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Abstract: In this paper, we prove the Chebyshev-Steffensen inequality involving the inner product on
the real m-space. Some upper bounds for the weighted Chebyshev-Steffensen functional, as well as
the Jensen-Steffensen functional involving the inner product under various conditions, are also given.
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1. Introduction

Let f be a convex function defined on a real interval J ⊂ R. Jensen’s inequality states
that if x = (x1, . . . , xn) ∈ Jn, n ∈ N, then

f (
1
Pn

n

∑
i=1

pixi) ≤
1
Pn

n

∑
i=1

pi f (xi), (1)

for all nonnegative real n-tuples p = (p1, . . . , pn), such that Pn = p1 + · · ·+ pn > 0. For f
strictly convex (1) is strict unless all xi are equal [1] (p. 43). Jensen’s inequality is, without
any doubt, one of the most important inequalities, if not the most important inequality, in
convex analysis with various applications in mathematics, statistics and engineering.

It is also known that the assumptions on p can be relaxed if we put more restrictions
on x [2]. Namely, if p is a real n-tuple such that

0 ≤ Pi = p1 + · · ·+ pi ≤ Pn, i ∈ {1, . . . , n− 1}, (2)

and Pn > 0, then for any monotonic n-tuple x = (x1, . . . , xn) ∈ Jn we get

x =
1
Pn

n

∑
i=1

pixi ∈ J,

and for any function f convex on J inequality, (1) still holds. Note that (2) allows the occur-
rence of negative weights of pi, which usually complicate matters. Under such assumptions,
inequality (1) is called the Jensen-Steffensen inequality for convex functions and (2) is called
Steffensen’s conditions by J. F. Steffensen. Again, for a strictly convex function f , inequality (1)
remains strict under certain additional assumptions on x and p [3]. The Jensen-Steffensen
inequality is a proper generalization of the Jensen inequality since nonnegative weights
of p satisfy condition (2) in every order, which means that for nonnegative weights the
monotonicity condition on x becomes irrelevant.

Another important inequality in mathematical analysis is the Chebyshev inequality
(Čebyšev inequality), as shown in [1] (p. 197) and [4] (p. 240), which states that

n

∑
j=1

pj

n

∑
i=1

piaibi ≥
n

∑
j=1

pjaj

n

∑
i=1

pibi
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whenever a = (a1, . . . , an), b = (a1, . . . , bn) are real n-tuples monotonic in the same
direction, and p = (p1, . . . , pn) a positive n-tuple [1] (p. 43). It is also useful to consider the
Chebyshev functional (sometimes also called the Chebyshev difference) C defined by

C(a, b; p) =
n

∑
j=1

pj

n

∑
i=1

piaibi −
n

∑
j=1

pjaj

n

∑
i=1

pibi.

Obviously, by the Chebyshev inequality,

C(a, b; p) ≥ 0 (3)

when p is positive and a, b are monotonic in the same direction. In the special case a = b,
we immediately get

C(a, a; p) ≥ 0.

Our goal is to prove the Chebyshev-Steffensen inequality (i.e., the Chebyshev inequal-
ity with weights p satisfying Steffensen’s conditions (2)) involving the inner product on
the real m-space Rm and to establish some upper bounds for the weighted Chebyshev-
Steffensen functional. The obtained results are used to find new Grüss-like upper bounds
for the Jensen functional with weights of p satisfying (2). It is worth noting here that many
interesting results of this type, but with nonnegative weights, can be found in [5].

2. Chebyshev-Steffensen Inequality

In the rest of the paper, for some n, m ∈ N, n ≥ 2, we denote

In = {1, 2, . . . , n},

X = (x1, · · · , xn), Y = (y1, · · · , yn), xi, yi ∈ Rm, i, j ∈ In,

〈·, ·〉 : Rm ×Rm → R is the inner product on the real m-space Rm, ‖·‖ norm related to 〈·, ·〉,
and ≤ the coordinatewise partial order on Rm, i.e., for ξ, η ∈ Rm

ξ = (ξ1, . . . , ξm ) ≤ η = (η1, . . . , ηm) ⇐⇒ ξ1 ≤ η1 ∧ · · · ∧ ξm ≤ ηm.

With

C(X, Y; p) =
n

∑
j=1

pj

n

∑
i=1

pi〈xi, yi〉 −
〈

n

∑
i=1

pixi,
n

∑
i=1

piyi

〉
we denote the weighted Chebyshev functional for the inner product on Rm. Furthermore,

Pi = p1 + · · ·+ pi, P̄i = pi + · · ·+ pn, i ∈ In,

that is

P̄iPj =
n

∑
r=i

j

∑
s=1

pr ps , Pi P̄j =
i

∑
r=1

n

∑
s=j

pr ps.

To prove our main results we need the following lemma.

