
mathematics

Article

Quantum and Classical Log-Bounded Automata for the Online
Disjointness Problem

Kamil Khadiev 1,* and Aliya Khadieva 1,2

����������
�������

Citation: Khadiev, K.; Khadieva, A.

Quantum and Classical Log-Bounded

Automata for the Online Disjointness

Problem. Mathematics 2022, 10, 143.

https://doi.org/10.3390/

math10010143

Academic Editor: Theodore

Andronikos

Received: 26 September 2021

Accepted: 27 December 2021

Published: 4 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Computational Mathematics and Information Technologies, Kazan Federal University,
Kremlevskaya Str. 18, 420008 Kazan, Russia; AlIHadieva@kpfu.ru

2 Faculty of Computing, University of Latvia, Rain, a bulvaris 19, LV-1586 Riga, Latvia
* Correspondence: kamil.hadiev@kpfu.ru

Abstract: We consider online algorithms with respect to the competitive ratio. In this paper, we
explore one-way automata as a model for online algorithms. We focus on quantum and classical
online algorithms. For a specially constructed online minimization problem, we provide a quantum
log-bounded automaton that is more effective (has less competitive ratio) than classical automata,
even with advice, in the case of the logarithmic size of memory. We construct an online version of
the well-known Disjointness problem as a problem. It was investigated by many researchers from a
communication complexity and query complexity point of view.

Keywords: quantum computation; online algorithms; streaming algorithms; online minimization
problems; automata

1. Introduction

In the paper, we discuss a computational model used to solve optimization problems.
We focus on online algorithms that many researchers explore. An online algorithm pro-
cesses an input data stream and outputs a data stream in an online fashion. It should
return a piece of output variables immediately after reading a piece of input variables.
At the same time, the best answer can depend on the whole input. The main goal is a
minimization of an objective function (we call it the cost of an output). We can say that an
online algorithm solves an online minimization problem. Researchers consider different
measures of effectiveness for online algorithms [1,2]. At the same time, the competitive
ratio is the most standard and useful [3,4]. If we consider the cost of the output generated
by an online algorithm and the cost of the output produced by an optimal offline algorithm,
then the competitive ratio is the ratio of these to costs. If the ratio is at most c in the worst
case, then we call the algorithm c-competitive. We also can say that the competitive ratio of
the algorithm is c.

Typically, online algorithms have no limits for time and memory complexity. The
main restriction is a lack of knowledge about future input variables. At the same time,
researchers develop online algorithms with different types of restrictions. Some of them
are restrictions on memory [5–11], other ones are restrictions on time complexity [12–14].
Often, an algorithm with restricted resources is closer to real-world applications.

In this paper, we focus on the memory complexity of online algorithms. We expect
that an input stream is such big that it cannot be stored entirely in memory. An online
algorithm processes a data stream. That is why we can consider automata (streaming
algorithms, state machines) as online algorithms for this setup. In the paper, we use the
“log-bounded automata” term. It is a uniform automata-like model with memory such
that the size of memory can depend on the length of an input. This model was explored
in [5,7,8]. Note that the automaton is allowed to use only one input head in the considered
model. Sometimes, for emphasizing that the model is input data processing model and
it is “one-pass”, we call the model one-way log-bounded automata. It means that we

Mathematics 2022, 10, 143. https://doi.org/10.3390/math10010143 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5151-9908
https://orcid.org/0000-0003-4125-2151
https://doi.org/10.3390/math10010143
https://doi.org/10.3390/math10010143
https://doi.org/10.3390/math10010143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math10010143
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10010143?type=check_update&version=1


Mathematics 2022, 10, 143 2 of 21

cannot reread the input and store the whole required information about the past in memory.
Sometimes, to emphasize that the algorithms are used as online algorithms or for solving
an online minimization problem, we call the model one-way log-bounded automata for an
online minimization problem.

We consider classical and quantum models of “log-bounded automata” as online algo-
rithms. The classical model was developed in papers of different researchers [5–7,10,11] for
a long time. At the same time, the quantum model was introduced several years ago in [8]
and discussed in [9]. Quantum computing [15–17] itself is one of the hot topics in computer
science of the last few decades. There are many problems where quantum algorithms
outperform the best-known classical algorithms [18–20]. A restriction for the memory size
is especially important for the quantum model of algorithms because near-future quantum
computers are able to manipulate with a few qubits.

In the case of one-way log-bounded automata as online algorithms, we know that
the quantum model can be more effective than its classical counterparts with respect to
a competitive ratio. The result was proven for two cases. The first one is sublogarithmic
size of memory [8]. The second case is polylogarithmic size of memory [21]. Note that if an
algorithm can use the linear size of memory, then it can store the whole input in memory.
In that case, it is equivalent to the standard online algorithm model without restriction on
the memory size. That is why the only sub-linear size of memory is interesting in the case
of the restricted size of memory.

Researchers also considered other quantum models. One of them is quantum online
algorithms with repeated test [22]; another one is quantum online algorithms with restric-
tion on the size of memory [23,24]; quantum algorithms with a buffer [25,26] and others.
The question of comparing quantum and classical models was explored for data stream
processing models by different researches [27–40].

Our Results

Let us focus on demonstrating the quantum supremacy in the case of the logarithmic
size of memory. For this goal, we choose a problem and demonstrate that a quantum model
for the problem is more effective than a classical counterpart.

A similar result was proven in [21]. At the same time, the problem that was considered
in [21] has one restriction. It is not defined for all inputs and requires a pre-validation to
check whether an input is permissible. Such problems are called “promise problems” or
“partial functions”. It is an important restriction for a problem. The paper explores “total
functions” or problems without a pre-validation procedure for an input.

We investigate an online minimization problem onlineDISJ that is based on the
Disjointness Boolean function DISJ(x, y). For some integer b, the function DISJ is defined
on two binary strings S = (S1, . . . Sb) and U = (U1, . . . ,Ub), and DISJ(S ,U ) = ¬∨b

i=1 Si ∧
Ui. Here S and U are bit-masks (or characteristic vectors) of two input sets A, B ⊂ {1, . . . , b}.
The result is 1 iff A∩ B = ∅.

Researchers explored communication complexity and quantum query algorithms
for the Disjointness Boolean function [41–43]. Additionally, the function was used for
comparing quantum and classical streaming algorithms in [28].

In this paper, we consider an online version of this well-known problem that is
onlineDISJ. The definition of the onlineDISJ problem is based on the problems that were
presented in [28,44]. We provide a c-competitive quantum log-bounded automaton for
onlineDISJ, and we show that any classical counterpart is less effective. Formally, any
log-bounded automaton for the problem is c′-competitive and c′ > c. A similar result
was presented in [44]. This paper presents a more significant separation between the
competitive ratios of quantum and classical algorithms.

Often, online algorithms are investigated in terms of advice complexity measure [45–47].
We are interested in this measure also. The model with advice was not considered in [44].

The main point of the model is the following one. An online algorithm gets some bits of
advice about an input. A trusted Adviser sending these bits knows the whole input and has



Mathematics 2022, 10, 143 3 of 21

unlimited computational power. Such additional information helps the online algorithm
for the computation process and allows to obtain a better competitive ratio. Deterministic
and randomized online algorithms with advice are considered in [45,48,49]. Typically,
online algorithms researchers use the “Adviser” term, and other models researchers use
the “Oracle” term.

In this paper, we provide a quantum log-bounded automaton for onlineDISJ with a
single advice bit and a logarithmic size of memory that is almost optimal, i.e., c̃-competitive
for lim c̃ = 1. At the same time, any classical algorithm with the logarithmic size of memory
is less effective. Formally, any classical algorithm with the logarithmic size of memory is
c′′-competitive and c′′ > 1.

Note that the usage of a specially constructed problem for demonstrating the power
of models is a common approach. Sometimes the problems are artificial, but they allow
authors to show more representative results [45,49,50].

The paper is organized as follows. We give definitions in Section 2. In Section 3.1 we
present our results for the quantum models and Section 3.2 contains results for classical
models. The conclusion is presented in Section 4.

2. Preliminaries

In the paper, we use different notations for δ-functions. A function δ : R×R→ {0, 1}
is such that δ(a, b) = 1 iff a = b. A function δx is such that δx = 1 if x 6= 0; otherwise,
δx = 0. So, δx = 1− δ(x, 0).

Let us define the computational models.
An online minimization problem is presented by a set of possible inputs I and a

cost function. An input I = (x1, . . . , xn) is a sequence of input variables. Here n is a length
of the input, shortly |I| = n. Let O(I) be a set of feasible outputs associated with an input
I. An output is a sequence of output variables O = (y1, . . . , yn). The cost function assigns a
positive real value cost(I, O) to an input I ∈ I and an output O ∈ O(I). We call Oopt(I) an
optimal solution for I ∈ I if it satisfies the next statement

Oopt(I) = argminO∈O(I) cost(I, O).

An online algorithm for this problem is defined as follows. A deterministic online
algorithm A outputs a sequence A(I) = (y1, . . . , yn) such that the variable yi is computed
from input variables x1, . . . , xi.

An algorithm A is c-competitive if we can present a constant α ≥ 0 such that for every
positive integer n and for any input I ∈ I of size n, the following statement is correct

cost(I, A(I)) ≤ c · cost(I, Opt(I)) + α.

Here Opt(I) is an output of an optimal offline algorithm for the considered problem;
c is the minimal number that satisfies the inequality. The number c is the competitive ratio
of the algorithm A. In a case of α = 0 and c = 1, the algorithm A is optimal. Typically c is
constant. At the same time, c can be a function on n.

