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Abstract: The improved element-free Galerkin (IEFG) method is proposed in this paper for solving
3D Helmholtz equations. The improved moving least-squares (IMLS) approximation is used to
establish the trial function, and the penalty technique is used to enforce the essential boundary
conditions. Thus, the final discretized equations of the IEFG method for 3D Helmholtz equations can
be derived by using the corresponding Galerkin weak form. The influences of the node distribution,
the weight functions, the scale parameters of the influence domain, and the penalty factors on the
computational accuracy of the solutions are analyzed, and the numerical results of three examples
show that the proposed method in this paper can not only enhance the computational speed of the
element-free Galerkin (EFG) method but also eliminate the phenomenon of the singular matrix.

Keywords: improved element-free Galerkin method; Helmholtz equation; penalty method; improved
moving least-squares approximation

1. Introduction

As an important elliptic differential equation, the Helmholtz equation has been widely
applied in many different fields, such as mechanics, acoustics, physics, electromagnetics,
engineering, and so on. It is well known that how to achieve the numerical solutions of
Helmholtz equations effectively and accurately is one of the important directions in the
scientific research.

Currently, many meshless methods have been used for researching Helmholtz equa-
tions, such as the element-free Galerkin (EFG) method [1], meshless Galerkin least-square
method [2], meshless hybrid boundary-node method [3], boundary element-free method [4],
and complex variable boundary element-free method [5,6]. Compared to the traditional
finite difference method [7–10] and the finite element method, meshless methods [11–15]
are based on scattered point approximation, which can avoid the mesh reconstruction, and
thus a higher accuracy of the numerical solutions can be obtained.

As an important meshless method, the EFG method [16] was studied by Belytschko et al.
In this method, a trial function is established by using the moving least-squares (MLS)
approximation. Cheng et al. analyzed the error estimates of EFG method for potential prob-
lems [17]. Because the MLS approximation is based on the least-squares method [18–22],
the disadvantages of the least-squares method also exist in the MLS approximation, in
which sometimes ill-conditional or singular matrices occur.

In order to eliminate the singular matrices, the improved moving least-squares (IMLS)
approximation [23] was proposed by Cheng et al., in which the orthogonal function system
with a weight function is used as basis function, and thus can make up for the deficiency of
the MLS approximation and has greater computational efficiency, using the IMLS approx-
imation to establish the trial function. Thus, the improved element-free Galerkin (IEFG)
method was applied for potential [24], transient heat conduction problems [25], the wave
equation [26], the Schrödinger equation [27], advection–diffusion [28], elastodynamics [29],
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elastoplasticity [30], viscoelasticity [31], and diffusional drug release [32] problems. From
these studies, we can see that under similar computational accuracy, the IEFG method
has higher computational speed than the EFG method. As we know, meshless methods
are based on node approximation without mesh reconstruction. When solving large de-
formation problems and dynamic propagation of cracks, the meshless method can obtain
greater precision than the finite element method. In order to take advantage of the IEFG
method further, Zhang et al. [33] developed the enriched IEFG method to solve 2D fracture
problems. In this method, the enriched basis function is used at the tip of the crack. As
a result, the singularity of the stresses at the tip of the crack can be shown better than in
the IEFG method. Cai et al. [34] used the IEFG method for solving large elastoplasticity
deformation problems. Three numerical examples are given to show that the numerical
solutions are in good agreement with the solutions of finite element method software
ANASYS and can enhance the computational efficiency of the EFG method.

By introducing the singular weight function into the MLS approximation, Lancaster et al.
presented an interpolating MLS method [35]. The boundary conditions could be enforced
directly in the corresponding meshless method. Based on the concept of an inner produc-
tion, Ren et al. improved the interpolating MLS method [36] by using the singular weight
function in interpolating points and orthogonalizing some of the base functions. Thus,
the corresponding interpolating EFG method was presented for potential [37], transient
heat conduction [38], and some mechanics [39–41] problems. Compared with the tradi-
tional EFG method, the interpolating EFG method has higher computational efficiency.
Additionally, the interpolating smoothed particle method was developed by Qin et al. [42].