Lemma 1. Let X = (x1, · · · , xn) and Y = (y1, · · · , yn) be two n-tuples of elements from Rmand
p = (p1, . . . , pn) ∈ Rn. The following identity holds

C(X, Y; p)

=
n−1

∑
i=1

(
i−1

∑
j=1

P̄i+1Pj

〈
xi+1 − xi, yj+1 − yj

〉
+

n

∑
j=i+1

Pi P̄j

〈
xi+1 − xi, yj − yj−1

〉
).
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Proof. It can be easily proved (using summation by parts on the coordinates) that for
k ∈ {2, . . . , n− 1} and A = {a1, · · · , an} ⊂ Rm the following identity holds

n

∑
i=1

piai =
k−1

∑
i=1

Pi(ai − ai+1) + Pkak + P̄k+1ak+1 +
n

∑
i=k+2

P̄i(ai − ai−1), (4)

and in border cases k = 1 or k = n

n

∑
i=1

piai = P̄1a1 +
n

∑
i=2

P̄i(ai − ai−1)

n

∑
i=1

piai = Pnan −
n−1

∑
i=1

Pi(ai+1 − ai). (5)

In all of the cases we assume

l

∑
i=k

xi = 0, when k > l.

It could be checked directly that

n

∑
i=1

pi

n

∑
j=1

pj

〈
xj, yj

〉
−
〈

n

∑
i=1

pixi,
n

∑
i=1

piyi

〉

=
n

∑
i=1

pi

n

∑
j=1

pj

〈
xi, yi − yj

〉
,

and also

n

∑
i=1

pi

n

∑
j=1

pj

〈
xi, yi − yj

〉
=

n−1

∑
i=1

(
i

∑
k=1

pk

n

∑
j=1

pj

〈
xi+1 − xi, yj − yk

〉
),

hence

n

∑
i=1

pi

n

∑
j=1

pj

〈
xj, yj

〉
−
〈

n

∑
i=1

pixi,
n

∑
i=1

piyi

〉

=
n−1

∑
i=1

(
i

∑
k=1

pk

n

∑
j=1

pj

〈
xi+1 − xi, yj − yk

〉
).

Using (5) with ak = ∑n
j=1 pj(yj − yk) we obtain

i

∑
k=1

pk

n

∑
j=1

pj(yj − yk)

= Pi

n

∑
j=1

pj(yj − yi)−
i−1

∑
k=1

Pk(
n

∑
j=1

pj(yj − yk+1)−
n

∑
j=1

pj(yj − yk))

= Pi(
n

∑
j=1

pjyj − Pnyi)− Pn

i−1

∑
k=1

Pk(yk − yk+1),
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and next using (4) with ak = yk we obtain

i

∑
k=1

pk

n

∑
j=1

pj(yj − yk)

= Pi(
i−1

∑
j=1

Pj(yj − yj+1) + Piyi + P̄i+1yi+1 +
n

∑
j=i+2

P̄j(yj − yj−1)− Pnyi)

− Pn

i−1

∑
k=1

Pk(yk − yk+1)

= Pi(
i−1

∑
j=1

Pj(yj − yj+1)− P̄i+1yi + P̄i+1yi+1 +
n

∑
j=i+2

P̄j(yj − yj−1))

− Pn

i−1

∑
j=1

Pj(yj − yj+1)

= Pi

i−1

∑
j=1

Pj(yj − yj+1) + Pi

n

∑
j=i+1

P̄j(yj − yj−1)− Pn

i−1

∑
j=1

Pj(yj − yj+1)

= Pi

n

∑
j=i+1

P̄j(yj − yj−1)− P̄i+1

i−1

∑
j=1

Pj(yj − yj+1).

Hence

n

∑
i=1

pi

n

∑
j=1

pj

〈
xj, yj

〉
−
〈

n

∑
i=1

pixi,
n

∑
i=1

piyi

〉

=
n−1

∑
i=1

(Pi

n

∑
j=i+1

P̄j

〈
xi+1 − xi, yj − yj−1

〉
− P̄i+1

i−1

∑
j=1

Pj

〈
xi+1 − xi, yj − yj+1

〉
)

=
n−1

∑
i=1

(
i−1

∑
j=1

P̄i+1Pj

〈
xi+1 − xi, yj+1 − yj

〉
+

n

∑
j=i+1

Pi P̄j

〈
xi+1 − xi, yj − yj−1

〉
).

Note that

n−1

∑
i=1

(
i−1

∑
j=1

P̄i+1Pj +
n

∑
j=i+1

Pi P̄j) = C(e, e; p),

where e = (1, . . . , n).
The next theorem states the Chebyshev-Steffensen inequality for the inner product on

the real m-space Rm with weights p satisfying (2).

