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Abstract: The k-means problem has been paid much attention for many applications. In this paper,
we define the uncertain constrained k-means problem and propose a (1 + ε)-approximate algorithm
for the problem. First, a general mathematical model of the uncertain constrained k-means problem
is proposed. Second, the random sampling properties of the uncertain constrained k-means problem
are studied. This paper mainly studies the gap between the center of random sampling and the real
center, which should be controlled within a given range with a large probability, so as to obtain the
important sampling properties to solve this kind of problem. Finally, using mathematical induction,
we assume that the first j− 1 cluster centers are obtained, so we only need to solve the j-th center. The
algorithm has the elapsed time O(( 1891ek

ε2 )8k/εnd), and outputs a collection of size O(( 1891ek
ε2 )8k/εn)

of candidate sets including approximation centers.

Keywords: stochastic approximate algorithms; uncertain constrained k-means; approximation centers

1. Introduction

The k-means problem has received much attention in the past several decades. The
k-means problems consists of partitioning a set P of points in d-dimensional space Rd into
k subsets P1, . . . , Pk such that ∑k

i=1 ∑p∈Pi
||p− ci||2 is minimized, where ci is the center of Pi,

and ||p− q|| is the distance between two points of p and q. The k-means problem is one of
the classical NP-hard problems, and has been paid much attention in the literature [1–3].

For many applications, each cluster of the point set may satisfy some additional
constraints, such as chromatic clustering [4], r-capacity clustering [5], r-gather clustering [6],
fault tolerant clustering [7], uncertain data clustering [8], semi-supervised clustering [9],
and l-diversity clustering [10]. The constrained clustering problems was studied by Ding
and Xu, who presented the first unified framework in [11]. Given a point set P ⊆ Rd,
and a positive integer k, a list of constraints L, the constrained k-means problem is to
partition P into k clusters P = {P1, . . . , Pk}, such that all constraints in L are satisfied and
∑Pi∈P ∑x∈Pi

||x − c(Pi)||2 is minimized, where c(Pi) = 1
|Pi | ∑x∈Pi

x denotes the centroid
of Pi.

In recent years, particular research has been focused on the constrained k-means
problem. Ding and Xu [11] showed the first polynomial time approximation scheme with
running time O(2poly(k/ε)(log n)knd) for the constrained k-means problem, and obtained
a collection of size O(2poly(k/ε)(log n)k+1) of candidate approximate centers. The existing
fastest approximation schemes for the constrained k-means problem takes O(2O(k/ε)nd)
time [12,13], which was first shown by Bhattacharya, Jaiswai, and Kumar [12]. Their
algorithm gives a collection of size O(2O(k/ε)) of candidate approximate centers. In this
paper, we propose the uncertain constrained k-means problem, which supposes that all
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points are random variables with probabilistic distributions. We present a stochastic
approximate algorithm for the uncertain constrained k-means problem. The uncertain
constrained k-means problem can be regarded as a generalization of the constrained k-
means problem. We prove the random sampling properties of the uncertain constrained
k-means problem, which are fundamental for our proposed algorithm. By applying random
sampling and mathematical induction, we propose a stochastic approximate algorithm
with lower complexity for the uncertain constrained k-means problem.

This paper is organized as follows. Some basic notations are given in Section 2.
Section 3 provides an overview of the new algorithm for the uncertain constrained k-means
problem. In Section 4, we discuss the detailed algorithm for the uncertain constrained
k-means problem. In Section 5, we investigate the correctness, success probability, and
running time analysis of the algorithm. Section 6 concludes this paper and gives possible
directions for future research.

2. Preliminaries

Definition 1 (Uncertain constrained k-means problem). Given a random variable set X ⊆ Rd,
the probability density function fX(s) for every random variable X ∈ X , a list of constraints
L, and a positive integer k, the uncertain constrained k-means problem is to partition X into k

clusters X = {X1, . . . ,Xk}, such that all constraints in L are satisfied and ∑Xi∈X ∑X∈Xi

∫ Rd
||s−

c(Xi)||2 fX(s)ds is minimized, where c(Xi) =
1
|Xi | ∑X∈Xi

∫ Rd
s fX(s)ds denotes the centroid of Xi.

Definition 2 ([13]). Let X be a set of random variables in Rd, fX(s) be probability density function
for every random variable X ∈ X , and q ∈ Rd and P be a set of points in Rd, p ∈ P.

• Define f2(q,X ) = ∑X∈X
∫ Rd
||s− q||2 fX(s)ds.

• Define c(X ) = 1
|X | ∑X∈X

∫ Rd
s fX(s)ds.

• Define dist(X, P) = minp∈P
∫ Rd
||s− p|| fX(s)ds.

Definition 3 ([13]). Let X be a set of random variables in Rd, fX(s) be the probability density
function for every random variable X ∈ X , and X1, . . . ,Xk be a partition of X .

