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1. Introduction

The problem of geodesic mappings of Riemannian manifolds was first introduced by
T. Levi-Civita in the study of problems in mechanics [1]. There are many monographs and
papers devoted to the theory of geodesic mappings and transformations, their general-
izations, and applications [2–20]. In addition, A. Z. Petrov [11] used geodesic mappings
and their generalizations of pseudo-Riemannian spaces for models of gravitation fields.
The above-mentioned spaces that generalize semi-Riemannian spaces with degenerate
metrics are found in various applications, in particular unified field theories. As it was
shown in [14], in the case when the torsion tensor is semisymmetric, setting the Levi-Civita
pseudo-connection is equivalent to setting the Weyl connection used in a unified field
theory combining gravity and electromagnetism. Linear idempotent operators are used
to define calibration fields that define different types of interactions. The theory of the
multidimensional Universe uses degenerate Kaluza–Klein metrics [21,22].

The basic equations of geodesic mappings for pseudo-Riemannian manifolds were
obtained by Levi-Civita, but they were non-linear [8,14,16,18]. The basic equations of
geodesic mappings for pseudo-Riemannian manifolds in linear form were obtained by
N. S. Sinyukov [16]. These equations greatly advanced the study of geodesic maps and
allowed us to obtain many interesting results. In particular, it reduced the question of
whether a given pseudo-Riemannian manifold admits a non-trivial geodesic mapping to
the analysis of a system of linear algebraic equations.

Analogues of the Sinyukov equations for holomorphic-projective mappings of Kähler
manifolds were obtained by J. Mikes [8]. However, all existing generalizations of geodesic
mappings assume that the metric tensor of a pseudo-Riemannian manifold is nondegen-
erate. However, in physics and mechanics, there are models in which the metric tensor is
degenerate [15].

In this paper, we generalize the results of geodesic mappings of pseudo-Riemannian
manifolds to the case of semi-Riemannian spaces with a degenerate metric. In particular,
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we will obtain analogues of the Levi-Civita equations and the Sinyukov equations. For our
research, we use the theory of idempotent pseudo-connections [15].

2. Preliminaries

Let Mn be a smooth n-dimensional manifold. We denote the ring of smooth functions
on Mn by C∞(Mn), the Lie algebra of smooth vector fields on Mn by χ(Mn), and arbitrary
smooth vector fields on Mn by X, Y, Z, and W.

Definition 1. A linear pseudo-connection on Mn is a pair of operators (h;∇), where∇: χ(Mn)×
χ(Mn)→ χ(Mn) and h is a linear operator on χ(Mn), which for X, Y, Z ∈ χ(Mn), f ∈ C∞(Mn)
satisfies the following conditions [14]:

∇X( f Y + Z) = f∇XY + X( f ) · hY +∇XZ;

∇ f X+YZ = f∇XZ +∇YZ. (1)

In the case where h = id, any linear pseudo-connection is a linear connection on Mn.

Definition 2. The torsion and curvature tensors of the linear pseudo-connection (h;∇) are defined
as follows [14]:

S(X, Y) = ∇XY−∇YX− h[X, Y] and R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z.

Definition 3. A linear pseudo-connection (h;∇) is said to be idempotent if it satisfies the following
conditions [14]:

h2 = h;

∇ = h∇. (2)

In this case, h is called the horizontal projector, and ν = id−h is called the vertical projector.
Here, ∇ = h∇ means ∇XY = h∇XY.

The torsion and curvature tensors of an idempotent pseudo-connection satisfy the
following conditions [14]:

ν S(X, Y) = 0; (3)

ν R(X, Y)Z = 0. (4)

Definition 4. A linear pseudo-connection (h;∇) is said to be completely idempotent if it satisfies
the following conditions [14]:

h2 = h and ∇ = h∇h, (5)

where ∇ = h∇h means ∇XY = h∇X(hY).