We can define An online algorithm A with advice as a sequence of algorithms
A = (A0, . . . , A2b−1) where b = b(n). The trusted adviser chooses φ ∈ {0, . . . , 2b−1}
that depends on an input I and the algorithm Aφ computes an output sequence Aφ(I) =
(y1, . . . , yn) such that yi = yi(x1, . . . , xi). An algorithm A is c-competitive with advice com-
plexity b = b(n) if there exists a constant α ≥ 0 such that, for every n and for any input I of
size n, there exists some φ ∈ {0, . . . , 2b−1} such that cost(I, Aφ(I)) ≤ c · cost(I, Opt(I)) + α.

A randomized online algorithm R computes an output sequence Rψ(I) = (y1, · · · , yn)
such that yi is computed from ψ, x1, · · · , xi, where ψ is a content of the random tape, i. e., an
infinite binary sequence, where every bit is chosen uniformly at random and independently
of all the others. By cost(I, Rψ(I)) we denote the random variable expressing the cost of
the solution computed by R on I. R is c-competitive in expectation if there exists a constant
α ≥ 0 such that, for every I, E [cost(I, Rψ(I))] ≤ c · cost(I, Opt(I)) + α.



Mathematics 2022, 10, 143 4 of 21

We use one-way automata for online minimization problems as online algorithms with
restricted memory size. In the paper, we use the terminology for branching programs [51]
and algorithms. We say that an automaton computes a Boolean function fm if for any
input X of length m, the automaton returns 1 iff fm(X) = 1. We can say that an automaton
returns 1 if it accepts an input word and returns 0 otherwise. Additionally, we use the
terminology on memory from algorithms. We say that an automaton has s bits of memory
if it has 2s states. In fact, the model that we consider is a stable id-OBDD [30,31,51], that is
an algorithm that uses at most s bits of memory and processes a data stream.

Let us present the definitions of log-bounded automata that we use. A determin-
istic log-bounded automaton with s = s(n) bits of memory that processes an input
I = (x1, . . . , xn) is a 4-tuple (d0, D, ∆, Result).

• The set D is a set of states, |D| = 2s, d0 ∈ D is the initial state.
• The function ∆ is a transition function ∆ : {0, . . . , γ− 1} × D → D, where γ is a size

of the input alphabet.
• Result is an output function Result : D → {0, . . . , β − 1}, where β is a size of the

output alphabet.

It is a uniform model. The computation starts from the state d0. Then, on reading
an input symbol xj, it changes the current state d ∈ D to ∆(xj, d). At the end of the
computation, the automaton outputs Result(d).

A probabilistic log-bounded automaton is a probabilistic counterpart of the model.
It chooses from more than one transition in each step such that each transition is associated
with a probability. Thus, the automaton can be in a probability distribution over states
during the computation. The total probability must be 1, i.e., the sum of probabilities of
outgoing transitions from a single state for a single letter must be 1. Thus, a probabilistic
automaton returns a result for each input with some probability. For v ∈ {0, . . . , β− 1}, the
automaton returns a result v for an input with bounded-error if the automaton returns the
result v with probability at least 1/2 + ε for some ε ∈ (0, 1/2]. The automaton computes
a function f : {0, . . . , γ − 1}n → {0, . . . , β} with bounded error if it returns f (X) with
bounded error for each X ∈ {0, . . . , γ− 1}n. The automaton computes a function f exactly
if ε = 0.5.

A deterministic online streaming algorithm (a deterministic log-bounded automaton
for online minimization problem) with s = s(n) bits of memory that process input I =
(x1, . . . , xn) is a 4-tuple (d0, D, ∆, Result).

• The set D is a set of states, |D| = 2s, d0 ∈ D is the initial state.
• ∆ is a transition function ∆ : {0, . . . , γ− 1} × D → D.
• Result is an output function Result : D → {0, . . . , β− 1}.

The computation starts from the state d0. Then on reading an input symbol xj it change
the current state d ∈ D to ∆(xj, d) and outputs Result(d). The main difference between an
“online streaming algorithm” and a standard “online algorithm” definition is a restriction
on memory and forbidding reading the previous input variables.

A randomized online streaming algorithm and a deterministic online streaming
algorithm with advice have similar definitions, but with respect to definitions of corre-
sponding models of online algorithms.

Comment. Note that any online algorithm can be simulated by an online streaming
algorithm (automaton for online minimization problem) using O(n) bits of memory. It is n
bits in the case of binary input and dn log2 γe bits in the general case.

Let us consider a quantum online streaming algorithm (quantum log-bounded au-
tomaton for online minimization problem). More information on quantum computation
and quantum streaming computational models (automata) can be found in [17,35,52–54].
For some integer n > 0, a quantum online algorithm Q with q qubits is defined on an input
I = (x1, . . . , xn) ∈ {0, . . . , γ− 1}n and outputs (y1, . . . , yn) ∈ {0, . . . , β− 1}n. A memory
of the quantum algorithm is a state of a quantum register of q qubits. In other words, the
computation of Q on an input I can be traced by a 2q-dimensional vector from Hilbert space



Mathematics 2022, 10, 143 5 of 21

over the field of complex numbers. The initial state is a given 2q-vector |ψ〉0 (we use Dirac
notation for vectors). The algorithm can perform one of two kinds of operators. The first
one is applying a unitary 2q × 2q-matrix. The second one is measurement.

Let us describe a measurement process. Suppose that Q is in a state |ψ〉 = (v1, . . . , v2q)
before a measurement and the algorithm measures the i-th qubit. Let 0-value for the
qubit i is associated with states a0

1, . . . , a0
2q−1 ; let 1-value for the qubit i is associated with

states a1
1, . . . , a1

2q−1 . If we measure the qubit, then we obtain 1-result with probability

Pr1 = ∑2q−1

j=1 |va1
j
|2 and we obtain 0-result with probability Pr0 = 1− Pr1. If the result of

the measurement is u ∈ {0, 1}, then after measurement, the quantum system is converted
to the state |ψ(u)〉 such that vau

j
(u) = vau

j
/
√
Pru, where vau

j
(u) is an element of the new

vector and vau
j

is an element of the old vector. All other elements of the new vector are 0.
Suppose, on j-th step, the algorithm measures v qubit. Then, an outcome of the

measurement is u ∈ {0, . . . , 2v − 1}. We test xj variable on j-th step, for j ∈ {1, . . . , n} . The
algorithm does all three following operations in the presented order.

1. It does a measurement. Let the outcome be u.
2. The algorithm applies a unitary 2q× 2q-matrix Gxj ,u that depends on the input variable

xj and the outcome u.
3. It does a measurement. Let the outcome be u′. Then, the algorithm outputs Result(u′)

on this step. Here Result : {0, . . . , 2q − 1} → {0, . . . , β− 1} is a function that converts
the result of the measurement to an output variable.

The algorithm Q is c-competitive in expectation if there exists a non-negative constant
α such that, for every I, E[cost(I, Q(I))] ≤ c · cost(I, Opt(I)) + α.

A quantum log-bounded automaton has a similar definition, but it returns Result(u)
at the end of the computation. See [35,55] for more details on quantum automata.

3. On Quantum Online Streaming Algorithm for the Online Disjointness Problem

Let us define onlineDISJt,k,r,w problem that is based on the Disjointness Boolean
function. The DISJ : {0, 1}b × {0, 1}b → {0, 1} function is such that

DISJ(S ,U ) = ¬
b∨

i=1

Si ∧ Ui.

We can say that S and U are bit-masks or characteristic vectors for sets A, B ⊂ {1, . . . , b}.
The function is such that DISJ(S ,U ) = 1 iff the corresponding have no intersections, i.e.,
A∩ B = ∅. For some positive integers t, k, r, and w such that k mod t = 0, r < w, the online
minimization problem onlineDISJt,k,r,w is organized as follows. Figure 1 describes the
structure of an input.

Let m be an positive integer. Formally, an input I = (x1, . . . , xn) ∈ {0, . . . , 6}n has the
following structure: I = bin(m) 6 L1 6 L2 6 . . . 6 Lk, where bin(m) is a binary representation
of m and Li ∈ {0, . . . , 5}∗, where 1 ≤ i ≤ k. For some positive integer n, let |I| = n. Let
MDISJm : {0, . . . , 5}∗ → {0, 1} be a function such that MDISJm(Li) = 1 iff the following
properties are right:

1. For some positive integer mi and binary strings Z i,j,U i,j,S i,j, Mi, the structure of Li is
Li = Mi 5 S i,1 2 U i,1 3 Z i,1 4 . . . 4 S i,mi 2 U i,mi 3 Z i,mi 4;

2. S i,1 = · · · = S i,mi , U i,1 = · · · = U i,mi and Z i,1 = · · · = Z i,mi ;
3. S i,1 = Z i,1;
4. |S i,1| = |U i,1|, where |v| is a length of a vector v;
5. val(Mi) = mi = 2 + 2d

√
|S i,1|e · dlog2 |S i,1|e2, where Mi is a binary representation

of an integer val(Mi).
6. The value of the function DISJ(S i,1,U i,1) = 1.
7. mi = m.



Mathematics 2022, 10, 143 6 of 21

Here 6 is an indicator of the end of Li.
MDISJm(Li) = 1 iff Li is following:

and DISJ(S i,1,U i−1) = 1. Here 5 is an indicator of the end of Mi, 2 is an indicator of the end of
S i,j, 3 is an indicator of the end of U i,j, 4 is an indicator of the end of Z i,j.

Here k = t · T for parameters t and k of the problem. An integer gi =
⊕k

j=i MDISJm(Lj) is a
“right” output variable. The input is split into t blocks of size T. The cost of a block is r if all
output variables of the block are equals to the right ones, i.e., gi = yi where i are indexes from
the block. Here yi is an output variable. The cost of the block is w in the other case. The cost of
the whole output is a sum of the costs of all blocks.

Figure 1. The structure of an input for onlineDISJt,k,r,w.