• Define mj = c(Xj).

• β j =
|Xj |
|X | .

• Define σj =

√
f2(mj ,Xj)

|Xj |
.

• Define

OPTk(X ) = ∑k
j=1 ∑X∈Xj

∫ Rd
||s− c(Xj)||2 fX(s)ds = ∑k

j=1 f2(mj,Xj).

• Define σopt =
√

OPTk(X )
|X | =

√
∑k

i=1 βiσ
2
i .

Lemma 1. For any point x ∈ Rd and a random variable set X ⊆ Rd, f2(x,X ) = f2(c(X ),X ) +
|X |||c(X )− x||2.
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Proof. Let fX(s) be the probability density function for every random variable X ∈ X .

f2(x,X ) = ∑
X∈X

∫ Rd

||s− x||2 fX(s)ds (1)

= ∑
X∈X

∫ Rd

||s− c(X ) + c(X )− x||2 fX(s)ds (2)

= ∑
X∈X

∫ Rd

||s− c(X )||2 fX(s)ds + ∑
X∈X

∫ Rd

||c(X )− x||2 fX(s)ds (3)

= f2(c(X ),X ) + ||c(X )− x||2 ∑
X∈X

∫ Rd

fX(s)ds (4)

= f2(c(X ),X ) + |X |||c(X )− x||2. (5)

The (3) equality follows from the fact that ∑X∈X
∫ Rd

(s− c(X )) fX(s)ds = 0.

Lemma 2. Let X be a set of random variables in Rd and fX(s) be the probability density function
for every random variable X ∈ X . Assume that T is a set of random variables obtained by sampling
random variables from X uniformly and independently. For ∀ δ > 0, we have:

Pr(||c(T )− c(X )||2 >
1

δ|T |σ
2) < δ, (6)

where σ2 = 1
|X | ∑X∈X

∫ Rd
||s− c(X )||2 fX(s)ds.

Proof. First, observe that

E(c(T )) = c(X ), E(||c(T )− c(X )||2) = 1
|T |σ

2 (7)

where σ2 = 1
|X | ∑X∈X

∫ Rd
||s − c(X )||2 fX(s)ds. Then apply the Markov inequality to

obtain the following.

Pr(||c(T )− c(X )||2 >
1

δ|T |σ
2) < δ. (8)

Lemma 3. Let Q be a set of random variables in Rd, fX(s) be the probability density function for
every random variable X ∈ Q, and Q1 be an arbitrary subset of Q with α|Q| random variables

for some 0 < α ≤ 1. Then ||c(Q) − c(Q1)|| ≤
√

1−α
α σ, where σ2 = 1

|Q| ∑X∈Q
∫ Rd
||s −

c(Q)||2 fX(s)ds.

Proof. Let Q2 = Q \Q1. By Lemma 1, we have the following two equalities.

f2(c(Q),Q1) = f2(c(Q1),Q1) + |Q1|||c(Q1)− c(Q||2, (9)

f2(c(Q),Q2) = f2(c(Q2),Q2) + |Q2|||c(Q2)− c(Q||2. (10)

Let L = ||c(Q1)− c(Q2)||. By the definition of the mean point, we have:

c(Q) = 1
|Q| ∑

X∈Q

∫ Rd

s fX(s)ds =
1
|Q| (|Q1|c(Q1) + |Q2|c(Q2)). (11)

Thus, the three points {c(Q), c(Q1), c(Q2)} are collinear, while ||c(Q1)− c(Q)|| = (1−
α)L and ||c(Q2) − c(Q)|| = αL. Meanwhile, by the definition of σ, we have σ2 =
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1
|Q| (∑X∈Q1

∫ Rd
||s− c(Q)||2 fX(s)ds + ∑X∈Q2

∫ Rd
||s− c(Q)||2 fX(s)ds). Combining Equal-

ity (9) and Equality (10), we have:

σ2 ≥ 1
|Q| (|Q1|||c(Q1)− c(Q||2 + |Q2|||c(Q2)− c(Q||2) (12)

= α((1− α)L)2 + (1− α)(αL)2 (13)

= α(1− α)L2. (14)

Thus, we have L ≤ σ√
α(1−α)

, which means that ||c(Q)− c(Q1)|| = (1− α)L ≤
√

1−α
α σ.

Lemma 4 ([12]). For any x, y, z ∈ Rd, then ||x− z||2 ≤ 2||x− y||2 + 2||y− z||2.

Theorem 1 ([14]). Let X1, . . . , Xs be s, an independent random 0− 1 variable, where Xi takes
1 with a probability of at least p for i = 1, . . . , s. Let X = ∑s

i=1 Xi. Then, for any δ > 0,
Pr(X < (1− δ)ps) < e−

1
2 δ2 ps.