Using the nonsingular weight function, Wang et al. developed the improved inter-
polating MLS method [43], which can overcome the difficulties caused by the singular
weight function in the interpolating MLS method, and used this method to construct the
trial function. The improved interpolating EFG method was presented for potential [43]
and several large deformation problems [44–46].

Based on the approximation of the vector function, the complex variable moving
least-squares (CVMLS) approximation was presented by Cheng et al. [47]. Based on
the CVMLS approximation and Galerkin weak form, the complex variable element-free
Galerkin (CVEFG) method [48] was presented. Moreover, based on the conjugate basis
function, Bai et al. proposed the improved CVMLS approximation to construct the shape
function, and the improved CVEFG method was presented for elasticity problems [49].
The improved CVEFG method has higher computational accuracy and efficiency than
the EFG method, but it cannot be applied to 3D problems directly because the complex
theory is used. Chen et al. [50,51] proposed the complex variable reproducing kernel
particle method.

By combining meshless methods and the finite difference method, the hybrid CVEFG
method [52–56], dimension-splitting EFG method [57–60], dimension-splitting reproducing
kernel particle method [61–64], interpolating dimension-splitting EFG method [65] and
hybrid generalized interpolated EFG method [66] were proposed. These methods can
greatly improve the computational efficiency of the traditional meshless method for solving
multi-dimensional problems.

The IEFG method has some advantages over the traditional EFG method, such as
higher computational efficiency, avoiding matrix inversion, and eliminating singular matrix.
Therefore, it has been applied to many science and engineering problems. However, 3D
Helmholtz equations have not been studied by the IEFG method yet, and the corresponding
parameters cannot be discussed; thus, the computational accuracy and efficiency of the IEFG
method for 3D Helmholtz equations are also uncertain. In order to overcome the disadvantage
of the lower efficiency of the EFG method, this paper presents the IEFG method for solving
3D Helmholtz equations. The trial function was established by using the IMLS approximation,
using the penalty technique to enforce the essential boundary conditions. The final discretized
equations could be derived by using the corresponding weak form. Thus, we obtained the
final formulate of the IEFG method for 3D Helmholtz equations.
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In Section 4, the influences of the node distribution, the weight functions, the scale
parameters, and the penalty factors on the computational accuracy of the solutions are
analyzed by giving examples. It is shown that the IEFG method for Helmholtz equations is
convergent. Compared with the EFG method, the IEFG method has greater computational
speed. Moreover, the singular matrix can be eliminated.

2. The IMLS Approximation

The approximation of a function u(x) is

uh(x) =
m

∑
i=1

pi(x) · ai(x) = pT(x) · a(x), (x ∈ Ω), (1)

where pT(x) is the basis function vector, m is the basis function number, and

aT(x) = (a1(x), a2(x), · · · , am(x)) (2)

is the coefficient vector of pT(x).
In general,

pT(x) = (1, x1, x2, x3), (3)

pT(x) = (1, x1, x2, x3, x2
1, x2

2, x2
3, x1x2, x2x3, x1x3). (4)

The local approximation is

uh(x, x̂) =
m

∑
i=1

pi(x̂) · ai(x) = pT(x̂) · a(x). (5)

Define

J =
n

∑
I=1

w(x− xI)[uh(x, xI)− uI ]
2
=

n

∑
I=1

w(x− xI)

[
m

∑
i=1

pi(xI) · ai(x)− uI

]2

, (6)

where w(x − xI) is a weighting function, and xI (I = 1, 2, · · · , n) are the nodes with
influence domains covering point x.

Equation (6) can be written as

J = (Pa− u)TW(x)(Pa− u), (7)

where
uT = (u1, u2, · · · , un), (8)

P =


p1(x1) p2(x1) · · · pm(x1)
p1(x2) p2(x2) · · · pm(x2)

...
...

. . .
...

p1(xn) p2(xn) · · · pm(xn)

, (9)

and

W(x) =


w(x− x1) 0 · · · 0

0 w(x− x2) · · · 0
...

...
. . .