A manifold on which is given a completely idempotent pseudo-connection (h;∇)
with Rank h = r is denoted by Ar

h. The completely idempotent pseudo-connection is an
idempotent pseudo-connection [14].

The torsion and curvature tensors of a completely idempotent pseudo-connection
satisfy the following conditions [14]:

S(νX, νY) = −h[νX, νY];

νR(X, Y)Z = R(X, Y) νZ = 0.

Definition 5. A pair (h; g), where h is a linear operator and g is a bilinear form, is called an
HR-structure of rank r if they satisfy the following conditions [14]:

h2 = h;
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g(hX, Y) = g(X, Y) = g(Y, X); (6)

Rank h = Rank g = r ≤ n. (7)

A manifold Mn with an HR-structure is called a semi-Riemannian manifold and is denoted
by Vr

n .

For any HR-structure (h; g), there is a unique linear pseudo-connection (h;∇), called
the Levi-Civita pseudo-connection, that satisfies the conditions [14]

∇g = 0;

g(S(X, hY), Z) = g(S(X, hZ), Y). (8)

It is defined by the formula [14]

2g(∇XY, Z) = Xg(Y, Z) + (hY)g(X, Z)− (hZ)g(X, Y)

+g(hY, X, Z) + g([hZ, X], Y)− g(X, [hZ, hY]).
(9)

3. Geodesic Mappings of Manifolds with an Idempotent Pseudo-Connection

Let Mn be an n-dimensional manifold with an idempotent pseudo-connection (h;∇).

Definition 6. A curve τ(t) on Mn is called a geodesic if it satisfies the following condition:

∇XX = γ h X, (10)

where X is a tangent vector of τ, and γ is a function of parameter t.

Let hi
j, Γi

jk be components of the pseudo-connection (h;∇), and Xi be components of
the tangent vector X in some coordinate system on Mn. Then, Equation (10) can be written
in the equivalent form

hi
k

dXk

dt
+ Γi

jkX jXk = γ hi
kXk. (11)

We remark that a curve τ(t) on Mn with an affine connection ∇̃ is called an F-planar
curve if it satisfies [8]

∇̃XX = αX + β FX,

where F is a linear operator, and α and β are some functions of t.
If F is an almost product structure (F2 = id), then

h =
F + id

2
and ν =

F− id
2

are horizontal and vertical projectors, respectively. Then,

h ∇̃XX = (α + β) hX and ν ∇̃XX = (α− β) νX.

It follows from (9) that the curve τ is the geodesic curve with respect to the pseudo-
connection (h; h∇̃) and from (10) that the curve τ̃ is the geodesic with respect to the
pseudo-connection (ν; ν∇̃).

Definition 7. A diffeomorphism f : Mn → M̄n is called a geodesic mapping of Mn onto M̄n if f
maps any geodesic on Mn onto a geodesic on M̄n.

Theorem 1. A manifold Mn with an idempotent pseudo-connection (h,∇) admits a geodesic
mapping onto a manifold M̄n with the idempotent pseudo-connection (h, ∇̄) if and only if the
equation

∇̄XY = ∇XY + ψ(X) hY + ψ(Y) hX + N(X, Y) (12)
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holds for any vector fields X, Y, where ψ is a differential form on Mn (= M̄n), and the N(X, Y)
tensor satisfies the following conditions:

N(X, Y) = N(Y, X); (13)

hN(X, Y) = N(X, Y). (14)

Proof. Let f : Mn → M̄n be a geodesic mapping. Therefore, a geodesic τ on Mn maps onto
a geodesic τ̄ on M̄n. Then, in a common coordinate system (xi) with respect the mapping
f , the curve τ satisfies (11), and τ̄ satisfies the following conditions:

hi
k

dXk

dt
+ Γ̄i

jkX jXk = γ̄ hi
kXk.

Subtracting Equation (11) from this equation, we obtain

(Γ̄i
jk − Γi

jk)X jXk = (γ̄− γ) hi
kXk.

