
∂x

=
N

∑
i=1

λiu′i(yi(x, z))
∂yi(x, z)

∂x
fi(z) = µ(x, z)

N

∑
i=1

∂yi(x, z)
∂x

= µ(x, z).

In other words, the Lagrange multiplier µ(x, z) is the marginal change in the evaluation
measure with respect to x, just as u′(x) = µ(x) in the proof of Theorem 3. This is also in
analogy with the way the state price in Appendix B is connected to the marginal utility of
the representative agent via du(x|λ)/dx = π(x), here related to equilibrium.

We have the risk tolerances ρi(x) = −u′i(x)/u′′i (x) of the agents and dispersion
functions ϕi(z) = f ′i (z)/ fi(z) of the probability distributions, i ∈ N . Since ϕi(z) =
d
(
ln fi(z)

)
/dz, we can reconstruct the probability densities from the dispersion functions

as follows: fi(z) =exp
( ∫ z

z0
ϕi(s)ds

)
. We now define the corresponding concepts for the

syndicate:

ρ(x, z) = − µ(x, z)
∂µ(x, z)/∂x

and ϕ(x, z) =
∂µ(x, z)/∂z

µ(x, z)
.

The following general properties hold for the functions ρi, ρ, ϕi, and ϕ:

(i) ∑
i

ρi(yi(x, z)) = ρ(x, z);

(ii)
∂yi(x, z)

∂x
=

ρi(yi(x, z))
ρ(x, z);

(iii) ∑
i

∂yi(x, z)
∂x

ϕi(z) = ϕ(x, z).

Here (i) and (ii) are the extensions of (6) and (7) to the inhomogeneous case, while
(iii) is new. It implies that the syndicate’s dispersion function depends on the individuals’
dispersion functions as well as of the sharing rule, which in turn depend on the members’
utility functions.

We give a proof of property (iii) in Appendix C.
Returning to the question mentioned earlier: Given a Pareto optimal sharing rule

y, under what conditions, if any, will the syndicate behave as a Savage-rational decision
maker in the choice of a?

The answer is that this happens if and only if the evaluation measure u(x, z) is
separable with respect to x and z, that is, if and only if there exist a function u(x) and a
probability density f (z) such that:

u(x, z) = u(x) f (z),

where u(·) is strictly concave and strictly increasing and f (z) is mutually absolutely
continuous with respect to fi(z) for all i ∈ N and possesses a dispersion function.

As a consequence of (iii) above, the syndicate’s probability density function f (z)
depends on the members’ probability density functions as well as their utility functions,
which is remarkable and emphasizes the Savage (or de Finetti)-style nature of the syndicate.

In this case, the complete preference order on A is generated by:∫
u(g(a, z), z)dz =

∫
u(g(a, z)) f (z)dz,

and the syndicate is said to be a Wilson syndicate (after Robert Wilson, who was awarded
the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel in 2020,
together with Paul R. Milgrom).
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For a Wilson syndicate we notice that:

ρ(x, z) = − u′(x) f (z)
u′′(x) f (z)

= − u′(x)
u′′(x)

does not depend on z, and is the syndicates risk tolerance, while the syndicates dispersion
function is given by:

ϕ(x, z) =
u′(x) f ′(z)
u′(x) f (z)

=
f ′(z)
f (z)

.

We now need a formal definition: A sharing rule is said to be affine provided ∂yi(x,z)
∂x

is independent of x for all i ∈ N . We can then show the following (see Amershi and
Stockenius (1983)):

Theorem 9. If the members of a syndicate have the same probability assessments, or if the sharing
rules are affine, then the syndicate is a Wilson syndicate.

An example may illustrate.

Example 6. Let u1(x) = u2(x) = ln(x) for x ∈ [0, 1] and f1(z) = 1, f2(z) = 2z for z ∈ (0, 1),
where N = {1, 2}. Consider the particular sharing rule where λ1 = λ2. The associated Pareto
optimal contracts y satisfy:

u′1(y1(x, z)) f1(z) = u′2(y2(x, z)) f2(z) = µ(x, z).

This means that:

1
y1(x, z)

=
2y

y2(x, z)
= µ(x, z), ∀z ∈ (0, 1).

From ∑i yi(x, z) = x for all (z, x), it follows that µ(x, z) = (2z + 1)/x which is separable,
hence this is a Wilson syndicate.

The sharing rules are given by y1(x, z) = x
2z+1 , y2(x, z) = 2xz

2z+1 . The evaluation measure
u(x, z) = 2ln(x)( 1

2 (2z + 1)), from which we can take u(x) = 2ln(x) and f (z) = 1
2 (2z + 1), a

trapezium distribution, which is a mixture of f1 which is uniform, and f2 which is triangular, but
its final shape is also influenced by u1 and u2.

Here ∂y1(x,z)
∂x = 1

1+2z and ∂y2(x,z)
∂x = 2z

1+2z do not depend on x, so the sharing rules are here
linear. According to the result above, this fact is enough to verify that we here have a Wilson
syndicate as well.