3. Overview of Our Method

In this section, we first introduce the main idea of our methodology to solve the
uncertain constrained k-means problem.

Considering the optimal partition X = {X1, . . . ,Xk}(|X1| ≥ . . . ≥ |Xk|) of X , since
|X1|/|X | ≥ 1/k, if we could sample a set S of size O(k/ε) from X uniformly and indepen-
dently, then at least O(1/ε) random variables in S are from X1 with a certain probability.
All subsets of S of size O(1/ε) could be enumerated to discover the approximate center of
X1.

We assume that Cj−1 = {c1, . . . , cj−1} is the set including approximate centers of the

X1, . . . ,Xj. Let Bj = {X ∈ X |dist(X, Cj−1) = minc∈Cj−1

∫ Rd
||s− c|| fX(s)ds ≤ rj}, where

rj =
√

ε
40β jk

σopt. The set Xj is divided into two parts: X out
j and X in

j , where X out
j = Xj \ Bj

and X in
j = Xj ∩ Bj. For each random variable X, let X̃ be the nearest point (particular

random variable) in Cj−1 to X. Let X̃ in
j = {X̃|X ∈ X in

j }, and X̃j = X̃ in
j ∪ X out

j .

If most of the random variables of Xj are in X in
j , our idea is to use the center of X̃ in

j

to approximate the center of Xj. The center of X̃ in
j is found based on Cj−1. If most of

the random variables of Xj are in X out
j , our ideal is to replace the center of Xj with the

center of X̃j. For seeking out the approximate center of X̃j, we should find out a subset
S ′ by uniformly sampling from X̃j. However, the set X out

j is unknown. We need to find
the set S ′ ∩ X out

j . We apply a branching strategy to find a set Q such that X \ Bj ⊆ Q,
and |Q| < 2|X \ Bj|. Then, a random variables set S is obtained by sampling random
variables from Q independently and uniformly. And the set X \ Bj ⊆ Q can be replaced
by a subset S∗ of S from X out

j . Based on S∗ and X̃ in
j , the approximation center of X̃j could

be obtained. Therefore, the algorithm presented in this paper outputs a collection of size
O(( 1891ek

ε2 )8k/εn) of candidate sets containing approximation centers, and has the running
time O(( 1891ek

ε2 )8k/εnd).

4. Our Algorithm cMeans

Given an instance (X , k,L) of the uncertain constrained k-means problem, X =
{X1, . . . ,Xk} denotes an optimal partition of (X , k,L). There exist six parameters (ε, Q, g,
k, C, U) in our cMeans, where ε ∈ (0, 1] is the approximate factor, Q is the input random
variable set, g is the number of centers, k is the number of the clusters, C is the set of ap-
proximate cluster centers, and U is a collection of candidate sets including the approximate
center. Let M = 6

ε , N = 79,380k
ε3 , where M is the size of subsets of the sampling set and N is
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the size of the sampling set. Without loss of generality, assume that values of M and N are
integers.

We use the branching strategy to seek out the approximate centers of clusters in X.
There exist two branches in our algorithm cMeans, which can be seen in Figure 1. On
one branch, a size N set S1 is obtained by sampling from Q uniformly and independently;
S2 is constructed by S1 and M copies of each point in C. Moreover, we consider each
subset S ′ of size M of S2, and the centroid c of S ′ is solved to represent the approximate
center of Xk−g+1, and our algorithm cMeans(ε,Q, g− 1, k, C ∪ {c}, U) is used to obtain the
remaining g− 1 cluster centers.

Figure 1. Flow chart of our algorithm cMeans.

On the other branch, for each random variable X ∈ Q, we calculate the distance
between X and C first. H denotes the set of all distances of random variables in X
to C, where H is a multi-set. We should obtain the median value m for all values in
H, which is the b|H|/2c-th element if all of the values in H are sorted. In the second
branch, Q is divided into two parts, Q′ and Q′′, based on m such that for ∀X′ ∈ Q′

, X′′ ∈ Q′′, dist(X′, C) ≤ dist(X′′, C), where |Q′| = d |Q|2 e , |Q′′| = b |Q|2 c. Subroutine
cMeans(ε,Q′′, g, k, C, U) is used to obtain the remaining g cluster centers. Therefore,
we present the specific algorithm for seeking out a collection of candidate sets in the
Algorithm 1.
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Algorithm 1: cMeans(ε,Q, g, k, C, U)
Input: (ε,Q, g, k, C, U)
Output: a collection of candidate sets

1 M = 6
ε , N = 79380k

ε3 ,S1 = S2 = H = ∅;
2 if g = 0 then
3 add C to the collection U;
4 end
5 sample a set S1 of size N from Q independently and uniformly;
6 if C = ∅ then
7 S2 = S1;
8 end
9 else