The authors of [28] have constructed a problem using a similar idea.
For i ∈ {1, . . . , k}, let a Boolean variable gi be such that gi =

⊕k
j=i MDISJm(Lj). Let

O′ = (y1, . . . , yk) be output variables that correspond to input variables xj = 6. The cost
function is

cost(I, O′) = tw + (r− w) ·
t

∑
q=0

q·T+T

∏
j=q·T+1

δ(gj, yj),

where T = k/t. Recall, parameters t, k, w and r or the problem satisfy conditions k mod
t = 0 and r < w. Let us discuss the meaning of the cost function. The output is split into t
blocks. The size of each block is T. We say that a block is “right” if all each element yj from
the block satisfies yj = gj. Otherwise it is a “wrong” block. The cost of a “right” block is
r, and the cost of a “wrong” block is w. The sum of costs of all blocks is the total cost of
the output. Our goal is to develop an algorithm that minimizes the cost of the output. A
similar concept of the cost function was used, for example, in [49].

3.1. A Quantum Online Streaming Algorithm for the Online Disjointness Problem

Let us discuss a quantum log-bounded automaton for MDISJ function. For construc-
tion of the automaton, we will use the following existing result:



Mathematics 2022, 10, 143 7 of 21

Lemma 1 ([56]). We can construct a quantum log-bounded automaton that checks the equality of
two binary strings with bounded error ε′ for ε′ > 0. The size of the memory of the automaton is
O(log d− log ε′).

Note that the proof of the following lemma is similar to the proof from [44]. At the
same time, the structure of MDISJm(Li) differs from the structure of the corresponding
function from [44]. That is why we present the full proof here. The current form of the
function allows us to obtain better error probability.

Lemma 2. Suppose that we have a quantum register |µ〉 that stores m, i.e., |µ〉 = |m〉. There is
a bounded error quantum log-bounded automaton for MDISJm(Li) that uses O(log d) qubits of
memory and has O( 1

d ) error probability for d = |Li|, where |Li| is a length of Li.

Proof. As proof, we construct a quantum automaton for the MDISJm(Li) problem. The
automaton consists of five parallel procedures. A procedure per property from the
following list:

1. For an integer b, the string Li have the following structure:

Li = {0, 1}∗5({0, 1}b2{0, 1}b3{0, 1}b4)∗.

Here, we use ∗ for several repetitions of the string.
2. The string Mi satisfies val(Mi) = mi = 2 + 2d

√
|S i,1|e · dlog2 |S i,1|e2 and m = mi;

3. S i,1 = · · · = S i,mi , U i,1 = · · · = U i,mi and Z i,1 = · · · = Z i,mi ;
4. S i,1 = Z i,1;
5. DISJ(S i,1,U i,1) = 1.

Property 1. We use a deterministic procedure for checking the first property. The size
of memory is O(log d). Firstly, we check whether the strings have the following structure

{0, 1}∗5({0, 1}∗2{0, 1}∗3{0, 1}∗4)∗.

We can do it using a constant number of states. Secondly, it checks that all binary parts
have the same length and stores its length in a quantum register |λ′〉. We can use O(d)
states or O(log d) memory. The detailed implementation is presented in Appendix A.1.

Property 2. We use a deterministic procedure for checking the second property. We
store the Mi string and compute a number of 4s and 5s that is mi. Then, we check whether
m = val(Mi) = mi = 2 + 2dlog2

√
be2 · d

√
be is correct, where b = |S i,1|. The algorithm

stores Mi and counts mi using O(d) states or O(log d) bits of memory. The algorithm for
the first property already stored b and m is stored in |µ〉, that is why we can use them for
checking the equality. The detailed implementation is presented in Appendix A.2.

Property 3. We use a quantum fingerprinting technique [56,57] based on a quantum
procedure for checking the third property. We assemble two strings from the existing ones:

s1 = (S i,1 ◦ U i,1 ◦ Z i,1) ◦ (S i,2 ◦ U i,2 ◦ Z i,2) ◦ · · · ◦ (S i,mi−1 ◦ U i,mi−1 ◦ Z i,mi−1),

s2 = (S i,2 ◦ U i,2 ◦ Z i,2) ◦ (S i,3 ◦ U i,3 ◦ Z i,3) ◦ · · · ◦ (S i,mi ◦ U i,mi ◦ Z i,mi ),

where “◦” is concatenation. If s1 = s2, then

S i,1 = S i,2, S i,2 = S i,3, . . . , S i,mi−1 = S i,mi ,

U i,1 = U i,2, U i,2 = U i,3, . . . , U i,mi−1 = U i,mi

and
Z i,1 = Z i,2, Z i,2 = Z i,3, . . . , Z i,mi−1 = Z i,mi .



Mathematics 2022, 10, 143 8 of 21

Let us choose ε′ = 1/d. Due to Lemma 1, we can present a log-bounded automaton for
checking equality of s1 and s2. The size of memory is O(log d). The detailed implementation
is presented in Appendix A.3.

Property 4. We use a quantum procedure for checking the fourth property. The
procedure is based on the quantum fingerprinting method also and checks whether S i,1 =
Z i,1 is correct. We construct an automaton using Lemma 1 for checking the property with
bounded error ε′′. Suppose ε′′ = 1/d, then the automaton reaches an error probability O( 1

d )
using O(log d) qubits. The detailed implementation is presented in Appendix A.4.

Property 5. We use a quantum procedure for checking the fifth property, and it uses
some ideas from [28]. As a base, we use the well-known Grover’s algorithm [58,59] for the
unstructured search problem. The size of quantum memory for the procedure is O(log d)
and error probability is O(1/b). Let us present the description of the procedure. Let
S = S i,1 and U = U i,1. If the input satisfies the first four properties, then we can say that
the input is m copies of S ◦ U ◦ S string. The Grover’s Search algorithm was defined for
Query model [16,17] and it does O(

√
b) queries to the oracle or O(

√
b log b) queries in a

case of unknown number of solutions. We simulate a query to the oracle by reading the
input string S ◦ U ◦ S . So, O(

√
b log b) copies of this string allow as to provide multiple

queries. We simulate the search of the index a0 such that Sa0 = Ua0 = 1 or Sa0 ∧ Ua0 = 1.
In that case DISJ(S i,1,U i,1) = 0.

Let us provide the emulation of a query to the oracle. We have p = dlog2(b + 1)e
qubits as a quantum register |ϕ〉, p qubits as a quantum register |ϕones〉. Additionally, there
is a qubit |ϕ′〉 and a qubit |ϕ′′〉.

Initially, the quantum system is in the |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 state. Firstly, the automaton
reads the S i,2 string. In other words, it processes s2. We assume that the automaton already
knows b on this step. Firstly, we apply the Hadamard transformation for obtaining the
following state |ϕ〉 → 1√

2p ∑2p−1
a=0 |a〉. Then, we apply the inversion transformation (X-gate

or NOT-gate) for obtaining the following state |ϕones〉 → |1〉.
We split the automaton’s steps to macro-steps. The l-th one is reading S i,l ,U i,l ,Z i,l

strings for l ∈ {2, . . . , m}. During checking the third property, we store l in |φ′′〉. The
computing process of l is presented in Appendix A.3. Assume that the automaton reads
S i,l string’s a-th symbol. If the automaton reads 1, then we apply the V transformation to
registers |ϕ〉 ⊗ |ϕ′〉. Here V : |a〉 ⊗ |u〉 → |a〉 ⊗ |u⊕ 1〉 for 1 ≤ a ≤ b. The automaton does
not change the quantum registers if it reads 0.

Assume that the automaton reads U i,l string’s a-th symbol. If the automaton reads
1, then we apply the W transformation to registers |ϕ〉 ⊗ |ϕ′〉. Here W : |a〉 ⊗ |u〉 →
(−1)u|a〉 ⊗ |u〉 for 1 ≤ a ≤ b. The automaton does not change the quantum registers if
it reads 0. In other words, the amplitude for a state |a〉 is inverted only if Sa = Ua = 1.
Indexes with such property are our solution. We process the Z i,l string exactly like we
process the S i,l string.

Remember that we already tested the equalityZ i,l = S i,l in procedure 3 and procedure
4. Therefore, after processing Z i,l , the effect that S i,l does to the second register is removed.
One macro step simulates one query of Grover’s search algorithm.

Then, we apply Grover’s diffusion transformation to the register |ϕ〉. The transfor-
mation is D = H⊗pRH⊗p. It rotates all amplitudes near the mean, where R is a unitary
transformation that inverts sign for all basis states except zero basis state. Reader can find
details on the Grover’s diffusion transformation D in [58,59].

One macro-step (processing of strings S i,l ,U i,l ,Z i,l) and the Grover’s diffusion trans-
formation together correspond to one step of Grover’s search algorithm. Due to [59], the
automaton simulate π

4

√
N/v steps of the algorithm if v = |{a : S i,l

a = U i,l
a = 1}|, where S i,l

a
is a-th symbol of the string S i,l . The automaton does π

4

√
N/v steps if |ϕones〉 = |v〉, where

1 ≤ v ≤ b. Initially, v = 1. The automaton simulates the required number of Grover’s
search steps and measures |ϕ〉|ϕones〉. If we obtain |a〉|v〉 result, then we reads one more
block S i,lU i,lZ i,l and check the equality S i,l

a = U i,l
a = 1. For checking the equality, we store



Mathematics 2022, 10, 143 9 of 21

these two bits in |ϕ′〉 ⊗ |ϕ′′〉 qubits. Then, we measure both qubits and check equality of
measurement results.

If the condition S i,l
a = U i,l

a = 1 is right, then process stops. Otherwise, we assign |2 · v〉
to the |ϕones〉, initialize |ϕ′〉 ⊗ |ϕ′′〉 by |0〉 ⊗ |0〉 and repeat the procedure for the new value
of v. The probability of correct answer of the algorithm is at least 0.5, due to [59]. Using the
standard success boosting procedure, we can get the error probability 1/b2 by repeating
the algorithm 2dlog2 be times.