6. Syndicates II

In part I, we formulated the conditions under which a group of people behave as
a Savage-rational decision maker. Except from Sections 5.1 and 5.2, the theory in part
I is relevant for a group of people who use a given Pareto optimal sharing rule. The
constructed evaluation measure is valid for this particular weighting λ, with an associate
Pareto-inclusive complete preference ordering on A.

In this section, we ask the following question: Under which conditions are the prefer-
ence orderings generated by different λ-weightings equivalent?

We need the following definition: A sharing rule is said to be determinate provided
∂yi(x,z)

∂x does not depend on z for all i ∈ N .

A sharing rule is both affine and determinate if ∂yi(x,z)
∂x is a constant for all i.

Note that in Example 5 the sharing rule is not determinate.
For what comes next we need the following technical result:
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Proposition 1.
∂µ(x, z)

∂λj
=

1
λj

∂yj(x, z)
∂x

µ(x, z).

A proof can be found in Appendix C.
Notice that the evaluation measure for a given weighting is determined by the relative

sizes of the weights, so the partial derivative of µ(x, z) with respect to λj can be considered
a change in the weighting.

By this result, the following can now be shown:

Theorem 10. The evaluation measure of a syndicate is determined independent, modulo a propor-
tional constant, of the chosen Pareto optimal sharing rule λ if and only if all the sharing rules are
affine and determinate.

A natural question is now how to characterize utility functions that guarantee that the
Pareto optimal sharing rules are affine and determinate. The first result in this direction is
closely related to Theorem 7:

Theorem 11. Suppose that the probability assessments are all homogeneous. All the Pareto optimal
sharing rules are affine and determinate if and only if the member’s utility functions all have linear
risk tolerances (HARA) with an identical cautiousness parameter.

In order to connect more directly to the result in Theorem 7, we need the following
two definitions:

A group of people is said to be a λ-unanimous syndicate provided for all i, j, a, and â
we have:

Ei
(
ui(yi(g(a, Z), Z))

)
≥ Ei

(
ui(yi(g(â, Z), Z))

)
is equivalent to:

Ej
(
uj(yj(g(a, Z), Z))

)
≥ Ej

(
uj(yj(g(â, Z), Z))

)
where y is the Pareto optimal sharing rule associated with λ.

A syndicate which is λ-unanimous for every λ is said to be an unanimous syndicate.
In an unanimous syndicate one can delegate the decision making process to any of

the syndicate’s members.
We now have two results, which we also cite without proofs:

Theorem 12. A syndicate is λ-unanimous if and only if the λ-Pareto optimal sharing rule is affine
and determinate.

Corollary 1. A syndicate is unanimous if and only if all the Pareto optimal sharing rules are linear
and determinate.

The following summarizes many of the above results in the case when there is agree-
ment with regard to probability assessments:

Theorem 13. In a syndicate with agreement about the probability distributions, the following are
equivalent:

(1) The syndicate is unanimous.
(2) All members of the group have HARA-class utility functions with the same degree of

cautiousness.
(3) The evaluation measure of the syndicate is determined independent of λ, or equivalently,

the complete preference orders on A generated by the group’s different evaluation measures are all
equivalent.

(4) The group’s Pareto ordering on A is complete.
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We notice that (1) and (2) is a sharpening of our previous Theorem 7 in Section 5.1 in
that we in fact have equivalence between the HARA-class with the same cautiousness and
the property of unanimity.

The following can be summarized in the general case:

Theorem 14. For a syndicate with heterogenous probability beliefs the following are equivalent:
(1) The syndicate is λ-unanimous for some λ.
(2) The group is an unanimous syndicate.
(3) All the members of the group have constant absolute risk aversions.
(4) The preference orders generated by u(x, z|λ) are identical for all λ.
(5) The group’s Pareto-order is complete.

This theorem gives an answer to our earlier discussion about agreements in a group.
When probability assessments are different between the members of the group, it is more
difficult for the group to be a unanimous syndicate: All the members must have negative
exponential utility functions, which is more limiting than having general HARA utility
with the same cautiousness parameter. Their absolute risk aversions are allowed to be
different, but otherwise this class is, of course, somewhat restricted. However, this property
constitutes a good example in illustrating optimal risk sharing, as we pointed out in
Example 2 of Section 3.3, and actually provides reinsurance treaties that are in daily use in
the insurance industry.

Wilson in [1] presented an example of a group decision problem of the same type as
we discussed in Section 5.2 with the difference that the members have different probability
distributions for the risky asset. It is interesting to notice how the syndicate’s probability
assessment is constructed in this case. We focus on this part in his example.

6.1. An Example

We consider the same problem as in Section 5.2 but with heterogeneous probabilities.
As before, we have negative exponential utility functions with risk tolerances ρi, which
implies that the syndicate has the same type of utility function with risk tolerance ρ = ∑i ρi.
Here member i has a probability density according to the N(mi, vi) distribution, so these
are normally distributed with means and variances depending on the individual.