Theorem 1. Let X = (x1, · · · , xn), Y = (y1, · · · , yn) be two n-tuples of elements from Rm

such that
xi+1 ≥ xi, yi+1 ≥ yi, i ∈ In−1 (6)

or

xi+1 ≤ xi, yi+1 ≤ yi, i ∈ In−1.

Then for all real n-tuples p = (p1, . . . , pn) ∈ Rn satisfying (2) the following inequality holds

C(X, Y; p) ≥ 0. (7)
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If

xi+1 ≥ xi, yi+1 ≤ yi, i ∈ In−1

or

xi+1 ≤ xi, yi+1 ≥ yi, i ∈ In−1

then (7) is reversed.

Proof. First note that (2) implies

P̄i = pi + · · ·+ pn ≥ 0, i ∈ In,

hence all products Pi P̄j are nonnegative.
Suppose that X and Y are such that (6) holds. Then〈

xi+1 − xi, yj+1 − yj

〉
≥ 0, i ∈ In−1, j ∈ {1, . . . , i− 1},〈

xi+1 − xi, yj − yj−1

〉
≥ 0, i ∈ In−1, j ∈ {i + 1, . . . , n},

and by Lemma 1 we immediately obtain (7). All other cases can be proven similarly.

In the special case m = 1 the Chebyshev-Steffensen functional C(X, Y; p) reduces to
C(x, y; p), where x = (x1, . . . , xn) and y = (y1, . . . , yn) are real n-tuples, and (7) becomes
the classical Chebyshev inequality (3) under Steffensen’s conditions or, in other words, the
one-dimensional Chebyshev-Steffensen inequality.

The coordinatewise partial order is the most obvious choice of order on Rm, and the
conditions on X and Y in Theorem 1 are based on it, but it is possible to consider alternative
conditions on X and Y. For instance, we can introduce a notion of monotonicity related to
the inner product in the following way.

Definition 1. We say that X = (x1, · · · , xn) and Y = (y1, · · · , yn), where xi, yi ∈ Rm, i, j ∈
In, are monotonic in the same direction with respect to the inner product if〈

xi+1 − xi, yj+1 − yj

〉
≥ 0 for all i, j ∈ In−1,

and we say that they are monotonic in opposite directions with respect to the inner product if the
above inequality is reversed.

It is easy to see that Theorem 1 can be obtained as a simple consequence of the one-
dimensional version of the Chebyshev-Steffensen inequality using properties of the inner
product. In the following theorem, we prove the Chebyshev-Steffensen inequality under
slightly different conditions, which makes the use of Lemma 1 essential.

Theorem 2. Let X = (x1, · · · , xn) and Y = (y1, · · · , yn) be two n-tuples of elements from
Rm monotonic in the same direction with respect to the inner product. Then for all real n-tuples
p = (p1, . . . , pn) ∈ Rn satisfying (2), inequality (7) holds. If X and Y are monotonic in opposite
directions, (7) is reversed.

Proof. Directly from Lemma 1 and Definition 1.

A natural question to ask is this: Is there a connection between the conditions for X
and Y in Theorem 1 and in Theorem 2? Obviously, monotonicity on the coordinates as in
Theorem 1 implies monotonicity with respect to the inner product as in Definition 1 but
not vice versa, as we show in the next example.
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Example 1. Let X = (x1, x2) and Y = (y1, y2) belong toR2×R2 where x1 = (1, 2), x2 = (−1, 3),
y1 = (3, 1), y2 = (0,−1). Then

〈x2 − x1, y2 − y1〉 = 〈(−2, 1), (−3,−2)〉 = 4 ≥ 0

and Theorem 2 can be applied. On the other hand, x1 and x2 can not be compared in the coordinate-
wise partial on R2 and Theorem 1 can not be applied. If we choose x1 = (−1, 2), x2 = (−1, 3),
y1 = (3, 1), y2 = (0,−1) then

〈x2 − x1, y2 − y1〉 = 〈(0, 1), (−3,−2)〉 = −2 ≤ 0

and

x2 ≥ x1, y2 ≤ y1

hence we can chose either Theorem 1 or Theorem 2.

The previous example points out that Theorem 2 is better than Theorem 1, but from
the numerical point of view, it is good to have Theorem 1 too.

Remark 1. In [6] (Theorem 4) the author considered some other conditions for weights of p, such
as

0 ≤ Pn ≤ Pi, i ∈ In−1

or

0 ≤ Pn ≤ P̄i, i ∈ {2, . . . , n}.

It can be easily seen that if the first assumption holds we get

P̄i ≤ 0, i ∈ {2, . . . , n},

and if the second holds we get

Pk ≤ 0, i ∈ In−1.