It is easy to see that the size of memory for presented automaton for MDISJ is
O(log d) = O(log n) qubits. The error probability is O(ε) where 0 < ε ≤ 1− (1− 1/d)2(1−
1/b2) ≤ 1− (1− 1/d)3 = O(1/d).

If we compare the obtained result with results of [28,44], then we can see that the
function and the automaton have several modifications. Using this modification we show
that the error probability is O( 1

d ). At the same time, similar constructions from [28,44]
allow us to obtain only constant error probability.

Using the previous result, we can construct a quantum online streaming algorithm for
onlineDISJ with a smaller competitive ratio compared to [44]. This property is presented
in the following theorem.

Theorem 1. Suppose k = O(log n). We provide a quantum online streaming algorithm Q for
onlineDISJt,k,r,w that is expected c-competitive, uses O(log n) qubits of memory, where c ≤ CQ.
Here CQ → 0.5(r + w)/r for n→ ∞.

Proof. Firstly, we store m into the quantum register |µ〉 of O(log m) = O(log n) qubits. We
guess g1, we choose it randomly and uniformly from the set {0, 1}. We output the result
of guessing as the first output variable y1. After that the automaton (streaming online
algorithm) computes MDISJm(L1) and outputs y2 that is y2 = y1 ⊕MDISJm(L1). On the
i-th step the automaton computes MDISJm(Li−1) and outputs yi = yi−1 ⊕MDISJm(Li−1).
If y1 = g1 (we guess g1 correctly), then for each other output variable is correct, i.e., yi = gi
for i ∈ {1, . . . , k}. If y1 6= g1, then all output variables are incorrect, i.e., yi 6= gi for
i ∈ {1, . . . , k}. Let CQ =

(
0.5(1− ε)t−1 · (r− w) + w

)
/r. We can show that c ≤ CQ for

ε = O(
log n

n ). Let us compute a cost of the output for this algorithm if a probability of
computing MDISJm(L1) is ε. Let us remind that all output variables yi are split to t blocks.
Let us change the cost function. The new one cost′(I, O) is such that 1 is the cost of a “right”
block, and 0 is the cost of a “wrong” block. Formally,

cost′(I, O) =
t

∑
r=0

r·T−1

∏
j=r·(T−1)

δ(gj, yj), for T = k/t.

The main cost function can be computed by the new one using the following statement
costt(I, O) = t · w + cost′(I, O) · (r− w).

For computing the competitive ratio, we should calculate E [cost′(I, O)].
Let us compute pi the probability that a block i is a “right” block (costs 1). Let i = 1.

So, if the i-th block is “right”, then for all T − 1 binary strings Lj inside the block the
computation of MDISJ is right and a guess of y1 is right. A probability of this event is
p1 = 0.5 · (1− ε)T−1.

Let i > 1. If the i-th block is “right”, then two conditions should be true:

(i) for all T − 1 binary strings Lj inside the block, the computation of MDISJ should be
right.

(ii) If we consider a number of errors for computation of MDISJ for preceding Ljs plus 1
if y1 is wrong. Then this number should be even.

A probability of the first condition is (1− ε)T−1. Let us compute the probability of the
second condition.

Let E(j) be the number of errors before computation of MDISJm(Lj). Let λj be the
number of of errors during computation of MDISJ. If y1 6= g1, then E(j) = λj + 1,



Mathematics 2022, 10, 143 10 of 21

otherwise E(j) = λj. Let the probability F(j) = Pr{E(j) mod 2 = 0}. Hence, Pr{E(j) mod
2 = 1} = 1− F(j). If we compute MDISJm(Lj) with an error, then we have E(j− 1) mod
2 = 1. If we compute MDISJm(Lj) with no error, then we have E(j− 1) mod 2 = 0. Hence,

F(j) = F(j− 1)(1− ε) + (1− F(j− 1))ε = ε + (1− 2ε)F(j− 1).

Remember that y1 = g1 with probability 1
2 . Hence, F(1) = 1

2 .
We can compute the probability F(j) as follows

F(j) = ε + (1− 2 · ε) · F(j− 1) =

ε + ε · (1− 2 · ε) + (1− 2 · ε)2 · F(j− 2) =

· · · = ε + ε · (1− 2 · ε) + · · ·+ ε · (1− 2 · ε)j−2 + (1− 2 · ε)j−1 · F(j− j + 1) =

ε ·
j−2

∑
l=0

(1− 2 · ε)l + (1− 2 · ε)j−1 · F(1) = 0.5 · (1− (1− 2 · ε)j−1) + 0.5 · (1− 2 · ε)j−1 =
1
2

Hence, pi = 0.5 · (1− ε)T−1. Let us compute the expected cost:

E [cost′(I, A(I))] =
t

∑
i=1

(
pi · 1 + (1− pi) · 0

)
=

t

∑
i=1

pi = 0.5 · (1− ε)T−1 · t.

Therefore, E [costt(I, A(I))] = 0.5 · (1− ε)T−1 · t(r− w) + tw.
Let us compute the expected competitive ratio.

c ≤ 0.5 · (1− ε)T−1 · t(r− w) + tw
tr

=
(

0.5 · (1− ε)T−1 · (r− w) + w
)

/r = CQ.

Let us estimate lim
n→∞

CQ.

w + (1− ε)k−1 · 1
2 · (r− w)

r
≤ CQ ≤

w + (1− ε) · 1
2 · (r− w)

r

lim
n→∞

w + (1− ε)k−1 · 1
2 · (r− w)

r
≤ lim

n→∞
CQ ≤ lim

n→∞

w + (1− ε) · 1
2 · (r− w)

r

lim
n→∞

w + (1− log n
n )log n · 1

2 · (r− w)

r
≤ lim

n→∞
CQ ≤ lim

n→∞

w + (1− log n
n ) · 1

2 · (r− w)

r
(0.5(r− w) + w)/r ≤ lim

n→∞
CQ ≤ (0.5 · (r− w) + w)/r

Hence, lim
n→∞

CQ = 0.5(r+w)
r .

The quantum streaming algorithm with advice is presented in the following theorem.

Theorem 2. There is the expected c-competitive quantum online streaming algorithm Q with
O(log n) qubits of memory and single advice bit for onlineDISJt,k,r,w, where c ≤ CQA and
CQA → 1 for k = O(log n) and n→ ∞.

Proof. The algorithm is the same as in the Theorem 1, but y1 is obtained as an advice
bit. Let us compute pi similarly as in the proof of the previous theorem. Assume that
ε = O(

log n
n ) is an error for computing MDISJ. Let E(j) be the number of errors before

computation of MDISJm(Lj). It is a number of errors for computation of MDISJ for
preceding Ls. Let the probability F(j) = Pr{E(j) mod 2 = 0}. Hence, Pr{E(j) mod
2 = 1} = 1− F(j). Remember that we obtain y1 as the advice bit; therefore, F(1) = 1.

F(j) = ε + (1− 2 · ε) · F(j− 1) =



Mathematics 2022, 10, 143 11 of 21

· · · = ε ·
j−2

∑
l=0

(1− 2 · ε)l + (1− 2 · ε)j−1 · F(1) =

0.5 · (1− (1− 2 · ε)j−1) + (1− 2 · ε)j−1 = 0.5 · (1 + (1− 2ε)j−1).

So, F(j) = (1−2ε)j−1+1
2 .

The probability pi of the event is pi = 0.5 · (1 + (1− 2ε)(i−1)T+1−1) · (1− ε)T−1.
We can compute the expected value for the cost

E [cost′(I, O)] =
t

∑
i=1

(
1 · pi + 0 · (1− pi)

)
= p1 +

t

∑
i=2

pi =

(1− ε)T−1 ·
(

1 +
t

∑
i=2

(0.5 + 0.5(1− 2ε)(i−1)T)

)
=

0.5(1− ε)T−1 ·
(

t + 1 +
t

∑
i=2

(1− 2ε)(i−1)T

)
Let us compute

lim
n→∞

E [cost′(I, O)] = lim
n→∞

0.5(1− log n
n

)T−1 ·
(

t + 1 +
t

∑
i=2

(1− 2
log n

n
)(i−1)T

)
≤

≤ lim
n→∞

0.5(1− log n
n

) ·
(

t + 1 +
t

∑
i=2

(1− 2
log n

n
)

)
= 0.5(1− 0) · (t + 1 + t− 1) = t

Therefore, lim
n→∞

CQA ≤ E [cost′(I, O)]/t = t/t = 1 and CQA ≥ 1. Hence, we obtain the

claim of the theorem.

3.2. Bounds for Classical Automata for the Online Disjointness Problem

We use some results from the communication complexity theory. We briefly remind the
reader of the model (see [60]). There are two players, Alice and Bob. They want to compute
a Boolean function f (X). Alice has variables from a set XA ⊂ X and Bob variables from a
set X\XA. Alice starts computation and sends a message to Bob. Then, Bob continues and
sends a message to Alice, etc. The player who can compute f (X) returns an answer. Alice
and Bob can use a probabilistic mechanism. The probabilistic communication complexity
is the total number of bits in all messages. It is known that

Lemma 3 ([42]). The probabilistic communication complexity of the Boolean function DISJ(S ,U )
is Ω(b), where S ,U ∈ {0, 1}b, Alice has x and Bob has y.

Using this result, we can show the following one.

Lemma 4. Suppose, we have a promise that properties 1–5 and 7 of MDISJm(Li) are correct.
Suppose the length of the string S i,1 is b = |S i,1| and the integer m such that m < b. Then, there
is no bounded error probabilistic log-bounded automata for MDISJm(Li) that uses o(b/m) bits
of memory.

Proof. Suppose that there is a probabilistic automaton R for MDISJm(Li) with d = o(b/m)
bits of memory. Then, we can simulate the work of R by a probabilistic communication
protocol such that Alice knows S i,1 and Bob knows U i,1. Each player simulates R on his
part of the input. Then he/she sends a state of the memory of R to the opposite player. See
more details on an emulation of stream processing models by communication protocols,
for example, in [37,51,61]. Therefore, the communication protocol uses d ·m = o(b) bits of
memory for computing DISJ(S i,1,U i,1). This fact contradicts with Lemma 3.