Multiplying the above formula by hl
mXm, and alternating by i and l, we obtain

(Pi
jkhl

m − Pl
jkhi

m) X jXkXm = 0, (15)

where
Pi

jk = (Γ̄i
jk + Γ̄i

kj − Γi
jk − Γi

kj).

The relations (15) are fulfilled identically with respect to X, so it follows from (15) that

Pi
jkhl

m + Pi
mjh

l
k + Pi

kmhl
j − Pl

jkhi
m − Pl

mjh
i
k − Pl

kmhi
j = 0. (16)

Due to (2)
Pi

jk = Pm
jk hi

m.

Thus, contracting (16) in j and m, we obtain

Pi
jk (r− 1) + Pi

mjh
m
j + Pi

kmhm
k − Pm

mjh
i
k − Pm

kmhi
j = 0. (17)

It follows from (17) that
Pi

jk = ψjhi
k + ψkhi

j = 0,

where
ψj =

1
r

Pm
msνs

j +
1

r + 1
Pm

mshs
j or Pi

jk = ψjhi
k + ψkhi

j.

Thus, we have found the symmetric part of the deformation tensor

Ti
jk = Γ̄i

jk − Γi
jk.

Thus,
Ti

jk = ψjhi
k + ψkhi

j + Ni
jk, (18)

where
Ni

jk = S̄i
jk − Si

jk.

Thus,
Ni

jk = −Ni
kj, (19)

and due to (3),
Ni

jk = Nm
kj hi

m. (20)

The conditions (18)–(20) are equivalent to (12)–(14). Conversely, it is easy to check that
if the conditions (12)–(14) hold, then any geodesic on Mn will be a geodesic on M̄n.



Mathematics 2022, 10, 154 5 of 11

Theorem 2. Let
S(hX, hY) = S̄(hX, hY). (21)

Then, a manifold Ar
n with a completely idempotent pseudo-connection (h,∇) admits a geodesic

mapping onto a manifold Ār
n with a completely idempotent pseudo-connection (h, ∇̄) if and only if

the equation
∇̄XY = ∇XY + ψ(hX) hY + ψ(hY) hX + 2ψ(νX) hY (22)

holds for any vector fields X, Y, where ψ is a differential form on Ar
n (= Ār

n).

Proof. We have from (12)

∇̄X(νY) = ∇X(νY) + ψ(νY) hX + N(X, νY). (23)

Taking into account (5), we obtain

∇̄X(νY) = ∇X(νY) = 0. (24)

Thus, we have from (23) and (24)

N(X, νY) = −ψ(νY) hX. (25)

It follows from (25) that
N(νX, νY) = 0; (26)

N(hX, νY) = −ψ(νY) hX. (27)

In addition, according to (21), we obtain

N(hX, hY) = 0. (28)

We have

N(X, Y) = N(νX, νY) + N(νX, hY) + N(hX, νY) + N(hX, hY). (29)

We obtain from (29), due to (26)–(28),

N(X, Y) = ψ(νY) hX + ψ(νX) hY. (30)

Substituting (30) into (12), we find

∇̄XY = ∇XY + ψ(X) hY + ψ(Y) hX− ψ(νY) hX + ψ(νX) hY, (31)

or
∇̄XY = ∇XY + ψ(hX) hY + ψ(hY) hX + 2ψ(νX) hY.

The theorem is proved.

Definition 8. If ψ = 0, then geodesic mapping is called trivial, and nontrivial if ψ 6= 0.

Definition 9. A geodesic mapping of a manifold Ar
n with a completely idempotent pseudo-

connection (h,∇) onto a manifold Ār
n with a completely idempotent pseudo-connection (h̄, ∇̄) is

called canonical if
h = h̄;

S(X, Y) = S̄(X, Y). (32)
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Corollary 1. A manifold Ar
n with a completely idempotent pseudo-connection (h,∇) admits a

canonical geodesic mapping onto a manifold Ār
n with a completely idempotent pseudo-connection

(h, ∇̄) if and only if in the Equation (22),

ψ(νX) = 0. (33)

Proof. The condition (32) is equivalent to N(X, Y) = 0. Thus, if N(X, Y) = 0, then we
have from (25) that ψ(νX) = 0. Conversely, if ψ(νX) = 0, then we obtain from (30) that
N(X, Y) = 0. The corollary is proved.