...
0 0 · · · w(x− xn)

. (10)

From
∂J
∂a

= A(x)a(x)− B(x)u = 0, (11)

we have
A(x)a(x) = B(x)u, (12)
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where
A(x) = PTW(x)P, (13)

B(x) = PTW(x). (14)

Equation (12) sometimes forms a singular or ill-conditional matrix. In order to make
up for this deficiency, for basis functions

q = (qi) = (1, x1, x2, x3, x2
1, x2

2, x2
3, x1x2, x2x3, x3x1, · · · ), (15)

using the Gram–Schmidt process, we can obtain

pi = qi −
i−1

∑
k=1

(qi, pk)

(pk, pk)
pk, (i = 1, 2, 3, · · · ), (16)

and
(pi, pj) = 0, (i 6= j). (17)

Then, from Equation (12), a(x) can be obtained as

a(x) = A∗(x)B(x)u, (18)

where

A∗(x) =


1

(p1,p1)
0 · · · 0

0 1
(p2,p2)

0 0
...

...
. . .

...
0 0 · · · 1

(pn ,pn)

. (19)

Substituting Equation (18) into Equation (5), we have

uh(x) = Φ∗(x)u =
n

∑
I=1

Φ∗I (x)uI , (20)

where
Φ∗(x) = (Φ∗1(x), Φ∗2(x), · · · , Φ∗n(x)) = pT(x)A∗(x)B(x) (21)

is the shape function.
This is the IMLS approximation [23], in which the shape function can be obtained

more easily than the MLS approximation. Moreover, the IMLS approximation can also
avoid the singular matrix. Thus, it can enhance the computational efficiency of the MLS
approximation.

3. The IEFG Method for 3D Helmholtz Equations

The governing equation is

∆u + k2u = f (x), (x = (x1, x2, x3) ∈ Ω) (22)

and the boundary conditions are

u(x) = u, (x ∈ Γu), (23)

q(x) =
∂u(x)
∂x1

n1 +
∂u(x)
∂x2

n2 +
∂u(x)
∂x3

n3 = q,
(
x ∈ Γq

)
, (24)

where k2 is the wave number, f (x) is the given function, u and q are the given values, and
Γ = Γu ∪ Γq, Γu ∩ Γq = ∅, ni (i = 1, 2, 3) is the unit outward normal to the boundary Γ in
direction xi.
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For 3D Helmholtz equations, the equivalent functional is

Π =
∫

Ω
u(

1
2

k2u− f )dΩ−
∫

Ω

1
2

[(
∂u
∂x1

)2
+

(
∂u
∂x2

)2
+

(
∂u
∂x3

)2
]

dΩ−
∫

Γq
uqdΓ. (25)

By introducing the penalty technique to apply the boundary conditions, we can obtain
the modified functional

Π∗ = Π +
α

2

∫
Γu

(u− u)(u− u)dΓ, (26)

where α is the penalty factor.
Let

δΠ∗ = 0. (27)

We can obtain the following equivalent integral weak form∫
Ω δu · k2udΩ−

∫
Ω δ(Lu)T · (Lu)dΩ−

∫
Ω δu · f dΩ−

∫
Γq

δu · qdΓ
+α
∫

Γu
δu · udΓ− α

∫
Γu

δu · udΓ = 0,
(28)

where

L(·) =


∂

∂x1
∂

∂x2
∂

∂x3

(·). (29)

In the cubic domain Ω, we employ M nodes xI (I = 1, 2, · · · , M). Thus, we have

uI = u(xI). (30)

From the IMLS approximation, we can obtain

u(x) = Φ∗(x)u =
n

∑
I=1

Φ∗I (x)uI , (31)

where
u = (u1, u2, · · · , un)

T. (32)

From Equations (29) and (31), we have

Lu(x) =
n

∑
I=1


∂

∂x1
∂

∂x2
∂

∂x3

Φ∗I (x)uI =
n

∑
I=1

BIuI = B(x)u, (33)

where
B(x) = (B1, B2, · · · , Bn), (34)

BI =

 Φ∗I,1(x)
Φ∗I,2(x)
Φ∗I,3(x)

. (35)

Substituting Equations (31) and (33) into Equation (28), we have∫
Ω δ[Φ∗(x)u]T · k2 · [Φ∗(x)u]dΩ−

∫
Ω δ[B(x)u]T[B(x)u]dΩ

−
∫

Γq
δ[Φ∗(x)u]T · qdΓ−

∫
Ω δ[Φ∗(x)u]T · f dΩ

α
∫

Γu
δ[Φ∗(x)u]T · [Φ∗(x)u]dΓ− α

∫
Γu

δ[Φ∗(x)u]T · udΓ = 0.