The sharing rules satisfy ∂yi(x,z)
∂x = ρi

ρ , i ∈ N . Here the syndicate’s probability density
happens to be normal with mean m and variance v, where:

m = v ∑
i

ρi
ρ

mi
vi

,

and

v−1 = ∑
i

∂yi(x, z)
∂x

v−1
i = ∑

i

ρiv−1
i

ρ
.

Here we have used property (iii) for dispersions in Section 5.3.
Notice how the syndicate’s probability distribution is a mixture of the individual

members’ probability distributions and the utility functions of the members, represented
by the risk tolerances of the individuals and of the syndicate. This places this theory in the
subjective tradition of representing preferences in a non-trivial way.

The computations from now on are similar to our previous calculations, where the
optimal investment in the risky asset is given by Equation (14), with m and v as given
above.

We also have to show that the result is the same when the task of decision making is
left in the hands of an arbitrary member of the syndicate. This goes much as before, but
notice that here the sharing rules yi(x, z) depend on z and hence on a mixture of all the
parameters of the preferences and the probability distributions, but since the sharing rules
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are also determinate, these dependencies simplify after differentiation with respect to a,
and the result becomes as before, in agreement with Property (2) in Theorem 14. �

In our model the agents know their own probability distribution as well as all those of
the other agents. Accordingly, the model can not be used directly to analyze asymmetric
information. However, close variants of the model have been utilized for this topic as
well. An example is the model of [39], who analyzes the situation with two agents, a
principal and an agent. Only the agent can make the decision, which can not be observed
by the principal, which is where the asymmetric information comes in (Bengt Holmstrøm
obtained the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel
in 2016, together with Oliver Hart. Holmstrøm’s Ph.D. advisor was Robert Wilson). The
resulting model was used for situations with moral hazard. A model where the different
agents have different priors as well as different information is presented by [40,41]. see
also [42].

We can use the theory of syndicates at several levels. At the first level for risk sharing
between individuals, the objectives consist in maximizing individual preferences of the
members, assuming these can be represented by expected utility. This leads to an evaluation
measures for the mutual insurance company, the reinsurance market, the nation, or the
international organization, respectively, whatever the focus of the study. This construction
allows us to form several levels of syndication.

An example of this is given in [43], where marine insurance is studied at three levels.
The preferences of ship owners give rise to the evaluation measures of the various P&I-
Club, and the latter give rise to the final evaluation measure of the reinsurance syndicate,
where the various clubs obtain their reinsurances. From this, prices in the insurance market
will be formed according to the theory.

The situation with different probability beliefs typically gives rise to betting between
the agents. We next consider this phenomenon when they do not formally enter a syndicate
and agree on a sharing rule, which is the case when the model is interpreted as an Arrow–
Debreu equilibrium model.

7. Syndicates, Financial Markets, and General Equilibrium

Consider as in Section 4 an exchange economy under uncertainty with one consump-
tion good. The N agents are characterized by utility functions and associated probability
density functions as well as initial endowments, with the same assumptions as above. The
uncertainty in the economy is associated with a random vector Z = (Z1, Z2, . . . , Zm) of
dimension m say, which affect the market portfolio x(Z) = ∑i xi(Z), where xi are the initial
endowment of agent i as before. We assume the joint probability distribution of the vector
(x1(Z), x2(Z), . . . , xN(Z)) is known, although we do not need to specify the functional
relationship between x and Z here. We know that any competitive equilibrium is Pareto
optimal, and that any Pareto optimum can be implemented as a competitive equilibrium,
possibly after a redistribution of the initial endowments (by the First and Second Welfare
Theorem).

The extension to a multivariate Z will primarily affect the relationship (iii) in Section 5.3.
If we define the marginal dispersions of the individuals and the syndicate as:

ϕi(zk) =:
∂ fi(z)

∂zk

fi(z)
, i ∈ N and ϕ(x, zk) =

∂µ(x,z)
∂zk

µ(x, z)
, k = 1, 2, . . . m,

respectively, then we obtain the following generalization of (iii):

ϕ(x, zk) =
N

∑
i=1

ϕi(zk)
∂yj(x, z)

∂x
, k = 1, 2, . . . , m.

By extending this to higher order partial derivatives, the joint distribution f (z) can be
determined from the sharing rules and higher order dispersions.
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An alternative to this, and a bit outside the theme of the paper, is to determine
the univariate marginal distributions from the above equations, and employ copulas to
determine the joint distribution. Correlation coefficients are good measures of dependence
in the case of joint normality, but in general can copulas give a better picture?

Define the decision a by g(a, z) = x(z) for any realization z of Z, and consider the set:

A =
{

a|E
(

g(a, Z)u′(x(Z), Z|λ)
)
= E

(
x(Z)u′(x(Z), Z|λ)

)}
.