10 S2 = S1 ∪ {M copies of each point in C};
11 end
12 for each subset S ′ of size M of S2 do
13 compute the centroid c of S ′;
14 cMeans(ε,Q, g− 1, k, C ∪ {c}, U);
15 end
16 for each random variable X ∈ Q do
17 compute dist(X, C), and add dist(X, C) to H;

18 obtain the median value m of all values in H, which is the b |H|2 c-th element if
all the values in H are sorted;

19 divide Q into Q′ and Q′′ by m such that for ∀X′ ∈ Q′, X′′ ∈ Q′′,
dist(X′, C) ≤ dist(X′′, C), where |Q′| = d |Q|2 e ,|Q′′| = b |Q|2 c;

20 if |Q′′| ≥ 1 then
21 cMeans(ε,Q′′, g, k, C, U);
22 end
23 end

5. Analysis of Our Algorithm cMeans

We investigate the success probability, correctness, and time complexity analysis of
the algorithm cMeans in this section.

Lemma 5. There exists a candidate set, with a probability of at least 1/12k, including the approxi-
mate center Ck = {c1, . . . , ck} in U satisfying ||mj − cj||2 ≤ 9

10 εσ2
j +

1
10β jk

εσ2
opt(1 ≤ j ≤ k).

The following Lemmas from Lemma 6 to 16 are used to prove Lemma 5. We prove
Lemma 5 via induction on j. For j = 1, we can obtain β1 ≥ 1/k easily, and prove the success
probability first.

Lemma 6. In the process of finding c1 in our algorithm cMeans, by sampling a set of 79,380k/ε3

random variables from X independently and uniformly, denoted by S1, the probability that at least
6/ε random variables in S2 are from X1 is at least 1/2.

Proof. In our algorithm cMeans, we assume that S1 = S1, . . . , SN , where N = 79,380k/ε3.
Let x

′
1, . . . , x

′
N be the corresponding random variables of elements in S1. If Si ∈ X1, then



Mathematics 2022, 10, 144 7 of 14

x
′
i = 1. Otherwise x

′
i = 0. It is known easily that Pr[Si ∈ X1] ≥ 1

k . Let x = ∑N
i=1 x

′
i ,

u = ∑N
i=1 E(x

′
i). We obtain that u ≥ 79,380k/ε3. Then,

Pr[x >
6
ε
] = 1− Pr[x ≤ 6

ε
] (15)

= 1− Pr[x ≤ 6ε2

79,380
79,380

ε3 ] (16)

≥ 1− Pr[x ≤ ε2

13,230
u] (17)

≥ 1− e−
(1− ε2

13,230 )
2u

2 (18)

≥ 1− e−
(1− ε2

13,230 )
2 79,380

ε3
2 (19)

≥ 1− e−
(1− 1

13,230 )
2 ·79,380

2 (20)

≥ 1
2

. (21)

From Lemma 6, an S∗ with size 6/ε of S2 can be obtained, and the probability that all
points in S∗ are from X1 is at least 1/2. Let c1 denote the centroid of S∗, and δ = 5/6. For
|S∗| = 6/ε, by Lemma 2, we conclude that ||m1 − c1||2 ≤ 1

5 εσ2
1 holds with a probability of

at least 1/6. Then, the probability that a subset S∗ of size 6/ε of S2 can be found such that
||m1 − c1||2 ≤ 1

5 εσ2
1 ≤

9
10 εσ2

1 + 1
10β1k εσ2

opt holds is at least 1/12. Therefore, we conclude
that Lemma 5 holds for j = 1.

Moreover, we assume that for j ≤ j0(1 ≤ j0), Lemma 5 holds with a probability of at
least 1/12j. Considering the case j = j0 + 1, we prove Lemma 5 by the following two cases:
(1)|X out

j | ≤
ε

49 β jn; (2)|X out
j | >

ε
49 β jn.

5.1. Analysis for Case 1: |X out
j | ≤

ε
49 β jn

Since |X out
j | ≤

ε
49 β jn, most of the random variables of Xj are in Bj. Our idea is to

replace the center of Xj with the center of X̃ in
j . Thus, we need to find the approximate

center cj of X̃ in
j and the bound distance ||mj − cj||. We divide the distance ||mj − cj|| into

the following three parts: ||mj − min
j ||, ||min

j − m̃in
j ||, and ||m̃in

j − cj||. We first study the

distance between mj and min
j .

Lemma 7. ||mj −min
j || ≤

√
ε

48 σj.

Proof. Since |Xj| = β jn and |X out
j | ≤

ε
49 β jn, the proportion of X in

j in Xj is at least 1− ε
49 .

By Lemma 3, ||mj −min
j || ≤

√
ε/49

1−ε/49 σj ≤
√

ε
48 σj.