(36)

In Equation (36), the form of u is the same as Equation (32), and n = M.
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All integral terms in Equation (36) are analyzed as follows:∫
Ω

δ[Φ∗(x)u]T · k2 · [Φ∗(x)u]dΩ = δuT · k2[
∫

Ω
Φ∗T(x)Φ∗(x)dΩ] · u, (37)

∫
Ω

δ[B(x)u]T · [B(x)u]dΩ = δuT · [
∫

Ω
BT(x)B(x)dΩ] · u, (38)∫

Ω
δ[Φ∗(x)u]T · f dΩ =δuT · [

∫
Ω

Φ∗T(x) f dΩ], (39)∫
Γq

δ[Φ∗(x)u]T · qdΓ =δuT · [
∫

Γq
Φ∗T(x)qdΓ], (40)

α
∫

Γu
δ[Φ∗(x)u]T · [Φ∗(x)u]dΓ = δuT · [α

∫
Γu

Φ∗T(x)Φ∗(x)dΓ] · u, (41)

α
∫

Γu
δ[Φ∗(x)u]T · udΓ = δuT · [α

∫
Γu

Φ∗T(x)udΓ]. (42)

Let
C = k2

∫
Ω

Φ∗T(x)Φ∗(x)dΩ, (43)

K =
∫

Ω
BT(x)B(x)dΩ, (44)

F1 =
∫

Ω
Φ∗T(x) f dΩ, (45)

F2 =
∫

Γq
Φ∗T(x)qdΓ, (46)

Kα = α
∫

Γu
Φ∗T(x)Φ∗(x)dΓ, (47)

Fα = α
∫

Γu
Φ∗T(x)udΓ. (48)

Substituting Equations (37)–(42) into Equation (36), we can obtain

δuT(Cu−Ku− F1 − F2 − Fα + Kαu) = 0. (49)

The δuT is arbitrary; thus we can obtain

K̃u = F̃, (50)

where
K̃ = C−K + Kα, (51)

F̃ = F1 + F2 + Fα. (52)

This is the IEFG method for 3D Helmholtz equations.

4. Numerical Examples

The formula of the relative error is

∥∥∥u− uh
∥∥∥rel

L2(Ω)
=

∥∥∥u− uh
∥∥∥

L2(Ω)

‖u‖L2(Ω)

, (53)

where ∥∥∥u− uh
∥∥∥

L2(Ω)
=

(∫
Ω
(u− uh)

2
dΩ
)1/2

. (54)



Mathematics 2022, 10, 14 7 of 20

In order to illustrate the advantages of the IFFG method, we chose three examples
from other literature. The nodes distributed in the problem domains of these numerical
examples were regular, the linear basis function was selected, and 3 × 3 × 3 Gaussian
points were selected in each integral cell. The IEFG and the EFG methods are used to solve
these examples.

The following equation is considered in the first example:

∆u + u = (12x2
1 − x4

1) sin x2 cos x3. (55)

The boundary conditions are

u(0, x2, x3) = 0, (56)

u(π, x2, x3) = π4 sin x2 cos x3, (57)

u(x1, 0, x3) = u(x1, π, x3) = 0, (58)

u(x1, x2, 0) = −u(x1, x2, π) = x4
1 sin x2. (59)

The problem domain is Ω = [0, π]× [0, π]× [0, π], and

u = x4
1 sin x2 cos x3 (60)

is the analytical solution.
In order to study the convergence of the EFG and the IEFG methods for Helmholtz

equations, all parameters of both methods were kept the same. The cubic spline weight
functions were used, dmax = 1.35, α = 2.0× 104. Table 1 shows the relationship between
relative errors and node distribution. It is shown that, with the increase in nodes, the
precision of numerical solutions improves as well, but the computational efficiency is
reduced gradually. Therefore, the two methods in this paper are convergent. Both the com-
putational accuracy and efficiency are considered, and 15 × 15 × 15 regularly distributed
nodes are selected.