It follows from (22) that the equation of a canonical geodesic mapping of manifolds
with a completely idempotent pseudo-connection due to (33) is equivalent to the equation

∇̄XY = ∇XY + ψ(X) hY + ψ(Y) hX; (34)

ψ(hX) = ψ(X). (35)

The Equations (34) and (35) can be rewritten in the coordinate form as

Γ̄i
jk = Γi

jk + ψjδ
i
k + ψkδi

j; (36)

ψihi
k = ψk, (37)

and these equations are the generalization of the equations of geodesic mappings of
manifolds with an affine connection [8,16].

4. Completely Canonical Geodesic Mappings of Semi-Riemannian Manifolds

Let Vr
n = (Mn, g, h) be a semi-Riemannian manifold with an HR-structure (h, r) and

∇ be a Levi-Civita pseudo-connection.

Theorem 3. A semi-Riemannian manifold Vr
n = (Mn, g, h) admits a canonical geodesic mapping

onto a semi-Riemannian manifold V̄r
n = (M̄n, ḡ, h) if and only if there exists a differential form

ψ(X) on Vr
n such that equations

(∇Z ḡ)(X, Y) = 2ψ(Z)ḡ(X, Y) + ψ(X)ḡ(Y, Z) + ψ(Y)ḡ(X, Z); (38)

ψ(hX) = ψ(X);

ḡ(S(X, hY), Z) = ḡ(S(X, hZ), Y) (39)

hold for any vector fields X, Y, Z.

The validity of this statement follows from (8), (32), (34), and (35).

The coordinate form of Equations (38) and (39) can be given by the following formulas:

∇k ḡij = 2ψk ḡij + ψi ḡjk + ψj ḡjk; (40)

ḡklSl
imhm

j = ḡjlSl
imhm

k . (41)

Equations (35), (38), and (39) are the generalization of the equations of geodesic
mappings of pseudo-Riemannian manifolds [8,16].

Definition 10. A canonical geodesic mapping of a semi-Riemannian manifold Vr
n onto a semi-

Riemannian manifold V̄r
n is called completely canonical if there exists a function Ψ such that in

Equation (38) satisfies ψ = dΨ, and in the coordinate form

ψi = ∂iΨ. (42)

This shows that ψ is a gradient covector.
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Theorem 4. If the affinor h of the HR-structure (h, g) is integrable then any canonical geodesic
mapping of a semi-Riemannian manifold Vr

n is completely canonical.

Proof. If the affinor h of the HR-structure (h, g) is integrable, then there exists the adapted
coordinate system xi = (xI , xα) on Vr

n that the components of h reduce to the form

hi
j =

(
δI

J 0
0 0

)
, (43)

where I, J follow from 1 to r, and α, β follow from r + 1 to n. It follows from (6), (7), and
(43) that in this coordinate system,

gij =

(
GI J 0
0 0

)
and gij =

(
GI J 0
0 0

)
, (44)

where gij is the semi-inverse matrix to gij; thus,

gikgkj = hi
j, (45)

and GI J is the inverse matrix to GI J

det(GI J) = r. (46)

Contracting (36) in i and j, we obtain ψk (r + 1) = Γ̄i
ik − Γi

ik. It follows from (9) and
(44)–(46) that

ψk (r + 1) =
1
2

∂kḠI J ḠI J − 1
2

∂kGI JGI J ,

or

ψk (r + 1) =
1
2
(∂k(ln |Ḡ|)− ∂k(ln |G|)) =

1
2

∂k

(
ln |Ḡ|
ln |G|

)
.

The theorem is proved.