The expectation is taken with respect to the joint probability distribution f (z), which
is determined as described above.

In an exchange economy, we can interpret a decision a ∈ A as a budget-feasible
consumption plan for a “pseudo agent” with initial allocation x(z) who is confronted with
state prices u′(x(z), z|λ) f (z) in state z. Defined this way, the set A is convex and satisfies
our earlier conditions.

Based on the syndicate theory, in particular Theorem 8, construction prices
u′(x(z, z|λ)) f (z) occur in equilibrium if and only if there exists a λ such that a∗ is the
optimal decision in A based on the preference order generated by the evaluation measure
M(x, z|λ) = ∑i λiui(yi(x(z), z|λ) fi(z). The evaluation measure depends in general on the
weights λ, where yi(x(z), z|λ) is the optimal consumption of agent i, i ∈ N .

An economy populated with agents (ui, fi), i = 1, 2, . . . , N is said to have the aggrega-
tion property if all the equilibria are characterized by the same price functional based on
u′(x(z), z) f (z) (modulo a normalization), see [37].

Suppose now that x(z) is not a constant as z ∈ Rm varies. Then we say that there is a
non-trivial social risk.

Under this assumption, the following result can be proven:

Proposition 2. The following is equivalent:
(i) The economy has the aggregation property.
(ii) The economy is equivalent to an unanimous syndicate.

A proof can be found in Appendix C.
If x(z) = x̄ for all z ∈ Rm, then µ(x(z), z|λ) = u′(x(z)|λ) f (z) so the ratio between

prices in different states of the world would be:

u′(x̄|λ) f (z)
u′(x̄|λ) f (s)

=
f (z)
f (s)

independent of the sharing rule λ, which is a degenerate case, since this ratio is in general
equal to:

u′(x(z)|λ) f (z)
u′(x(s)|λ) f (s)

=
λi
λj

u′i(yi(x(z), z)) fi(z)
u′j(yj(x(s), s) f j(s)

, ∀(i, j)

for any states z and s. This follows from the first order conditions, where the the marginal
rates of substitution of consumption in states z and s is the same for all agents i ∈ N .

A market constructed this way would typically imply “betting” between agents with
different probability beliefs (and has been questioned for this added complexity). To see
how a sharing rule will typically look like, consider the market analogue to the syndicate
in the example in Section 6.1, where N = 2. The sharing rules yi(x(z), z), i = 1, 2 are given
by:

y1(x(z), z) =
ρ1

ρ
x(z) +

(
ρ1lnλ1 − ρ1

K
ρ

)
+

(
∑

j
ρ−1

j
)−1 1

2
(
− (z−m1)

2/v1 + (z−m2)
2/v2 − ln(

v1

v2
)
)
,
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where K = ∑j ρjlnλj (see Example 2), and with the following expression for agent 2:

y2(x(z), z) =
ρ2

ρ
x(z) +

(
ρ2lnλ2 − ρ2

K
ρ

)
+

(
∑

j
ρ−1

j
)−1 1

2
(
− (z−m2)

2/v2 + (z−m1)
2/v1 − ln(

v2

v1
)
)
,

when m = 1. Here we have used the system differential equations given in Section 5.3,
equation (ii). Notice that y1 + y2 = x for all z as the case should be.

According to agent 1’s probability belief, realization z should be close to m1. If this
happens and v1 < v2, then the z-dependent term (the third term on the right-hand side) in
the above expression involves a net transfer from agent 2 to agent 1 at time 1, in which case
agent 1 wins the bet.

On the other hand, if z falls close to m2 and v2 < v1, agent 2 wins.
In the situation of Proposition 1, the optimal sharing rules are linear, in which case

we may alternatively think of the model as a stock market economy (in contrast to the
more general Arrow–Debreu economy), at least if probability beliefs are homogeneous.
Such market sharing rules are automatically linear, since stocks can be bought and sold in
proportions only (number of shares times price). Such a market is sometimes said to be
effectively complete when probability beliefs are homogeneous, since non-linear contracts
are not optimal.

Under certain conditions we may implement a securities market equilibrium with
N securities and associated stock prices S at time 0, and portfolio weights θ1, θ2, . . . , θN ,
such that (θ1, θ2, . . . , θN ; S) has security market equilibrium with the same consumption
allocation (y1, y2, . . . , yN) as in the Arrow–Debreu economy (see for example [19] for a
definition of such a security market equilibrium). This construction can be carried out
when the securities market is complete, but can alternatively result with linear sharing
rules as explained above.

In the one-period model, without explicit Brownian motion dynamics, a simple model
obtains when the state space is finite. When the number of the risky stock-owned compa-
nies, whose vectors of state-contingent payoffs are linearly independent, is at least equal to,
or larger than the number of states, the resulting market is complete, recall the last result in
Section B.1.2 (Appendix B). In our setting, we have an uncountable large state space, since
we have probability densities on compacts. This could, perhaps, be related to the theory of
so-called “large markets”, which uses contiguity concepts and is beyond the scope of the
present article, see for example [44].