Mathematics 2022, 10, 143 12 of 21

Using this result, we can show that for probabilistic and deterministic automata, the
onlineDISJt,k,r,w problem is hard.

Theorem 3. There is no c-competitive deterministic online streaming algorithm for onlineDISJt,k,r,w
that uses o(

√
n) bits of memory, where c < w

r , k = O(log n).

Proof. Let us consider any online streaming algorithm A for the onlineDISJt,k,r,w problem
such that the size of memory is at most o(

√
n) bits. Assume, the algorithm A returns y1 as

the first output variable. Let us prove that there are two parts of the input L1
0, L1

1 ∈ {0, 1}d

such that A returns the same value y2 for both, but MDISJ(L1
0) = 0, MDISJ(L1

0) = 1.
Assume that there is no such triple (y2, L1

0, L1
1). Then it means that we can construct an

automaton A′ that uses o(
√

n) bits of memory and has the following property: A′(L1′) =

A′(L1′′) iff f (L1′) = f (L1′′), for any L1′ , L1′′ ∈ {0, 1}d. The automaton A′ simulates A.
Hence, the automaton A′ computes the function MDISJ or the function ¬MDISJ. If it
computes the function ¬MDISJ, then we can provide an automaton A′′ such that A′′(L1) =
¬A′(L1). This statement contradicts with the main claim of the theorem. Similarly, we can
prove that we have analogous triples (yi+1, Li

0, Li
1) for i ∈ {2, . . . , k}.

Let us choose σi = yi ⊕ 1⊕⊕k
j=i+1 σj, for i ∈ {1, . . . , k}.

Let IA be such that Li = Li
σi

. An optimal offline solution is (g1, . . . , gk) where gi =⊕k
j=i σj.

Let us prove that gi 6= yi for each i ∈ {1, . . . , k}. We have σi = yi ⊕ 1⊕⊕k
j=i+1 σj,

hence yi = 1⊕ σi ⊕
⊕k

j=i+1 σj = 1⊕⊕k
j=i σj = 1⊕ gi, so we obtain yi = ¬gi.

Therefore, all output variables are “wrong” and the cost is costt(IA, A(IA)) = tw.
Hence, the competitive ratio c more than tw

tr = w
r .

Theorem 4. There is no expected c-competitive randomized online streaming algorithm for
onlineDISJt,k,r,w that uses o(

√
n) bits of memory, where k = o(log n) and c < 1

2T + (1− 1
2T )

w
r ,

T = k
t .

Proof. We can show that a bounded error randomized online streaming algorithm A cannot
compute yi. We prove the claim using the idea from the proof of Theorem 3. It is easy to see
that the only option for an algorithm is to guess the value of yi and randomly uniformly
choose it. Using this strategy, we can obtain the required competitive ratio. If we want to
get a cost r for a block, then it should guess all output bits of the block. So, the cost of the i-th
block is ci = w(1− 1

2T ) +
r

2T . Hence, costt(IA, A(IA)) = (w(1− 1
2T ) +

r
2T ) · t. Therefore,

the algorithm A is c competitive in expectation, for c ≥ t · ((1 − 1
2T )w + r

2T )/(tr) =

2−T + (1− 2−T)w/r.

For proofs of properties for classical models with advice (Theorems 5 and 6), we show
that if the model does not have enough memory, then the problem can be interpreted as
the “String Guessing, Unknown History” (2−SQUH) from [50].

The following result for the 2−SQUH is known:

Lemma 5 ([50]). Consider an input string of length k for 2−SGUH, for some positive integer k.
Any online algorithm that is correct in more than αk characters, for 0.5 ≤ α < 1, needs to read at
least (1 + (1− α) log2(1− α) + α log2 α)k advice bits.

Using above result we show complexity of the onlineDISJt,k,r,w problem.

Theorem 5. There is no c-competitive deterministic online streaming algorithm for onlineDISJt,k,r,w

that uses o(
√

n) bits of memory and b advice bits, where c < w(t−h)+rh
tr , T = k

t , h = b v
T c, v is

such that b = ( v
k log2

v
k + (1− v

k ) log2(1−
v
k ) + 1)k, k

2 ≤ v < k and k = o(log n).



Mathematics 2022, 10, 143 13 of 21

Proof. We start with a proof of the following claim. For any online algorithm for MDISJ
that obtains b advice bits, we can suggest an input such that the algorithm has at least k− b
errors in computation. We prove it by induction.

Firstly, let us prove the claim for b = k. Then the adviser can send (g1, . . . , gk), where
gi =

⊕k
j=i MDISJm(Lj). Using this advise we return all correct output variables y1, . . . , yk.

Secondly, let us show the correctness of the claim in a case of b = 0. Therefore, there is
no advice at all. So, it is exactly the Theorem 3 situation.

Thirdly, let us show the correctness of the claim in a case of b 6∈ {0, k}. Assume that
the claim is correct for a pair (b′′, k′) such that b′ ≤ b, k′ ≤ k and at least one of these
inequalities is strict. Let us consider the computation process of the MDISJm(L1) function.

Assume that there is an input L1 ∈ {0, 1}d such that there is no way to compute
an output with bounded error. Then using the input, we obtain the case for k− 1 input
variables and b advice bits. So, the computation of MDISJ for k− b− 1 binary strings Li is
incorrect, and the computation for L1 is incorrect also.

Assume that the algorithm computes an output for MDISJm(L1) with a bounded
error always. So we can describe the process of communication with the adviser in the
following way: the adviser separates all possible inputs into 2b non-overlapping groups
G1, . . . , G2b . After that, he sends a group number containing current input to the algorithm.
Then, the algorithm A processes the input with the knowledge that an input can be only
from this group.

Let us consider three sets of groups:

• I0 = {Gi : ∀σ ∈ {0, 1}d such that σ is L1 and MDISJm(σ) = 0},
• I1 = {Gi : ∀σ ∈ {0, 1}m1 such that σ is L1 and MDISJm(σ) = 1},
• I10 = {G1, . . . , G2b}\(I1 ∪ I0).

Let |Ia| 6= 0, for some a ∈ {0, 1}. If |Ia| ≤ 2b−1, then as Z1 we take any input from any
group G ∈ Ia. Hence we have at most 2b−1 possible groups for the adviser that distinguish
next Lis. We can say that the adviser can encode them using b− 1 bits. Therefore, we get
the situation for b− 1 advice bits and k − 1 binary strings Li. The claim is true for this
situation. If |Ia| > 2b−1, then we pick an input S1 from any group G 6∈ Ia. Therefore, there
are at most 2b−1 possible groups for the adviser and the same situation. For this case, the
claim is correct.

Suppose the size of sets I0 and I1 is |I0| = |I1| = 0. Assume that the algorithm solves
the problem, and the memory size is s′, where s′ < s − b. The automaton B with the
following structure can simulate the algorithm’s work on L1. The automaton B has two
memory registers: a register M1 of b bits and a register M2 of s′ bits. We assume that M1 is
initialized by advice bits. After that, the automaton B invokes A depending on the value
of advice bits stored in M1. The memory size of B is s′ + b < s and it computes MDISJ
by simulating A. We obtain a contradiction with the theorem’s claim. Hence, transferring
the answer of MDISJm(L1) as an advice bit is the only way to compute the result of the
function. So, we have a situation for k− 1 binary strings Li and b− 1 advice bits.

So, it means that for the algorithm, the problem is the same as the String Guessing
Problem with Unknown History (2−SGUH) from [50].

Due to Lemma 5, for obtaining v right answers yi, we need b =
(
1 + (1− v

k ) log2(1−
v
k
)

+ v
k log2

v
k
)
k advice bits.

Because of the cost function properties, the best case for the algorithm is getting all
yis of a block. Therefore, the algorithm can obtain advice bits on h = b v

T c full blocks, for
T = k

t . In that case, the cost of these blocks is r. Each of the rest blocks has at least one
“wrong” output variable. So, such a block costs w. Hence, we suggest the input such that
the corresponding output costs

bv/Tc · r + (t− bv/Tc)w, for b =
(

1 + (1− v
k
) log2(1−

v
k
) +

v
k

log2
v
k

)
k.



Mathematics 2022, 10, 143 14 of 21

Let us compute the competitive ratio c

c ≥ bv/Tc · r + (t− bv/Tc)w
tr

, for b =
(

1 + (1− v
k
) log2(1−

v
k
) +

v
k

log2
v
k

)
k.

Next, we show an analog of Theorem 5 for randomized case. Ideas from [62–65] are
the basis for the proof of the following theorem.

Theorem 6. Suppose s = o(
√

n). Any randomized online streaming algorithm A using b
advice bits, less than s − b bits of memory, and solving onlineDISJt,k,r,w, has the expected
competitive ratio

c ≥ hr + δu · (2u−Tr + (1− 2u−T)w) + (t− h− δu)(2−Tr + (1− 2−T)w)

tr
,

for h = b v
T c, T = k

t , u = v − hz, v is such that b =
(
1 + (1− v

k ) log2(1−
v
k ) +

v
k log2

v
k
)
k,

k
2 ≤ v < k and k = o(log n).

Proof. Let us suggest the proof that is based on the proof of Theorem 5. Suppose that an
online algorithm obtains b advice bits. Then, we can suggest an input such that on this
input, the computation of MDISJm(Li) has an error for at least k− b strings Li. The claim
can be proven by the way similar to the proof of Theorem 5. At the same time, we use the
probabilistic automaton B to simulate A, and the part of the automaton that uses memory
M2 is probabilistic.

Therefore, for the algorithm, our problem is equivalent to the String Guessing Problem
with Unknown History (2−SGUH) from [50].