Lemma 8. ||min
j − m̃in

j || ≤ rj.
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Proof. Since min
j = 1

|X in
j |

∑X∈X in
j

∫ Rd
s fX(s)ds, and m̃in

j = 1
|X in

j |
∑X∈X in

j
X̃, we can obtain

the following:

||min
j − m̃in

j || = ||
1
|X in

j |
∑

X∈X in
j

∫ Rd

s fX(s)ds− 1
|X in

j |
∑

X∈X in
j

X̃|| (22)

=
1
|X in

j |
|| ∑

X∈X in
j

∫ Rd

(s− X̃) fX(s)ds|| (23)

≤ 1
|X in

j |
∑

X∈X in
j

∫ Rd

||s− X̃|| fX(s)ds (24)

≤ 1
|X in

j |
∑

X∈X in
j

rj (25)

= rj. (26)

Lemma 9. f2(m̃in
j , X̃ in

j ) ≤ 2|X in
j |r2

j + 2 f2(mj,X in
j )− |X in

j |||mj − m̃in
j ||2.

Proof. Since |X̃ in
j | = |X in

j |, by 1, we have f2(mj, X̃ in
j ) = f2(m̃in

j , X̃ in
j ) + |X in

j |||m̃in
j −mj||.

Then,

f2(m̃in
j , X̃ in

j ) = f2(mj, X̃ in
j )− |X in

j |||m̃in
j −mj||2 (27)

= ∑
X∈X in

j

||X̃−mj||2 − |X in
j |||mj − m̃in

j ||2 (28)

= ∑
X∈X in

j

∫ Rd

||X̃−mj||2 fX(s)ds− |X in
j |||mj − m̃in

j ||2 (29)

= ∑
X∈X in

j

∫ Rd

||X̃− s + s−mj||2 fX(s)ds− |X in
j |||mj − m̃in

j ||2 (30)

≤ ∑
X∈X in

j

∫ Rd

(2||X̃− s||2 + 2||s−mj||2) fX(s)ds− |X in
j |||mj − m̃in

j ||2 (31)

≤ 2|X in
j |r2

j + 2 ∑
X∈X in

j

∫ Rd

||s−mj||2 fX(s)ds− |X in
j |||mj − m̃in

j ||2 (32)

= 2|X in
j |r2

j + 2 f2(mj,X in
j )− |X in

j |||mj − m̃in
j ||2 (33)

Lemma 10. In the process of finding cj in our algorithm cMeans, for the set S2 in step 5, a subset
S∗ of size 6/ε of S2 can be obtained such that all random variables in S∗ are from X̃ in

j . Let cj be

the centroid of S∗. Then, the inequality ||m̃in
j − cj||2 ≤ 2

5 εr2
j +

49
120 εσ2

j −
1
5 ε||mj − m̃in

j ||2 holds
with a probability of at least 1/6.

Proof. For each point p ∈ Cj−1, 6/ε copies of p are added to S2 in step 9 in our algorithm
cMeans. Thus, a subset S∗ of size 6/ε of S2 can be obtained such that all random variables
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in S∗ are from X̃ in
j . Let δ = 5/6. Since |S∗| = 6/ε, by Lemma 2, ||m̃in

j − cj||2 ≤ ε
5

f2(m̃in
j ,X̃ in

j )

|X in
j |

holds with a probability of at least 1/6. Assume that ||m̃in
j − cj||2 ≤ ε

5
f2(m̃in

j ,X̃ in
j )

|X in
j |

. Then,

||m̃in
j − cj||2 ≤

ε

5

f2(m̃in
j , X̃ in

j )

|X in
j |

(34)

≤ 1
5

ε
2|X in

j |r2
j + 2 f2(mj,X in

j )− |X in
j |||mj − m̃in

j ||2

|X in
j |

(35)

=
2
5

εr2
j +

2
5

ε
f2(mj,X in

j )

|X in
j |

− 1
5

ε||mj − m̃in
j ||2 (36)

≤ 2
5

εr2
j +

2
5

ε
f2(mj,Xj)

|Xj| − |X out
j |
− 1

5
ε||mj − m̃in

j ||2 (37)

≤ 2
5

εr2
j +

2
5

ε
β jnσ2

j

(1− ε/49)β jn
− 1

5
ε||mj − m̃in

j ||2 (38)

≤ 2
5

εr2
j +

49
120

εσ2
j −

1
5

ε||mj − m̃in
j ||2. (39)

Lemma 11. If cj satisfies ||m̃in
j − cj||2 ≤ 2

5 εr2
j +

49
120 εσ2

j −
1
5 ε||mj − m̃in

j ||2, then ||mj − cj||2 ≤
9

10 εσ2
j +

1
10β jk

εσ2
opt.