Non-linear contracts, like various derivatives and options, do exist and are traded in
real life markets, and one may wonder if this can be analyzed within the framework of the
present model. Consider for example a contract with payoff yp

1 at time 1, p ≥ 2, still with
homogeneous probability beliefs. Its price at time 0 is simply:

Π(yp
1 ) =

∫
y

yp
1 (x(z), z)u′(x(z), z|λ) f (z)dz,

provided the integral exists. Such a claim is, moreover, not redundant in this model, and
the optimal consumption allocations yi can be attained in a market of stock-owned firms
only. The completeness issue is if such a security can be spanned by a portfolio of the given
securities.

In general, with the existence of general Arrow–Debreu securities, the finite number of
optimal contracts, interpreted as securities in a stock market, is not sufficient to determine
the Arrow–Debreu state prices. However, in the present setting, the Arrow–Debreu prices
are known from the structure of the model.

If we go beyond the class of HARA-utility functions, we encounter non-linear Pareto
optimal contracts. However, the resulting contracts may not come close to the financial
instruments that market participants want to trade.
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When probability beliefs are inhomogeneous, betting occurs as we have demonstrated
above. However, the bets are structured by the model. In the standard model, derivatives
are considered as bets on the state of the economy, or on the price of one of more of the
given securities or functions of such, but the setting only leaves the agents indifferent
between status quo or actually acquiring the derivative, short or long. In the present
setting, agents bet actively, more like in the real world, and one may wonder if this added
feature could be useful in analyzing derivatives.

8. Conclusions

We reviewed optimal risk sharing among members of various organizations. The
starting point was optimal risk sharing in an Arrow–Debreu economy, or equivalently,
in a Borch-type reinsurance market. From the results of this model we inferred how risk
is optimally distributed between individuals according to their preferences and initial
endowments. Not surprisingly, risk aversions play an important role. In addition to
employing the criterion of Pareto optimality, we also narrowed the scope to the pricing
problem connected with competitive equilibrium within the same framework.

The mutuality principle basically says that when it is blowing from the north, all
the trees bend southwards: This principle, we claim, can be connected to the economic
consequences of a pandemic; it makes most people worse off, and when it is over, those
who survived may improve their situation (although it may take some time).

From this we progressed to a review of the more general theory of syndicates, where,
in addition, a group of people is to make a common decision under uncertainty. Conditions
were formulated under which the syndicate behaves as a rational Savage decision maker,
with an associated evaluation measure.

Depending on the structure of this measure, we can infer the degree of unanimity in
the syndicate. Presumably, a theory like this can shed some light on what goes on in world
meetings, like for example, the UN Climate Change Conference (COP26) held in Glasgow
in November 2021. It basically says that it is hard to agree, which was experienced. Lastly,
we also extended the syndicate setting to a competitive market equilibrium.
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Appendix A

Proof of Theorem 1. From functional analysis, it is known that a positive, linear functional
on an Lp-space is bounded (1 ≤ p < ∞), and hence also continuous, in which case we can
use the Riesz Representation Theorem and conclude that there exists a unique random
variable π ∈ L2

+, where L2
+ is the positive cone of L2, such that:

Π(y) = E(yπ) for all y ∈ L2. (A1)

In an economic context, this non-negative random variable, the Riesz Representation,
turns out to be the state-price deflator. Other names used for this concept in the literature
is pricing kernel, state price density, or marginal rates of substitution, the latter is in a
dynamic context.

Finally, the pricing functional π is also strictly positive, meaning simply that π(Z) > 0
for any Z > 0. Here Z > 0 means that Z ≥ 0 a.s., and there is some set A such that
Z(ω) > 0 for all ω ∈ A where P(A) > 0. This is a direct consequence of no arbitrage
possibilities as well. Thus the Riesz’ representation π is strictly positive a.s.
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It should be noticed that if Ω is a finite set, any linear functional is automatically
continuous, so we would not need the theorem from functional analysis in order to apply
the Riesz Representation Theorem.

In conclusion, we have shown that if there is no arbitrage, then there exists a strictly
positive random variable π ∈ L2

+ such that prices are given by the relation (A1). On the
other hand if prices are given by (A1), there can not be any arbitrage. Suppose z ≥ 0 a.s.,
then π · z ≥ 0 a.s. since π > 0 a.s., and accordingly must Π(z) ≥ 0. Likewise, if z > 0,
(meaning z ≥ 0 a.s., and there exists a set A ∈ F having strictly positive probability, where
z(ω) > 0 for all ω ∈ A) then π · z > 0 since π > 0 a.s., and accordingly must Π(z) > 0.
Our proof is then complete.

Appendix B

Appendix B.1. State Prices

In order to put the basic message forward as simple and direct as possible, we consider
a discrete model for this part.