Hence, if we want to obtain v right answers for yi output variables, then we should use

b = k ·
(v

k
log2

v
k
+ (1− v

k
) log2(1−

v
k
) + 1

)
.

We can show that if we do not know yi from the adviser, then we cannot compute
the output variable with bounded error. Hence, the only way to obtain the variables is
randomly uniformly choosing them. We can apply the proof technique as in Theorem 4.
We use the same approach for all segments between “known” output variables.

4. Conclusions

We provide an expected CQ-competitive quantum online streaming algorithm with
no advice and an expected CQA-competitive quantum online streaming algorithm with a
single advice bit. They are such that CQ → r+w

2r and CQA → 1 for n→ ∞. At the same time,
any classical algorithm with a logarithmic size of memory is (CQ + γ1)-competitive for a
model with no advice and (CQA + γ2)-competitive for a model with o(log n) advice bits,
where γ1, γ2 > 0.

Author Contributions: The main idea and lower bounds, K.K.; constructions and concepts, K.K. and
A.K. All authors have read and agreed to the published version of the manuscript.

Funding: This paper has been supported by the Kazan Federal University Strategic Academic
Leadership Program (“PRIORITY-2030”).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.



Mathematics 2022, 10, 143 15 of 21

Appendix A. Details of the Proof for Lemma 2

Appendix A.1. The Implementation of the Procedure for Checking the First Property from Lemma 2

Let us remind the reader of the property that we are checking.

• Li = {0, 1}∗5({0, 1}b2{0, 1}b3{0, 1}b4)∗ for some integer b, where ∗ means repeating
the string several times

We present the description of the procedure as a quantum automaton. The automaton
uses the following registers |φ′〉|ξ ′〉|λ′〉|λ′1〉 of 3 + 2dlog2(d + 1)e qubits. The register |φ′〉
contains 2 qubits. The possible values are as follows.

• |φ′〉 = |0〉means the automaton reads a binary string before 5.
• |φ′〉 = |1〉means the automaton reads a binary string from 4 or 5 to 2.
• |φ′〉 = |2〉means the automaton reads a binary string from 2 to 3.
• |φ′〉 = |3〉means the automaton reads a binary string from 3 to 4.

The register |ξ ′〉 contains 1 qubit. The possible values are as follows.

• |ξ ′〉 = |1〉means the automaton rejects the input.
• |ξ ′〉 = |0〉means the automaton continues computation.

We use the register |λ′〉 of dlog2(d + 1)e qubits for counting a length of the current
binary string. We store a length of the first binary string in the register |λ′1〉 of dlog2(d + 1)e.

We start the computation from |0〉|0〉|0〉|0〉 state.
Let us present the behavior of the automaton depending on an input symbol u ∈

{0, . . . , 6}. Assume that we have a transformation

NEXT′ : |λ′1〉 → |(j + 1) mod dd + 1e〉.

Note that we can implement i f -operator using control-operators [17]. Let us describe
the transition function as an Algorithm A1.

Appendix A.2. The Implementation of the Procedure for Checking the Second Property from Lemma 2

Let us remind the reader of the property that we are checking.

• val(Mi) = mi = 2 + 2d
√
|S i,1|e · dlog2 |S i,1|e2 and mi = m;

We present the description of the procedure as a quantum automaton. The automaton
uses the following registers:

• a register |φ′′〉 of dlog2(d + 1)e qubits;
• a register |ξ ′′〉 of dlog2(d + 1)e qubits;
• a single qubit |λ′′〉;
• a register |θ′′〉 of dlog2(d + 1)e qubits.

We start the computation from |0〉|0〉|0〉|0〉 state.
Let us consider the behavior of the automaton depending on an input symbol v.
Let v ∈ {0, 1}. If |λ′′〉 = |0〉, then the automaton reads Mi and stores bits one by one

in qubits of |ξ ′′〉 using XORv operator.

XORv : |a〉 → |a⊕ v〉.

The automaton stores the current index in |θ′′〉 using NEXT′′

NEXT′′ : |j〉 → |(j + 1) mod (d + 1)〉.

Let v = 5. Then, the automaton converts |λ′′〉 → |1〉.
Let v = 4. Then, the automaton applies NEXT′′ transformation to |φ′′〉.
Let v ∈ {0, 1, 2, 3}. Then, the automaton the identity transformation.
Let v = 6. Then, the automaton measures |φ′′〉. If the result of the measurement is u,

then we check an equality u = 2d
√

be · dlog2

√
be2 + 2. After that, the automaton measures

|ξ ′′〉|µ〉 and checks an equality m = u = val(Mi). The last equality means that the string



Mathematics 2022, 10, 143 16 of 21

Li satisfies the forth condition. If at least one of these two equality are wrong, then the
automaton rejects the input.

Recall, at this moment, the automaton already have stored b in the register |λ′〉 and m
in the register |µ〉.

Let us describe the behavior of the automaton depending on an input symbol u ∈
{0, . . . , 6}. Note, that we can implement i f -operator using control-operators [17]. Let us
describe the transition function as an Algorithm A2.

Algorithm A1 Transition on a symbol u ∈ {0, . . . , 6}
if u ∈ {0, 1} and |φ′〉 6= |1〉 then
|λ〉 ← NEXT′|λ〉

end if
if u = 5 then

resφ′ ← MEASURE(|φ′〉)
if resφ′ = 0 then
|φ′〉 ← |1〉

else
|ξ ′〉 ← |1〉 . the automaton rejects the input

end if
end if
if u ∈ {2, 3, 4} then

resφ′ ← MEASURE(|φ′〉)
resλ′ ← MEASURE(|λ′〉), resλ′1

← MEASURE(|λ′1〉)
if resφ′ = u− 1 then
|φ′〉 ← |((u− 1) mod 3) + 1〉

else
|ξ ′〉 ← |1〉 . the automaton rejects the input

end if
if resλ′1

= 0 then
|λ′1〉 ← |resλ′1

〉
else

if resλ′1
6= resλ′ then

|ξ ′〉 ← |1〉 . the automaton rejects the input
end if

end if
|λ′〉 ← |0〉 . Initialization of a length counter

end if
if u = 6 then . End of the input

resξ ′ ← MEASURE(|ξ ′〉), resφ′ ← MEASURE(|φ′〉)
if resξ ′ = 0 and resφ′ = 1 then

return “Accept the input”
else

return “Reject the input”
end if

end if



Mathematics 2022, 10, 143 17 of 21

Algorithm A2 Transition on a symbol u ∈ {0, . . . , 6}
if u ∈ {0, 1} and |λ′′〉 = |0〉 then
|ξ ′′〉[|θ′′〉]← XORu|ξ ′′〉[|θ′′〉]
|θ′′〉 ← NEXT′′|θ′′〉

end if
if u = 4 then
|φ′′〉 ← NEXT′′|φ′′〉

end if
if u = 6 then

j← MEASURE(|φ′′〉), val(Mi)← MEASURE(|ξ ′′〉)
b← MEASURE(|λ′〉), m← MEASURE(|µ〉)
if j = 2 + 2dlog2

√
be2 · d

√
be and m = j = val(Mi) then

return “Accept the input”
else

return “Reject the input”
end if

end if

Appendix A.3. The Implementation of the Procedure for Checking the Third Property from Lemma 2

Let us remind the reader of the property that we are checking.

• S i,1 = · · · = S i,mi , U i,1 = · · · = U i,mi and Z i,1 = · · · = Z i,mi ;

Let us present the quantum automaton for checking the property. It based on the
quantum fingerprinting technique [56,57]. Let us assamble two string:

s1 = S i,1 ◦ U i,1 ◦ Z i,1 ◦ S i,2 ◦ U i,2 ◦ Z i,2 ◦ · · · ◦ S i,mi−1 ◦ U i,mi−1 ◦ Z i,mi−1,

s2 = S i,2 ◦ U i,2 ◦ Z i,2 ◦ S i,3 ◦ U i,3 ◦ Z i,3 ◦ · · · ◦ S i,mi ◦ U i,mi ◦ Z i,mi ,

here “◦” is concatenation.
If s1 = s2, then

S i,1 = S i,2,S i,2 = S i,3, . . . ,S i,mi−1 = S i,mi ,

U i,1 = U i,2,U i,2 = U i,3, . . . ,U i,mi−1 = U i,mi and

Z i,1 = Z i,2,Z i,2 = Z i,3, . . . ,Z i,mi−1 = Z i,mi .

For some constant ε′ > 0, we suggest a quantum algorithm for checking the equality
of these strings with bounded error ε′. It uses O(log d) qubits of memory and is based on
the automaton from Lemma 1.

Here we describe the main idea of the automaton. A reader can find more details
in [36,56,57].

We use the following quantum registers:

• |ψ〉 is a quantum register of q = dlog2(2d/ε′)e qubits.
• |ψtarg〉 is a single qubit.
• |ψind〉 is a quantum register of dlog2(d + 1)e qubits. We store an index of a symbol of

a string in this register.

A set of special parameters S = (k1, . . . , k2q) from [56,57] is used by the algorithm.
We start from the|0〉|0〉|0〉 state. The automaton do the following transformations if

|λ′′〉 = |1〉. This condition means the automaton read and stored Mi.
Firstly, if the automaton reads a symbol 5, then it applies the Hadamard transformation

to |ψ〉. Hence, the quantum system is in the state

|0〉|0〉|0〉 → 1√
2q

2q

∑
a=0
|a〉|0〉|0〉.



Mathematics 2022, 10, 143 18 of 21

For all next steps and symbols 0 or 1, we apply the transformation NEXT to |ψind〉
that is

|j〉 → |(j + 1) mod dd + 1e〉.

Assume that the automaton reads the j-th symbol of s1 that is s1
j ∈ {0, 1}, and |φ′′〉 =

|0〉. The condition |φ′′〉 = |0〉 means j ≤ 3b and the automaton reads on of symbols of
S i,1 ◦ U i,1 ◦ Z i,1.