Proof. Assume that cj satisfies ||m̃in
j − cj||2 ≤ 2

5 εr2
j +

49
120 εσ2

j −
1
5 ε||mj − m̃in

j ||2. Then,

||mj − cj||2 = ||mj − m̃in
j + m̃in

j − cj||2 (40)

≤ 2||mj − m̃in
j ||2 + 2||m̃in

j − cj||2 (41)

≤ (2− 2
5

ε)||mj − m̃in
j ||2 +

4
5

εr2
j +

49
60

εσ2
j (42)

≤ (2− 2
5

ε)||mj −min
j + min

j − m̃in
j ||2 +

4
5

εr2
j +

49
60

εσ2
j (43)

≤ (2− 2
5

ε)(2||mj −min
j ||2 + 2||min

j − m̃in
j ||2) +

4
5

εr2
j +

49
60

εσ2
j (44)

≤ (2− 2
5

ε)(
1

24
εσ2

j + 2r2
j ) +

4
5

εr2
j +

49
60

εσ2
j (45)

≤ 9
10

εσ2
j + 4r2

j (46)

=
9

10
εσ2

j +
1

10β jk
εσ2

opt. (47)

5.2. Analysis for Case 2: |X out
j | >

ε
49 β jn

Let X̃j = X̃ in
j ∪ X out

j , and m̃j denote the centroid of X̃j. Our idea is to replace the

center of Xj with the center of X̃j. But it is difficult to seek out the center of X̃j. Thus, we
try to find an approximate center cj of X̃j.

Lemma 12.
|X out

j |
|X \Bj |

≥ ε2

3969k .
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Proof.

|X out
j |

|X \ Bj|
=

|X out
j |

∑
j−1
i=1 |Xi \ Bj|+ |X out

j |+ ∑k
i=j+1 |Xi \ Bj|

(48)

≥
|X out

j |

∑
j−1
i=1

f2(ci ,Xi)

r2
j

+ |X out
j |+ ∑k

i=j+1 |Xi|
(49)

≥
|X out

j |

∑
j−1
i=1

f2(mi ,Xi)+|Xi |||mi−ci ||2
r2

j
+ |X out

j |+ ∑k
i=j+1 |Xi|

(50)

≥
|X out

j |
(1+ε)nσ2

opt

r2
j

+ |X out
j |+ ∑k

i=j+1 |Xi|
(51)

≥
|X out

j |
40(1+ε)kβ jn

ε + |X out
j |+ (k− j)β jn

(52)

≥
ε

49 β jn
40(1+ε)kβ jn

ε + ε
49 β jn + (k− j)β jn

(53)

≥ ε2

(80k + k)49 + (ε− 49j)ε
(54)

≥ ε2

3969k
(55)

Lemma 13. ||mj − m̃j|| ≤ rj.

Proof.

||mj − m̃j|| = ||
1
|Xj| ∑

X∈Xj

∫ Rd

s fX(s)ds− 1
|Xj|

( ∑
X∈X in

j

X̃ + ∑
X∈X out

j

∫ Rd

s fX(s)ds)|| (56)

=
1
|Xj|
|| ∑

X∈X in
j

∫ Rd

(s− X̃) fX(s)ds|| (57)

=
1
|Xj| ∑

X∈X in
j

∫ Rd

||s− X̃|| fX(s)ds (58)

≤ 1
|Xj| ∑

X∈X in
j

rj (59)

=
|X in

j |
|Xj|

rj (60)

≤ rj (61)

Lemma 14. f2(m̃j, X̃j) ≤ 2 f2(mj,Xj) + 4β jnr2
j .
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Proof.

f2(m̃j, X̃j) = ∑
X∈X in

j

||X̃− m̃j||2 + ∑
X∈X out

j

∫ Rd

||s− m̃j||2 fX(s)ds (62)

= ∑
X∈X in

j

∫ Rd

||X̃− m̃j||2 fX(s)ds + ∑
X∈X out

j

∫ Rd

||s− m̃j||2 fX(s)ds (63)

= ∑
X∈X in

j

∫ Rd

||X̃− s + s− m̃j||2 fX(s)ds + ∑
X∈X out

j

∫ Rd

||s− m̃j||2 fX(s)ds (64)

≤ ∑
X∈X in

j

∫ Rd

(2||X̃− s||2 + 2||s− m̃j||2) fX(s)ds + ∑
X∈X out

j

∫ Rd

||s− m̃j||2 fX(s)ds (65)

≤ 2 ∑
X∈X in

j

∫ Rd

||X̃− s||2 fX(s)ds + 2 ∑
X∈X out

j

∫ Rd

||s− m̃j||2 fX(s)ds (66)

≤ 2|X in
j |r

2
j + 2 f2(m̃j,Xj) (67)

= 2|X in
j |r

2
j + 2 f2(mj,Xj) + 2|Xj|||mj − m̃j||2 (68)

≤ 2 f2(mj,Xj) + 4β jnr2
j (69)

Lemma 15. In the process of finding cj in our algorithm cMeans, we assume that Q satisfies
X \ Bj ⊆ Q and |Q| < 2|X \ Bj|. For the set S2 in step 5, a subset S∗ of size 6/ε of S2 can be
obtained such that all random variables in S∗ are from X̃ in

j with a probability of 1/2. Let cj denotes

the centroid of S∗. Then, the inequality ||m̃j − cj||2 ≤ 4
5 εr2

j +
2
5 εσ2

j holds with a probability of at
least 1/6.