We fix a future point in time, called one period from today, and define a set Ω
containing S states of the world, indexed j = 1, 2, · · · , S. In other words, the state space is
Ω = {ω1, ω2, · · · , ωS} = {1, 2, · · · , S} for simplicity of notation.

In this one-period setting, we consider an exchange economy populated by N agents
with endowments xn, and preference relations over end-of-period consumption �n, n =
1, 2, · · · , N. Notice that we need no limitations like preferences, as they are represented by
expected utility, or otherwise, at this stage.

Appendix B.1.1. A Thought Experiment

Consider the following thought experiment: Imagine these individuals organize a
market for trade in contingent claims related to these states j = 1, 2, · · · , S. In this market
we imagine there will be established prices ψj for these state contingent claims, i.e.,

ψj = market value today of 1 unit of account at the end of the period,

given that state j occurs, j = 1, 2, · · · , S.

More precisely, we define a unit contingent claim, called an Arrow–Debreu security,
as follows:

1j =

{
1, if state j ∈ Ω occurs;
0, otherwise.

Then ψj is the price of 1j for any state j ∈ Ω.
Now we assume that there exists an equilibrium in Arrow–Debreu securities with

prices as indicated, a concept we define formally below (see [3,5]. Since this equilibrium is
formed by the N agents in this economy, the prices will reflect the characteristics of these
agents, including their preferences, their endowments, and the various states that can occur.
The details of how this comes about, we need not worry about at the present.

Suppose you have access to such a market and were to consider an investment project
y, where the payoff at the end of the period depends on what state j that occurs. Also
suppose that you are a price taker, in that your actions will not change the equilibrium
prices (if not, see e.g., [29]).

The project may be represented by a set of numbers yj representing the payoff if state
j occurs, j = 1, 2, · · · , S.

A natural question is then what this project is worth at the beginning of the period.
Let us denote this value by Π(y).

The answer is simple: If you owned the project, you could issue y1 state 1-claims 11,
y2 state 2-claims 12, · · · , yS state S-claims 1S, and sell these in the market.

Since the prices of the Arrow–Debreu securities are known, the amount from this sale
is given by ψ1y1 for the 11 claims plus ψ2y2 for the 12 claims plus · · · plus ψSyS for the 1S
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claims. In total, this sale may bring in ∑S
j=1 ψjyj, which must then represent the value of

the investment project y, i.e.,

Π(y) =
S

∑
j=1

ψjyj. (A2)

One thing to note about this valuation formula is that it does not explicitly depend on
the probabilities of the states. In other words, as long as the state prices ψj are known, the
valuation formula can be set down without really knowing the probabilities, call them pj,
of the various states, j = 1, 2, · · · , S.

Appendix B.1.2. Equivalent Representations of the Value of a Project

If the probabilities pj are known, we may alternatively express the value of any project
y as follows: Assuming all pj > 0, we can rewrite (A2) as follows:

Π(y) =
S

∑
j=1

pj
ψj

pj
yj.

This assumption is innocuous, since if one state has probability 0, this state may safely
be removed from consideration. It is of no interest here.

Let us define the Arrow–Debreu state prices in units of probability as the state price
deflator:

ψj

pj
:= πj = state price deflator in state j, j = 1, 2, · · · , S.

The vector π = (π1, π2, · · · , πS) is then the state price deflator. With probabilities in
place, we can consider π as a random variable defined on Ω, with value πj if state j occurs.

Using this, we may write the project value today as an expectation with respect to the
probabilities pj as follows:

Π(y) =
S

∑
j=1

pj(πjyj) = E(πy). (A3)

Here we have considered both π and y as random variables on the same probability
space (Ω,F , P), in which case (A3) is merely the definition of the expected value of the
product πy of these two random variables. In addition to having the state-price-in-units-of
probability interpretation of π, we have also recovered the basic pricing Formula (1) using
finite dimensional analysis.

This formula is important in large parts of financial and insurance economics, particu-
larly related to equilibrium theory.

Suppose we have a model of N securities where dn,j is the number of units of account
paid by security n in state j. Denote the prices of the N securities at time 0 by the vector q.
A portfolio θ ∈ RN has market value q · θ and payoff d′θ ∈ RS. d is the payoff matrix of the
securities, and prime here means transpose. We interpret this as a model of a stock market
(where sharing rules are linear). An arbitrage possibility is a portfolio θ ∈ RN with q · θ ≤ 0
and d′θ > 0, or q · θ < 0 and d′θ ≥ 0. In this discrete model, the no-arbitrage condition was
characterized by [22]. It says that there is no arbitrage if and only if there is a state price
vector ψ = (ψ1, ψ2, . . . , ψS) such that q = dψ.