Table 1. Relative errors and CPU times of the improved element-free Galerkin (IEFG) and element-free
Galerkin (EFG) methods with the increase in node distribution.

Nodes
Relative Error Time (s)

IEFG EFG IEFG EFG

7 × 7 × 7 4.3092% 4.3092% 5.5 5.8
11 × 11 × 11 1.3234% 1.3234% 26.7 28.5
13 × 13 × 13 0.8832% 0.8832% 49.9 53.1
15 × 15 × 15 0.6296% 0.6296% 92.1 98.0
17 × 17 × 17 0.4706% 0.4706% 152.0 161.9
21 × 21 × 21 0.2905% 0.2905% 384.5 398.6
25 × 25 × 25 0.1967% 0.1967% 903.3 940.2
29 × 29 × 29 0.1520% 0.1520% 1907.2 1937.1
33 × 33 × 33 0.1075% 0.1075% 4287.2 4408.3

The effects of the weight function, the scale parameter of the influence domain, and
the penalty factor on solution of the IEFG method will be discussed.

(1) Weight function

When the cubic spline function is used, 15 × 15 × 15 regularly distributed nodes
and 14 × 14 × 14 background integral cells are selected, α = 2.0× 104, dmax = 1.35. Thus,
the smaller relative error is 0.6296%. When the quartic spline function is used, and the
same regularly distributed nodes and background integral grids are used, α = 2.2× 104,
dmax = 1.28, the smaller relative error is 0.6274%. It is shown that the similar relative errors
can be obtained when using two weight functions.
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In addition, the singular matrix can be avoided in the IEFG method when using the
cubic spline function. If dmax = 1.0, the quartic spline function is selected. Unfortunately,
the singular matrix occurs and the final result cannot be obtained. When the cubic spline
function is used, the relative error is 0.6451%.

Thus, the cubic spline function is selected.

(2) Scale parameter

The same node distribution and background integral grids are selected, α = 2.0× 104,
and the cubic spline function is used. Figure 1 shows the relationship between dmax and
relative errors. Because of the error of computer itself, the relative error become larger
when dmax = 1.2. It is shown that when dmax = 1.35, the relative error is smaller.
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(3) Penalty factor

The same node distribution, background integral grids, and weight function are
selected, dmax = 1.35. Figure 2 shows the relationship between α and relative errors. It is
shown that when α = 2.0× 104, the relative error is smaller.
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The IEFG method is selected to solve it, 15 × 15 × 15 regularly distributed nodes and
14 × 14 × 14 background integral cells are selected, and the cubic spline function is used,
α = 2.0× 104, dmax = 1.35. When using the EFG method to solve it, the same parameters
are selected, and thus the relative errors of two methods are equal to 0.6296%.

Figures 3–5 show the comparison between numerical solutions and analytical ones,
and the CPU times of the IEFG method and the EFG method are 92.1 s and 98.0 s, re-
spectively. Obviously, higher computational efficiency can be obtained when using the
IEFG method.
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Additionally, the singular matrix can be avoided when constructing the shape func-
tions when the IEFG is used. If dmax = 1.0 and other parameters are the same, two methods
are used to solve it, and two different results are obtained. When the EFG method is used,
the singular matrix occurs and the final result cannot be obtained. However, using the IEFG
method to solve it, the relative error of the numerical solutions is 0.6451%. The numerical
and analytical results are compared in Figure 6; it is shown that the numerical results are in
good agreement with the analytical ones.
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The second example [67] is
∆u− k2u = 0. (61)

The boundary conditions are

u(0, x2, x3) = e(ξ2x2+ξ3x3), (62)

u(1, x2, x3) =
(ξ1+ξ2x2+ξ3x3), (63)

u(x1, 0, x3) = e(ξ1x1+ξ3x3), (64)

u(x1, 1, x3) = e(ξ1x1+ξ2+ξ3x3), (65)

u(x1, x2, 0) = e(ξ1x1+ξ2x2), (66)

u(x1, x2, 1) = e(ξ1x1+ξ2x2+ξ3). (67)