Proof. In our algorithm cMeans, we assume that S1 = S1, . . . , SN , where N = 79380k/ε3.
Let x

′
1, . . . , x

′
N be the corresponding random variables of elements in S1. If Si ∈ X out

j , obtain

x
′
i = 1, or else x

′
i = 0. It is known easily that Pr[Si ∈ X out

j ] ≥ ε2

7938k by Lemma 12. Let

x = ∑N
i=1 x

′
i , u = ∑N

i=1 E(x
′
i). We obtain that u ≥ 10/ε, and

Pr[x >
6
ε
] = 1− Pr[x ≤ 6

ε
] (70)

≥ 1− Pr[x ≤ 3
5

u] (71)

≥ 1− e−
(1− 3

5 )
2u

2 (72)

≥ 1− e−
(1− 3

5 )
2 10

ε
2 (73)

≥ 1− e−
4
5 (74)

≥ 1
2

. (75)

Then, the probability that at least 6/ε random variables in S1 are from X out
j is at least

1/2. Since S2 = S1 ∪ {6/ε copies of each point in C}, a subset S∗ of size 6/ε of S2 can
be obtained, and the probability that all random variables in S∗ are from X̃ in

j is at least
1/2. Let cj denote the centroid of S∗ and δ = 5/6. For |S∗| = 6/ε and |widetildeXj| = |Xj|,
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by Lemma 2, ||m̃j − cj||2 ≤ ε
5

f2(m̃j ,X̃j)

|X̃j |
= ε

5
f2(m̃j ,X̃j)

|Xj |
holds with a probability of at least 1/6.

Assume that ||m̃j − cj||2 ≤ ε
5

f2(m̃j ,X̃j)

|Xj |
. Then,

||m̃j − cj||2 ≤
ε

5
f2(m̃j, X̃j)

|Xj|
≤ ε

5

2 f2(mj,Xj) + 4β jnr2
j

|Xj|
≤ 4

5
εr2

j +
2
5

εσ2
j . (76)

Lemma 16. If cj satisfies ||m̃j − cj||2 ≤ 4
5 εr2

j +
2
5 εσ2

j , then ||mj − cj||2 ≤ 9
10 εσ2

j +
1

10β jk
εσ2

opt.

Proof. Assume that cj satisfies ||m̃j − cj||2 ≤ 4
5 εr2

j +
2
5 εσ2

j . Then,

||mj − cj||2 = ||mj − m̃j + m̃j − cj||2 (77)

≤ 2||mj − m̃j||2 + 2||m̃j − cj||2 (78)

≤ 2r2
j +

8
5

εr2
j +

4
5

εσ2
j (79)

=
4
5

εσ2
j + (2 +

8
5

ε)r2
j (80)

≤ 9
10

εσ2
j +

1
10β jk

εσ2
opt. (81)

Lemma 17. Given an instance (X , k,L) of the uncertain constrained k-means problem, where
the size of X is n, for ∀ε ∈ (0, 1], k ≥ 2, we assume that by using our algorithm cMeans(ε,
X , k, C,U) (C and U are initialized as empty sets), a collection U of candidate sets including
approximate centers is obtained. If there exists a set Ck = {c1, . . . , ck} in U satisfying that
||mj − cj||2 ≤ 9

10 εσ2
j + 1

10β jk
εσ2

opt(1 ≤ j ≤ k), then Ck is a (1 + ε)-approximation for the
uncertain constrained k-means problem.

Proof. Assume that Ck = c1, . . . , ck is a set in U satisfying that ||mj − cj||2 ≤ 9
10 εσ2

j +
1

10β jk
εσ2

opt(1 ≤ j ≤ k). Then,

k

∑
j=1

f2(cj,Xj) =
k

∑
j=1

( f2(mj,Xj) + |Xj|||mj − cj||2) (82)

≤
k

∑
j=1

( f2(mj,Xj) + β jn(
9

10
εσ2

j +
1

10β jk
εσ2

opt)) (83)

≤
k

∑
j=1

( f2(mj,Xj) +
9
10

εn
k

∑
j=1

β jσ
2
j +

1
10

εnσ2
opt (84)

≤
k

∑
j=1

( f2(mj,Xj) +
9
10

εnσ2
opt +

1
10

εnσ2
opt (85)

= (1 + ε) ·OPTk(P). (86)

5.3. Time Complexity Analysis

We analyze the time complexity for our algorithm cMeans in this section.