Appendix C

Proof of Theorem 2. Suppose first that (y1, y2, . . . , yN) is a solution to problem (2), and
assume, to reach a contradiction, that it is not Pareto optimal. Assume for all that λi >
0. Then there exists a Pareto dominating allocation (ŷ1, ŷ2, . . . , ŷN) satisfying Eui(ŷi) ≥
Eui(yi) for all i ∈ N , and Euj(ŷj) > Euj(yj) for at least one j ∈ N , where ∑i ŷi ≤ x.
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But then the feasible allocation ŷ has a larger value of ∑N
i=1 λiEui(ŷi) than y, which is a

contradiction.
The other direction, that if y is Pareto optimal, then it is a solution to the problem

(2), can be proved by use of the Separating Hyperplane Theorem. Since this proof is a bit
technical, we skip it here.

Proof of Theorem 3. Starting with problem (3), the Lagrangian of the problem is the fol-
lowing:

L(z; µ) =
N

∑
i=1

λiui(zi)− µ(x|λ)
( N

∑
i=1

zi − x
)

(A4)

where the Lagrange multiplier µ(·|λ) depends on x. Here we recall the state by state
interpretation of the problem (3), in which x(ω) is the real number for any given state ω,
which means that µ(x(ω)|λ) is also a real number. This moves the problem to ordinary
Lagrange calculus in a deterministic world. (The notation also indicates that µ may depend
on the sharing rule λ.) The first order conditions for optimality of y in (A4) imply that for
x > 0,

λiu′i(yi) = µ(x|λ), i = 1, 2, . . . , N.

By the Envelope Theorem, we can write µ(x|λ) = u′(x|λ), where the latter is defined
in (3), and u is smooth enough by the Implicit Function Theorem. This implies that, for
every i and now interpreted as equalities between random variables, we have that:

λ1u′1(y1) = λ2u′2(y2) = . . . = λNu′N(yN) := u′(xM|λ) a.s.

This proves necessity. As for sufficiency, we note that the first-order conditions are
also a sufficient condition under concavity. The fact that the “sup-convolution” function
defined by the optimality problem (3) is concave, which is a nice student problem.

Proof of Theorem 4. Starting with the first order conditions:

λiu′i(yi(x)) = u′(x|λ), x ∈ B ⊆ R, i ∈ N ,

from our smoothness assumptions, both sides of the above equation are real, differen-
tiable functions (the right-hand side because of the implicit function theorem), so taking
derivatives of both sides gives:

λiu′′i (yi(x))y′i(x) = u′′(x|λ), x ∈ B ⊆ R, i ∈ N .

Dividing the second equation by the first, we obtain the following non-linear, first
order ordinary differential equation for the Pareto optimal allocation function yi(x):

y′i(x) =
Aλ(x)

Ai(yi(x))
, yi(x0) = bi, x, x0 ∈ B, i ∈ N . (A5)

Here yi(x0) = bi represent the initial conditions of these differential equations, where
∑I

i=1 bi = x0. This proves (b).
As for (a) notice that ∑i∈I y′i(x) = 1, for any x ∈ B ⊂ R, we obtain by summation in

(A5) that 1/Aλ = ∑i 1/Ai(yi(s), or:

ρλ(x) = ∑
i∈I

ρi(yi(x)), x ∈ B.

This can also be written:

ρλ(xM) = ∑
i∈I

ρi(yi(xM)), a.s., (A6)
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interpreted as an equality between random variables. This allows us to rewrite the differ-
ential equations in (A5) as in (7) as well.

Proof of Theorem 5. Let us go back to the system of nonlinear differential equations for
the Pareto optimal contracts in (7), which we repeat here:

dyi(x)
dx

=
ρi(yi(x))

ρλ(x)
, yi(x0) = bi, x, x0 ∈ B,

and assume we have HARA-class preferences with identical cautiousness. Then this system
of equations can be written as:

dyi(x)
dx

=
αi + βyi(x)

α + βx
, yi(x0) = bi, (A7)

where ∑N
i=1 bi = x0, and ∑N

i=1 αi = α.
The solution to this system is given by:

yi(x) =
αi + βbi
α + βx0

x +
αbi − αix0

α + βx0
. (A8)

This can be readily checked by inserting this solution in Equation (A7), and verifying
that the equation and boundary conditions are all satisfied. This system of ordinary,
linear differential equations is known to have a unique solution satisfying the boundary
conditions, provided the coefficients are continuous in the variable x, so we are done.

Proof of Theorem 6. The problem maxzi Eui(zi) s.t. h(zi) ≤ 0, where h(zi) := π(zi) −
π(xi), i = 1, 2, . . . , N is an infinite dimensional problem for each i, but a “nice” one in that
the objective is concave and the constraint function h (the feasible set) is convex.