The problem domain is Ω = [0, 1]× [0, 1]× [0, 1], and

u = e(ξ1x1+ξ2x2+ξ3x3) (68)

is the analytical solution.
We set k = 2, ξ1 = 1, and ξ2 = 0.5. The IEFG method is used to solve it, α = 1.7× 103,

dmax = 1.21. The 15 × 15 × 15 regularly distributed nodes and 14 × 14 × 14 background
integral grids are used. When using the EFG method to solve it, the same parameters are
selected, and thus the same computational accuracy can be obtained. The relative errors
of both methods are equal to 0.0844%. Figures 7–9 show the comparison of the numerical
solutions of the two methods and the analytical ones. The CPU times of the IEFG method
and the EFG method are 92.1 s and 98.0 s, respectively. We can see that the computational
results of both methods are in very good agreement with the analytical ones.
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Figure 9. The comparison of the numerical and analytical solutions of the two methods along
the x3-axis.

When different parameters are selected, k = 5, ξ1 = 3, and ξ2 = 2.7. Using two methods
to solve it, the same parameters are used. Thus, the relative errors of both methods are
equal to 0.5295%. Figures 10–12 show the comparison of the numerical solutions of the
two methods and the analytical ones, and the CPU times of the IEFG method and the EFG
method are 92.1 s and 98.0 s, respectively. We can see that the computational results of both
methods are in good agreement with the analytical ones.

We can select k = 10, ξ1 = 5.8, and ξ2 = 6.2. Using the two methods to solve it, the
same parameters are used, and the relative errors of both methods are equal to 2.3884%.
Figures 13–15 show the comparison of the numerical solutions of the two methods and the
analytical ones. The computational results of both methods are in good agreement with the
analytical ones.
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From this example, we can draw two conclusions: On the one hand, the IEFG method
has greater computational efficiency; on the other hand, the bigger the wave numbers are,
the lower the computational accuracy.

Similarly, if dmax = 1.0, we select k = 10, ξ1 = 5.8, and ξ2 = 6.2. When the EFG method is
used, unfortunately, the singular matrix occurs. When the IEFG method is used, the relative
error is 2.4229%. The numerical solutions and analytical ones are compared in Figure 16. It
is shown that the numerical results are in good agreement with the analytical ones.
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The third example [68] is

∆u + k2u = (k2 − 3π2) cos(πx1) sin(πx2) sin(πx3). (69)

The boundary conditions are

∂u(0, x2, x3)

∂x1
=

∂u(1, x2, x3)

∂x1
= 0, (70)

u(x1, 0, x3) = u(x1, 1, x3) = 0, (71)

u(x1, x2, 0) = u(x1, x2, 1) = 0. (72)

The problem domain is Ω = [0, 1]× [0, 1]× [0, 1], and

u = cos(πx1) sin(πx2) sin(πx3) (73)

is the analytical solution.
The IEFG method is used to solved it. The wave number is selected as 100, and

19 × 19 × 19 regularly distributed nodes and 18 × 18 × 18 background integral cells
are used, α = 1.9× 107, dmax = 1.1. When using the EFG method to solve it, the same
parameters are selected, and the relative errors of both methods are equal to 0.8646%.
Figures 17–19 show the comparison of the numerical solutions and the analytical ones. We
can see that numerical solutions are in good agreement with the analytical ones. The CPU
times of the IEFG method and the EFG method are 200.6 s and 208.1 s, respectively.
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A similar computational accuracy can be obtained when using the two methods, but
the higher computational speed can be obtained when using the IEFG method.

Similarly, if dmax = 1.0, when the EFG method is used, the singular matrix occurs
and the final result cannot be obtained. However, when the IEFG method is selected, the
relative error is 0.8648%. The numerical solutions and the analytical one are compared
in Figure 20, where it is shown that the numerical results are in good agreement with the
analytical ones.
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5. Conclusions

In order to solve 3D Helmholtz equations efficiently, the IEFG method is proposed in
this paper.

Some numerical examples are given in Section 4, and the convergence of the IEFG
method is proven numerically. From these examples, we can see that the IEFG method in
this paper can not only enhance the computational speed of the traditional EFG method,
but also eliminate the phenomenon of the singular matrix.
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