Lemma 18. The time complexity of our algorithm cMeans is O(4k( 13231ek
ε2 )6k/ε 1

ε nd).
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Proof. Let a = CM
N+kM, which N = 79380k

ε3 , M = 6
ε . By the Stirling formula,

CM
N+kM ≤

(N + kM)M

M!
≈ O((e

N + kM
M

)M) = O((
13231ek

ε2 )
6
ε ).

In our algorithm cMeans, steps 5–9 have a run time of O(k/ε3), step 11 have a run time of
O(d/ε), and steps 13–16 have a run time of O(knd). Let T(n, g) denote the time complexity
of algorithm cMeans, where g is the number of cluster centers, and n is the size of Q.

If g = 0, T(n, 0) = O(1). When n = 1, T(1, g) = a(T(1, g− 1) + O(d/ε)) + O(k/ε3).
Because a > k/ε3, T(1, g) = a(T(1, g − 1) + O(d/ε)) ≤ ag · T(1, 0) + g · ag ·O(d/ε) =
O(g · ag · d/ε). Therefore, T(1, g) ≤ O(4g( 13231ek

ε2 )6g/ε) 1
ε d, where e = 2.7183.

For ∀n ≥ 2 and g ≥ 1, the recurrence of T(n, g) could be obtained as follows:

T(n, g) = a · T(n, g− 1) + T(bn
2
c, g) + a ·O(

d
ε
) + O(

k
ε3 ) + O(knd).

Because a > k/ε3, two constants b1 and b2 with b1 ≥ 1 and b2 ≥ 1 could be obtained to
arrive at the following recurrence.

T(n, g) ≤ a · T(n, g− 1) + T(bn
2
c, g) + a · b1 ·

d
ε
+ b2 · knd.

Now we claim that T(n, g) ≤ b1 · b2 · 1
ε · ag · 22g · nd− b1 · d

ε . If g = 0, then T(n, 0) = O(1).
If g ≥ 1, n = 1, then T(1, g) ≤ O(4g( 13231ek

ε2 )6g/ε) 1
ε d, and the claim holds. Suppose that if

∀n1 ≥ 0, ∀g > g1, the claim holds for T(n1, g1), and if ∀0 < n2 < n, ∀g2, the claim holds for
T(n2, g2). We need to prove that:

b1 · b2 ·
1
ε
· ag · 22g · nd− b1 ·

d
ε
≥ a(b1 · b2 ·

1
ε
· a(g− 1) · 22(g−1) · nd− b1 ·

d
ε
)

+b1 · b2 ·
1
ε
· ag · 22g · bn

2
cd− b1 ·

d
ε
+ a · b1 ·

d
ε
+ b2 · knd.

The above formula can be simplified as 1
4ε · b1 · ag22g ≥ k, which holds for ∀g ≥ 1. For

a = ( 13231ek
ε2 )6/ε, T(n, k) = O(4k( 13231ek

ε2 )6k/ε 1
ε nd).

Thus, we can obtain the following Theorem 2.

Theorem 2. Given an instance (X , k,L) of the uncertain constrained k-means problem, where the
size of X is n, for ∀ε ∈ (0, 1], k ≥ 2, by using our algorithm cMeans(ε,X , k, C, U), a collection
U of candidate sets including approximate centers can be obtained with a probability of at least
1/122 such that U includes at least one candidate set including approximate centers that is a
(1 + ε)-approximation for the uncertain constrained k-means problem, and the time complexity of
our algorithm cMeans is O(4k( 13231ek

ε2 )6k/ε 1
ε nd).

6. Conclusions

In this paper, we defined the uncertain constrained k-means problem first, and then
presented a stochastic approximate algorithm for the problem in detail. We proposed a
general mathematical model of the uncertain constrained k-means problem, and studied
the random sampling properties, which are very important to deal with the uncertain
constrained k-means problem. By applying a random sampling technique, we obtained
a (1 + ε)-approximate algorithm for the problem. Then, we investigated the success
probability, correctness and time complexity analysis of our algorithm cMeans, whose
running time is O(4k( 13231ek

ε2 )6k/ε 1
ε nd). However, there also exists a big gap between

the current algorithms for the uncertain constrained k-means problem and the practical
algorithms for the problem, which has been mentioned in [13] similarly.
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We will try to explore a much more practical algorithm for the uncertain constrained
k-means problem in future. It is known that the 2-means problem is the smallest version of
the k-means problem, and remains NP-hard. The approximation schemes for the 2-means
problem can be generalized to solve the k-means problem. Due to the particularity of the
uncertain constrained 2-means problem, we will study approximation schemes for the
uncertain constrained 2-means problem and reduce the algorithm complexity of approxi-
mation schemes for the uncertain constrained k-means problem through approximation
schemes of the uncertain constrained 2-means problem. Additionally, we will apply the
proposed algorithm to some practical problems in the future.
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