For such problems, the Kuhn–Tucker Theorem says that, granted a suitable constraint
qualification, any optimal solution yi will be supported by a Lagrange multiplier αi: That
is, there exist αi ≥ 0 such that the Lagrangian:

Li(zi; αi) = Eui(zi)− αih(zi)

is maximal at zi = yi. Moreover, complementary slackness holds: αih(yi) = 0. The said
qualification could be h(z0

i ) < 0 for some z0
i . (This is the so-called Slater condition.) Here

let z0
i = 1

2 xi.
Next we explore what maximality of Li(·, αi) at yi means.
We first argue in terms of directional derivatives: Recall that:

5Li(yi, z) = lim
t↓0+
Li(yi + tz; αi)−Li(yi; αi)

t
,

where5Li(yi, z) is the directional derivative of Li(yi; αi) in the “direction” z in the Hilbert
space L2. Li is differentiable at yi means that 5Li(yi, z) exists for all z ∈ L2, and the
functional z→ 5Li(yi, z) is linear. This functional, the gradient of Li at yi, is denoted by
5Li(yi). It can here be shown to be given by:

(5Li(yi))(z) = E{(u′i(yi)− αiπ)z}. (A9)

A necessary condition for a maximum of Li at yi is that the gradient in (A9) is zero in
all directions z ∈ L2, which leads directly to the condition (10).

Alternatively, we could use a variational argument: For that purpose, define a varia-
tion ỹi := yi + tz where yi is the optimal solution of (9), t ∈ R is a scalar dummy variable,
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and z ∈ L2 is an arbitrary random variable. According to our conditions, the function
f (t; z) := Li(ỹi; αi) attains its maximum for t = 0, and consequently must:

f ′(0; z) = E{z(u′i(yi)− αiπ)} = 0 for all z ∈ L2, (A10)

which again implies that u′i(yi)− αiπ = 0 a.s.
Finally, since u′i > 0 for all i, the shadow price π > 0 P-a.s., otherwise the problem (9)

can not have a solution, contrary to our assumption that an equilibrium exists. From the
first order condition (10), it then follows that αi > 0 of all i.

Proof of Theorem 7. Consider member i’s attitude towards the syndicate’s risk x, given
the sharing rule yi(x). Taking derivatives with respect to x gives:

v′i(x) = u′i(yi(x))y′i(x) = u′i(yi(x))
αi + βyi(x)

α + βx
,

where we have used the differential equation for y′i(x) given in (7). Furthermore,

v′′i (x) = u′′i (yi(x))
(αi + βyi(x)

α + βx

)2
+ u′i(yi(x))

d
dx

y′i(x).

It is straightforward to see by a bit of calculus that d
dx y′i(x) = 0. From the above we

then obtain that the risk tolerance of member i’s derived utility function is given by:

−
v′i(x)
v′′i (x)

= −
u′i(yi(x))
u′′i (yi(x))

α + βx
αi + βyi(x)

= α + βx.

Proof of property (iii) in Section 5.3. We start with the relation (2) in Theorem 8, which
can be written:

λiu′i(yi(x, z)) fi(z) = µ(x, z), ∀i.

Differentiation this relation with respect to y, we get:

λiu′′i (yi(x, z)) fi(z)
∂yi(x, z)

∂z
+ λiu′i(yi(x, z)) f ′i (z) =

∂µ(x, z)
∂z

, ∀i.

Dividing this equation by the previous one we get:

u′′i (yi(x, z))
u′i(yi(x, z))

∂yi(x, z)
∂z

+
f ′i (z)
fi(z)

= ϕ(x, z).

From this it follows that:

∂yi(x, z)
∂z

= ϕi(z)ρi(yi(x, z))− ϕ(x, z)ρi(yi(x, z)).

Summing over the members we obtain:

∑
i

∂yi(x, z)
∂z

=
∂

∂z ∑
i

yi(x, z) =
∂

∂z
x = 0

= ∑
i

ϕi(y)ρi(yi(x, z))− ϕ(x, z)ρ(x, z),

where we have used (i). Accordingly,

ϕ(x, z) =
1

ρ(x, z) ∑
i

ϕi(z)ρi(yi(x, z)) =
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∑
i

ϕi(z)
ρi(yi(x, z))

ρ(x, z)
= ∑

i
ϕi(z)

∂yi(x, z)
∂x

,

where we have used (ii). Thus (iii) follows.

Proof of Proposition 1. The starting point is the equation:

λju′j(yj(x, z)) f j(z) = µ(x, z), ∀j, x and z.

By taking partial derivatives and dividing the results by the above equation, this
results in:

− 1
ρj

∂yj(x, z)
∂λi

=

∂µ(x,z)
∂λi

µ(x, z)
, j 6= i

and
1
λi
− 1

ρi

∂yi(x, z)
∂λi

=
∂µ(x, z)

∂λi

1
µ(x, z)

, j = i.

Summing over all the members gives the result.

Proof of Proposition 2. (i) implies (ii): The aggregation property means that there exists
k(λ) > 0 such that:

k(λ)µ(x(z), z|λ) = u′(x(z)) f (z), ∀ z and λ.

The quantity µ(x, z) is determined, modulo a constant, for each x and z. From Theorem 12
it follows that all the Pareto optimal sharing rules are affine and determinate. In the inho-
mogeneous case the result now follows from Theorem 14, in the homogeneous case from
Theorem 13. (ii) implies (i): Just reverse the above arguments.
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