If s1
j = 0, then the automaton does nothing. If s1

j = 1, then the automaton applies the

Gj transformation that is the rotation of |ψtarg〉 qubit to the angle αa,j with respect to the

state |a〉 of |ψ〉 and |j〉 of |ψind〉. Here αa,j =
2πka2j

2d .
Assume that the automaton reads the j-th symbol of s1 that is s1

j ∈ {0, 1}, and |φ′′〉 6=
|0〉 and |φ′′〉 6= |Mi− 1〉. The condition |φ′′〉 6= |0〉 and |φ′′〉 6= |Mi− 1〉means |s1| ≥ j > 3b.
The same symbol is the (j− 3b)-th symbol of s2 that is s2

j−3b ∈ {0, 1}.
If s1

j = 0, then the automaton does nothing. If s1
j = 1, then the automaton applies the

transformation Gj,b that rotates |ψtarg〉 to the angle αa,j − αa,j−3b with respect to the state
|a〉 of |ψ〉 and |j〉 of |ψind〉.

Note, that on this step |λ′〉 = |b〉 and |ξ ′′〉 = |Mi〉 are already computed.
Assume that the automaton reads the j-th symbol of s1 that is s1

j ∈ {0, 1}, and |φ′′〉 =
|Mi − 1〉. The condition |φ′′〉 = |Mi − 1〉means the first string is finished and we read the
(j− 3b)-th symbol of s2 s2

j−3b ∈ {0, 1} and j > |s1|.
If s2

j−3b = 0, then the automaton does nothing. If s2
j−3b = 1, then the automaton

applies the transformation Gj,b that rotates |ψtarg〉 to the angle −αa,j−3b with respect to the
state |a〉 of |ψ〉 and |j〉 of |ψind〉.

Finally, the automaton on symbol 6 applies the Hadamard transformation to |ψ〉 and
measures |ψtarg〉. If we obtain 0 as a result of measurement, then these strings are equal;
otherwise, they are unequal. So, memory size is O(log d − log ε′) qubits. Assume that
ε′ = 1

d , then the automaton computes the function with error probability O( 1
d ) and uses

O(log d) qubits.

Appendix A.4. The Implementation of the Procedure for Checking the Forth Property from Lemma 2

Let us remind the reader of the property that we are checking.

• S i,1 = Z i,1.

The fourth procedure is similar to the third procedure. We check an equality S i,1 =
Z i,1. We construct an automaton using Lemma 1 for checking the property with bounded
error ε′′. Suppose ε′′ = 1/d, then the automaton reaches an error probability O( 1

d ) using
O(log d) qubits.

The quantum memory is a quantum register |ψ′〉 of q = dlog2(2d/ε′)e qubits, and a
qubit |ψ′targ〉. We have the same set of special parameters S = (k1, . . . , k2q) as for the third
procedure. We start from the |0〉|0〉 state.

Firstly, using the Hadamard transformation for |ψ′〉, we obtain

|0〉|0〉 → 1√
2q

2q

∑
a=0
|a〉|0〉.

Let the automaton read the j-th symbol of s1 that is s1
j ∈ {0, 1}, for j ≤ b. Therefore,

the automaton reads the j-th symbol of S i,1.
If s1

j = 0, then the automaton does nothing. If s1
j = 1, then the automaton applies a

transformation that rotates |ψ′targ〉 to an angle αa,j with respect to the state |a〉 of the register
|ψ′〉 and |j〉 of |ψind〉.

Let the automaton read the j-th symbol of s1 that is s1
j ∈ {0, 1}, for 2b < j ≤ 3b. It

means the automaton reads the j-th symbol of Z i,1.



Mathematics 2022, 10, 143 19 of 21

If s1
j = 0, then the automaton does nothing. If s1

j = 1, then the automaton applies the
transformation that rotates |ψ′targ〉 to an angle −αa,j−2b with respect to the state |a〉 of the
register |ψ′〉 and |j〉 of |ψind〉.

If the input symbol is 4, then the automaton applies the Hadamard transformation to
|ψ′〉 and measures |ψ′targ〉. If the result of the measurement is 0, then S i,1 = Z i,1. Otherwise,
the input does not satisfy the fourth condition. Suppose ε′′ = 1

d , then the automaton has an
error probability O( 1

d ) and uses quantum memory of size O(log d).

References
1. Boyar, J.; Irani, S.; Larsen, K.S. A comparison of performance measures for online algorithms. In Workshopon Algorithms and Data

Structures; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5664, pp. 119–130.
2. Dorrigiv, R.; López-Ortiz, A. A survey of performance measures for on-line algorithms. SIGACT News 2005, 36, 67–81.
3. Sleator, D.D.; Tarjan, R.E. Amortized efficiency of list update and paging rules. Commun. ACM 1985, 28, 202–208. [CrossRef]
4. Karlin, A.R.; Manasse, M.S.; Rudolph, L.; Sleator, D.D. Competitive snoopy caching. In Proceedings of the 27th Annual

Symposium on Foundations of Computer Science, Toronto, ON, Canada, 27–29 October 1986; pp. 244–254.
5. Becchetti, L.; Koutsoupias, E. Competitive Analysis of Aggregate Max in Windowed Streaming. In International Colloquium on

Automata, Languages, and Programming; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5555, pp. 156–170.
6. Giannakopoulos, Y.; Koutsoupias, E. Competitive analysis of maintaining frequent items of a stream. Theor. Comput. Sci. 2015,

562, 23–32. [CrossRef]
7. Boyar, J.; Larsen, K.S.; Maiti, A. The frequent items problem in online streaming under various performance measures. Int. J.

Found. Comput. Sci. 2015, 26, 413–439. [CrossRef]
8. Khadiev, K.; Khadieva, A.; Mannapov, I. Quantum Online Algorithms with Respect to Space and Advice Complexity. Lobachevskii

J. Math. 2018, 39, 1210–1220. [CrossRef]
9. Ablayev, F.; Ablayev, M.; Khadiev, K.; Vasiliev, A. Classical and quantum computations with restricted memory. In Adventures

Between Lower Bounds and Higher Altitudes; Springer: Cham, Swizerland, 2018; Volume 11011, pp. 129–155.
10. Baliga, G.R.; Shende, A.M. On space bounded server algorithms. In Proceedings of the ICCI’93: 5th International Conference on

Computing and Information, Sudbury, ON, Canada, 27–29 May 1993; pp. 77–81.
11. Hughes, S. A new bound for space bounded server algorithms. In Proceedings of the 33rd Annual on Southeast Regional

Conference, Clemson, SC, USA, 17–18 March 1995; pp. 165–169.
12. Flammini, M.; Navarra, A.; Nicosia, G. Efficient offline algorithms for the bicriteria k-server problem and online applications.

J. Discret. Algorithms 2006, 4, 414–432. [CrossRef]
13. Rudec, T.; Baumgartner, A.; Manger, R. A fast work function algorithm for solving the k-server problem. Cent. Eur. J. Oper. Res.

2013, 21, 187–205. [CrossRef]
14. Kapralov, R.; Khadiev, K.; Mokut, J.; Shen, Y.; Yagafarov, M. Fast Classical and Quantum Algorithms for Online k-server Problem

on Trees. arXiv 2020, arXiv:2008.00270.
15. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010.
16. Ambainis, A. Understanding Quantum Algorithms via Query Complexity. Proc. Int. Conf. Math. 2018, 4, 3283–3304.
17. Ablayev, F.; Ablayev, M.; Huang, J.Z.; Khadiev, K.; Salikhova, N.; Wu, D. On quantum methods for machine learning problems

part I: Quantum tools. Big Data Min. Anal. 2019, 3, 41–55. [CrossRef]
18. de Wolf, R. Quantum Computing and Communication Complexity; Institute for Logic, Language and Computation: Amsterdam,

The Netherlands, 2001.
19. Jordan, S. Quantum Algorithms Zoo. 2021. Available online: http://quantumalgorithmzoo.org/ (accessed on 25 December 2021).
20. Montanaro, A. Quantum algorithms: An overview. NPJ Quantum Inf. 2016, 2, 1–8. [CrossRef]
21. Khadiev, K.; Khadieva, A.; Kravchenko, D.; Rivosh, A.; Yamilov, R.; Mannapov, I. Quantum versus Classical Online Streaming

Algorithms with Logarithmic Size of Memory. arXiv 2019, arXiv:1710.09595.
22. Yuan, Q. Quantum Online Algorithms. Ph.D. Thesis, UC Santa Barbara, Santa Barbara, CA, USA, 2009.
23. Khadiev, K.; Khadieva, A. Two-Way Quantum and Classical Automata with Advice for Online Minimization Problems.

In International Symposium on Formal Methods; Springer, Cham, Swizerland, 2020; pp. 428–442.
24. Khadiev, K.; Khadieva, A. Two-way quantum and classical machines with small memory for online minimization problems.

In International Conference on Micro-and Nano-Electronics 2018; International Society for Optics and Photonics: Bellingham, WA,
USA, 2019; Volume 11022, p. 110222T. [CrossRef]

25. Khadiev, K.; Lin, D. Quantum online algorithms for a model of the request-answer game with a buffer. Uchenye Zap. Kazan. Univ.
Seriya Fiz. Mat. Nauk. 2020, 162, 367–382. [CrossRef]

26. Khadiev, K. Quantum request-answer game with buffer model for online algorithms. Application for the Most Frequent Keyword
Problem. CEUR Workshop Proc. 2021, 2850, 16–27.