Theorem 5. A semi-Riemannian manifold Vr
n admits a completely canonical geodesic mapping

if and only if there exist a differential form λ(X) and a bilinear form a(X, Y) on Vn such that the
equations

(∇Za)(X, Y) = λ(X)g(Y, Z) + λ(Y)g(X, Z); (47)

a(X, Y) = a(Y, X) = a(hX, Y); (48)

Rank a = r; (49)

a(S(X, hY), Z) = a(S(X, hZ), Y); (50)

λ(hX) = λ(X) (51)

hold for any vector fields X, Y, Z.

Proof. Let ḡij be the components of a semi-inverse tensor to ḡij; thus,

ḡil ḡl j = hi
j. (52)

Then, it follows from (40) and (41) by virtue of (52) that

∇k ḡij = 2ψk ḡij + ψihj
k + ψjhi

k; (53)

ḡmkSl
imhj

l = ḡmjSl
imhk

l , (54)

where ψi = ḡilψl .
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Let us denote
aij = exp(2Ψ) ḡstgsigtj .

It easy to find from (54), due to (53), the following equations:

∇kaij = λigjk + λjgik; (55)

aij = aji = ailhl
j (56)

Rank (aij) = r; (57)

ailSl
mkhm

j = ajlSl
mkhm

i ; (58)

λlhl
i = λi, (59)

where
λi = − exp(2Ψ) ḡsl gsiψl . (60)

Equations (55)–(59) are equivalent to (47)–(51).
Conversely, if there exist a differential form λ(X) and a bilinear form a(X, Y) on Vn

such that Equations (55)–(59) hold, then there exist an HR-structure (h, g) and a differential
form φ(X) such that Equations (37)–(39) and (42) hold, where

ψi = −λsastgti; (61)

ḡij = exp(2Ψ)astgsigtj.

The theorem is proved.

Contracting (55) by gij in i and j, we obtain 2λi = ∂i(astgst).Thus, λi is a gradient
covector.

It follows from (60) and (61) that ψ 6= 0 if and only if λ 6= 0.
Equations (47)–(51) generalize N. S. Sinyukov’s equations for geodesic mappings of

pseudo-Riemannian manifolds [8,16].

Equation (55) can be rewritten in the equivalent form

hl
k∇laij = λigjk + λjgik; (62)

νl
k∇laij = 0. (63)

The integrability conditions of Equation (55) on the basis of (62), (63), and the Ricci
identities take the following form [14]:

as(iR
s
j)tmht

khm
l = gi[lh

t
k]∇tλj + gj[lh

t
k]∇tλi; (64)

as(iR
s
j)tmνt

kνm
l = νt

kνm
l Ss

lmgs(iλj); (65)

as(iR
s
j)tmht

kνm
l = ht

kνm
l Ss

lmgs(iλj) + νt
k∇tλ(igj)k, (66)

where Rj
ikl are components of the curvature tensor R:

R(∂k, ∂l)∂l = Rj
ikl∂j.

Contracting (64) by gjk in j and k, and (66) by gij in i and j, we find

rht
l∇tλi = µgij + hm

l (astRi
st

m + astRst
tm); (67)

νt
l∇tλi = ht

i ν
m
l Ss

imλs. (68)
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Thus, we obtain from (67) and (68)

∇lλi =
1
r
(
µgij + hm

l (astRi
st

m + astRst
tm)

)
+ ht

i ν
m
l Ss

tmλs, (69)

where µ is a certain scalar field.
Similarly, analysing the integrability conditions of Equation (69) on the basis of (67)

and (68), it is not difficult to obtain equations that µ satisfies:

∇kµ =
ast

1− r
(2hm

k ∇mRst −∇tRs
k −∇

mRs
mkr) + Rt

mνm
k λt −

2µ

r
St

kmνm
k

+
λt

1− r
(2(r + 1)Rt

k + r Hs
kmSmt

s) +
2astν

l
k

r
(Rtmhp

mSs
pl − Rs

mp
thp

q Smq
l),

(70)

where Rik = Rt
ikt is the Ricci tensor, and Ht

jk is the nonholonomy tensor of the horizontal
distribution H(X, Y) = ν[hX, hY].