27. Le Gall, F. Exponential Separation of Quantum and Classical Online Space Complexity. In Proceedings of the 18th ACM
Symposium on Parallelism in Algorithms and Architectures, Cambridge, MA, USA, 30 July–2 August 2006; pp. 67–73.

http://doi.org/10.1145/2786.2793
http://dx.doi.org/10.1016/j.tcs.2014.09.011
http://dx.doi.org/10.1142/S0129054115500239
http://dx.doi.org/10.1134/S1995080218090421
http://dx.doi.org/10.1016/j.jda.2005.12.006
http://dx.doi.org/10.1007/s10100-011-0222-7
http://dx.doi.org/10.26599/BDMA.2019.9020016
http://quantumalgorithmzoo.org/
http://dx.doi.org/10.1038/npjqi.2015.23
http://dx.doi.org/10.1117/12.2522462
http://dx.doi.org/10.26907/2541-7746.2020.3.367-382


Mathematics 2022, 10, 143 20 of 21

28. Le Gall, F. Exponential separation of quantum and classical online space complexity. Theory Comput. Syst. 2009, 45, 188–202.
[CrossRef]

29. Gavinsky, D.; Kempe, J.; Kerenidis, I.; Raz, R.; de Wolf, R. Exponential Separations for One-way Quantum Communication
Complexity, with Applications to Cryptography. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
San Diego, CA, USA, 11–13 June 2007; pp. 516–525.

30. Ablayev, F.; Gainutdinova, A.; Karpinski, M.; Moore, C.; Pollett, C. On the computational power of probabilistic and quantum
branching program. Inf. Comput. 2005, 203, 145–162. [CrossRef]

31. Ablayev, F.; Gainutdinova, A.; Khadiev, K.; Yakaryılmaz, A. Very narrow quantum OBDDs and width hierarchies for classical
OBDDs. Lobachevskii J. Math. 2016, 37, 670–682. [CrossRef]

32. Gainutdinova, A. Comparative complexity of quantum and classical OBDDs for total and partial functions. Russ. Math. 2015,
59, 26–35. [CrossRef]

33. Sauerhoff, M.; Sieling, D. Quantum branching programs and space-bounded nonuniform quantum complexity. Theor. Comput.
Sci. 2005, 334, 177–225. [CrossRef]

34. Ambainis, A.; Yakaryılmaz, A. Superiority of exact quantum automata for promise problems. Inf. Process. Lett. 2012, 112, 289–291.
[CrossRef]

35. Ambainis, A.; Yakaryılmaz, A. Automata and Quantum Computing. arXiv 2015, arXiv:1507.01988
36. Khadiev, K.; Khadieva, A. Reordering Method and Hierarchies for Quantum and Classical Ordered Binary Decision Diagrams.

In International Computer Science Symposium in Russia; Springer: Cham, Swizerland, 2017; Volume 10304, pp. 162–175.
37. Ablayev, F.; Ambainis, A.; Khadiev, K.; Khadieva, A. Lower Bounds and Hierarchies for Quantum Memoryless Communication

Protocols and Quantum Ordered Binary Decision Diagrams with Repeated Test. In International Conference on Current Trends in
Theory and Practice of Informatics; Edizioni della Normale: Cham, Swizerland, 2018; Volume 10706, pp. 197–211.

38. Gainutdinova, A.; Yakaryılmaz, A. Nondeterministic unitary OBDDs. In International Computer Science Symposium in Russia;
Springer: Cham, Swizerland, 2017; pp. 126–140.

39. Gainutdinova, A.; Yakaryılmaz, A. Unary probabilistic and quantum automata on promise problems. Quantum Inf. Process. 2018,
17, 28. [CrossRef]

40. Ibrahimov, R.; Khadiev, K.; Prūsis, K.; Yakaryılmaz, A. Error-free affine, unitary, and probabilistic OBDDs. Int. J. Found. Comput.
Sci. 2021, 32, 827–847. [CrossRef]

41. Buhrman, H.; Cleve, R.; Wigderson, A. Quantum vs. classical communication and computation. In Proceedings of the the 30th
Annual ACM Symposium on Theory of Computing, Dallas, TX, USA, 24–26 May 1998; pp. 63–68.

42. Razborov, A.A. On the distributional complexity of disjointness. In International Colloquium on Automata, Languages, and
Programming; Springer: Berlin/Heidelberg, Germany, 1990; pp. 249–253.

43. Chattopadhyay, A.; Pitassi, T. The story of set disjointness. ACM SIGACT News 2010, 41, 59–85. [CrossRef]
44. Khadiev, K.; Khadieva, A. Quantum Online Streaming Algorithms with Logarithmic Memory. Int. J. Theor. Phys. 2021, 60, 608–616.

[CrossRef]
45. Komm, D. An Introduction to Online Computation: Determinism, Randomization, Advice; Springer: Cham, Swizerland, 2016.
46. Boyar, J.; Favrholdt, L.; Kudahl, C.; Larsen, K.; Mikkelsen, J. Online Algorithms with Advice: A Survey. ACM Comput. Surv. 2017,

50, 19.
47. Böckenhauer, H.J.; Komm, D.; Královič, R.; Královič, R.; Mömke, T. On the advice complexity of online problems. In International

Symposium on Algorithms and Computation; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5878, pp. 331–340.
48. Hromkovic, J. Design and Analysis of Randomized Algorithms: Introduction to Design Paradigms; Springer: Berlin/Heidelberg,

Germany, 2005.
49. Böckenhauer, H.J.; Hromkovič, J.; Komm, D.; Královič, R.; Rossmanith, P. On the power of randomness versus advice in online

computation. In Languages Alive; Springer: Berlin/Heidelberg, Germany, 2012; pp. 30–43.
50. Böckenhauer, H.J.; Hromkovič, J.; Komm, D.; Krug, S.; Smula, J.; Sprock, A. The string guessing problem as a method to prove

lower bounds on the advice complexity. Theor. Comput. Sci. 2014, 554, 95–108. [CrossRef]
51. Wegener, I. Branching Programs and Binary Decision Diagrams: Theory and Applications; SIAM: Philadelphia, PA, USA, 2000.
52. Ablayev, F.; Gainutdinova, A.; Karpinski, M. On Computational Power of Quantum Branching Programs. In International

Symposium on Fundamentals of Computation Theory; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2138, pp. 59–70.
53. Ablayev, F.M.; Gainutdinova, A. On the Lower Bounds for One-Way Quantum Automata. In Mathematical Foundations of Computer

Science 2000; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1893, pp. 132–140.
54. Ablayev, F.; Gainutdinova, A. Complexity of Quantum Uniform and Nonuniform Automata. In Developments in Language Theory;

Springer: Berlin/Heidelberg, Germany, 2005; Volume 3572, pp. 78–87.
55. Say, A.C.; Yakaryılmaz, A. Quantum finite automata: A modern introduction. In Computing with New Resources; Springer:

Berlin/Heidelberg, Germany, 2014; pp. 208–222.
56. Ablayev, F.; Vasiliev, A. On quantum realisation of Boolean functions by the fingerprinting technique. Discret. Math. Appl. 2009,

19, 555–572. [CrossRef]
57. Ablayev, F.M.; Vasiliev, A. Algorithms for Quantum Branching Programs Based on Fingerprinting. Int. J. Softw. Inform. 2013,

7, 485–500. [CrossRef]

http://dx.doi.org/10.1007/s00224-007-9097-3
http://dx.doi.org/10.1016/j.ic.2005.04.003
http://dx.doi.org/10.1134/S199508021606007X
http://dx.doi.org/10.3103/S1066369X15110031
http://dx.doi.org/10.1016/j.tcs.2004.12.031
http://dx.doi.org/10.1016/j.ipl.2012.01.001
http://dx.doi.org/10.1007/s11128-017-1799-0
http://dx.doi.org/10.1142/S0129054121500246
http://dx.doi.org/10.1145/1855118.1855133
http://dx.doi.org/10.1007/s10773-019-04209-1
http://dx.doi.org/10.1016/j.tcs.2014.06.006
http://dx.doi.org/10.1515/DMA.2009.037
http://dx.doi.org/10.4204/EPTCS.9.1


Mathematics 2022, 10, 143 21 of 21

58. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219.

59. Boyer, M.; Brassard, G.; Høyer, P.; Tapp, A. Tight bounds on quantum searching. Fortschritte Phys. 1998, 46, 493–505. [CrossRef]
60. Kushilevitz, E.; Nisan, N. Communication Complexity; Cambridge University Press: Cambridge, UK, 1997; pp. I–XIII, 1–189.
61. Khadiev, K. On the Hierarchies For Deterministic, Nondeterministic and Probabilistic Ordered Read-k-Times Branching Programs.

Lobachevskii J. Math. 2016, 37, 682–703. [CrossRef]
62. Khadiev, K.; Ibrahimov, R.; Yakaryılmaz, A. New Size Hierarchies for Two Way Automata. Lobachevskii J. Math. 2018, 39, 997–1009.
63. Dwork, C.; Stockmeyer, L.J. A time complexity gap for two-way probabilistic finite-state automata. SIAM J. Comput. 1990,

19, 1011–1123. [CrossRef]
64. Ablayev, F.; Khadiev, K. Extension of the hierarchy for k-OBDDs of small width. Russ. Math. 2013, 53, 46–50. [CrossRef]
65. Shepherdson, J.C. The reduction of two–way automata to one-way automata. IBM J. Res. Dev. 1959, 3, 198–200. [CrossRef]

http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
http://dx.doi.org/10.1134/S1995080216060159
http://dx.doi.org/10.1137/0219069
http://dx.doi.org/10.3103/S1066369X13030067
http://dx.doi.org/10.1147/rd.32.0198

	Introduction
	Preliminaries
	On Quantum Online Streaming Algorithm for the Online Disjointness Problem
	A Quantum Online Streaming Algorithm for the Online Disjointness Problem
	Bounds for Classical Automata for the Online Disjointness Problem

	Conclusions
	Details of the Proof for Lemma 2
	The Implementation of the Procedure for Checking the First Property from Lemma 2
	The Implementation of the Procedure for Checking the Second Property from Lemma 2
	The Implementation of the Procedure for Checking the Third Property from Lemma 2
	The Implementation of the Procedure for Checking the Forth Property from Lemma 2

	References