Thus, the following theorem is proved.

Theorem 6. In order that a semi-Riemannian manifold Vr
n admit a completely canonical geodesic

mapping, it is necessary and sufficient that the system (55)–(59), (69), and (70) has a solution
(aij, λi, µ).

Theorem 6 is a generalization of the main theorem of geodesic mappings of pseudo-
Riemannian manifolds. The system of Equations (55), (69), and (70) forms a closed system
of first-order linear partial differential equations of the Cauchy type. The integrability
conditions of these equations, as well as their differential prolongations, will also be linear.
Thus, the question of whether a given semi-Riemannian manifold Vr

n admits a completely
canonical geodesic mapping is reduced to the analysis of the consistency of a certain system
of linear algebraic equations.

5. Completely Canonical Geodesic Mappings and Concircular Fields

Definition 11. A vector field ϕ on a semi-Riemannian manifold Vr
n satisfying the conditions [13]

(∇Z ϕ)X = $ g(X, Z); (71)

ϕ(hX) = ϕ(X), (72)

where $ is a scalar field on Vr
n , is called a concircular field on Vr

n . Here, we mean the covariant
derivative of the covector field. A covariant derivative with respect to the pseudo-connection can be
defined for a tensor field of any type. You can read about this in [14].

The Equations (71) and (72) can be rewritten in the equivalent coordinate form

∇i ϕj = $ gij; (73)

ϕtht
i = ϕi.

If $ 6= 0, a concircular field belongs to the main type, and it belongs to the exceptional
type otherwise.

Theorem 7. Let ϕ be a concircular field on a semi-Riemannian manifold Vr
n . If Vr

n = (Mn, g, h)
admits a nontrivial completely canonical geodesic mapping onto a semi-Riemannian manifold
V̄r

n = (M̄n, ḡ, h), then there exists a concircular field ϕ̄ on V̄r
n.

Proof. Let ϕ be the components of the concircular field ϕ on Vr
n . Then,

ϕ̄i = exp(−Ψ) ϕs ḡstgti
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is the components of the concircular field ϕ̄ on V̄r
n due to (36) and

$̄ = exp(−Ψ) ($ + ψs ϕs).

The theorem is proved.

Theorem 8. Let ϕ be a concircular field of the main type on a semi-Riemannian manifold Vr
n ; then,

Vr
n admits a nontrivial completely canonical geodesic mapping.

Proof. Let ϕi be the components of the concircular field ϕ on Vr
n . Then, the tensor

aij = ϕi ϕj + C gij

satisfies (55)–(57) and (59), where the constant C is chosen in a way that Rank (aij) = r and
where

λi = $ ϕi.

It follows from the integrability conditions of Equation (73) that

ϕtSt
imνm

j = νm
j ∂m(ln |$|)ϕi. (74)

We have, due to (74),

ϕj ϕtSt
imνm

k = νm
k ∂m(ln |$|)ϕj ϕi = ϕi ϕtSt

jmνm
k . (75)

Whereas, for the Levi-Civita pseudo-connection

Sk
mth

m
i ht

j = 0 (76)

it follows from (75) and (76) that tensor aij satisfies (58). Thus, aij satisfies (55)–(59), and
according to Theorem 5, the space Vr

n admits a nontrivial completely canonical geodesic
mapping. The theorem is proved.

6. Conclusions

In this paper, we study geodesic mappings of manifolds with idempotent pseudo-
connections. We obtained the basic equations of canonical geodesic mappings of manifolds
with completely idempotent pseudo-connectivity and semi-Riemannian manifolds with
a degenerate metric. We proved that semi-Riemannian manifolds admitting concircular
fields admit completely canonical geodesic mappings and form a closed class with respect
to these mappings.
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