In both cases the products P̄i+1Pj and Pi P̄j in

n−1

∑
i=1

(
i−1

∑
j=1

P̄i+1Pj

〈
xi+1 − xi, yj+1 − yj

〉
+

n

∑
j=i+1

Pi P̄j

〈
xi+1 − xi, yj − yj−1

〉
)

are nonpositive. From that we conclude that under such conditions on p and the same conditions on
X and Y as in Theorem 1 or Theorem 2 in all of the cases, inequality (7) is reversed.

3. Bounds for the Chebyshev-Steffensen Functional

Our next goal is to establish upper bounds for the Chebyshev-Steffensen functional
under various conditions of X and Y.

Theorem 3. Let X = (x1, · · · , xn) and Y = (y1, · · · , yn) be two n-tuples of elements from
Rm monotonic in the same direction with respect to the inner product. Then for all real n-tuples
p = (p1, . . . , pn) ∈ Rn satisfying (2), the following inequalities hold

0 ≤ C(X, Y; p) ≤
〈

n−1

∑
i=1

P̃i(xi+1 − xi), yn − y1

〉
, (8)
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where

P̃i =
i−1

∑
j=1

P̄i+1Pj +
n

∑
j=i+1

Pi P̄j, i ∈ {1, . . . , n}.

Proof. The left hand inequality in (8) follows from Theorem 2.
For all i ∈ In−1 we can write

〈xi+1 − xi, y2 − y1〉+ · · · +
〈

xi+1 − xi, yn − yn−1
〉

=
〈

xi+1 − xi, y2 − y1 + · · · + yn − yn−1
〉
= 〈xi+1 − xi, yn − y1〉.

Since X and Y are monotonic in the same direction with respect to the inner product
and the sum of the nonnegative summands is never smaller than any of its summands, we
conclude that for all i, j ∈ In−1

0 ≤
〈

xi+1 − xi, yj+1 − yj

〉
≤ 〈xi+1 − xi, yn − y1〉.

Then, by Lemma 1, we obtain

C(X, Y; p)

≤
n−1

∑
i=1

(
i−1

∑
j=1

P̄i+1Pj〈xi+1 − xi, yn − y1〉+
n

∑
j=i+1

Pi P̄j〈xi+1 − xi, yn − y1〉)

=
n−1

∑
i=1

(
i−1

∑
j=1

P̄i+1Pj +
n

∑
j=i+1

Pi P̄j)〈xi+1 − xi, yn − y1〉

=

〈
n−1

∑
i=1

P̃i(xi+1 − xi), yn − y1

〉
.

In the rest of the paper we denote

P̃i =
i−1

∑
j=1

P̄i+1Pj +
n

∑
j=i+1

Pi P̄j, i ∈ In,

as in Theorem 3.
A simple way to bound the Chebyshev-Steffensen functional without monotonicity

conditions is given in the following theorem.

Theorem 4. Let X = (x1, · · · , xn) and Y = (y1, · · · , yn) be two n-tuples of elements from Rm

and let µ, ν ∈ R+ be such that

‖xi+1 − xi‖ ≤ µ,
∥∥yi+1 − yi

∥∥ ≤ ν, i ∈ In−1. (9)

Then for all real n-tuples p = (p1, . . . , pn) ∈ Rn satisfying (2), the following inequality
holds

|C(X, Y; p)| ≤ µν
n−1

∑
i=1

P̃i. (10)
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Proof. Using Lemma 1 and the Cauchy–Bunyakovsky–Schwarz inequality for inner prod-
uct spaces we obtain

|C(X, Y; p)|

≤
n−1

∑
i=1

(
i−1

∑
j=1

P̄i+1Pj

∣∣∣〈xi+1 − xi, yj+1 − yj

〉∣∣∣+ n

∑
j=i+1

Pi P̄j

∣∣∣〈xi+1 − xi, yj − yj−1

〉∣∣∣)
≤

n−1

∑
i=1

(
i−1

∑
j=1

P̄i+1Pj‖xi+1 − xi‖
∥∥∥yj+1 − yj

∥∥∥+ n

∑
j=i+1

Pi P̄j‖xi+1 − xi‖
∥∥∥yj − yj−1

∥∥∥)
≤ µν

n−1

∑
i=1

(
i−1

∑
j=1

P̄i+1Pj +
n

∑
j=i+1

Pi P̄j) = µν
n−1

∑
i=1

P̃i.

Observe that in the special case m = 1 conditions (9) become

|xi+1 − xi| ≤ µ, |yi+1 − yi| ≤ ν, i ∈ In−1,

and by Theorem 4 we get

|C(x, y; p)| =
∣∣∣∣∣ n

∑
i=1

pi

n

∑
i=1

pixiyi −
n

∑
i=1

pixi

n

∑
i=1

piyi

∣∣∣∣∣
≤ µν

n−1

∑
i=1

(
i−1

∑
j=1

P̄i+1Pj +
n

∑
j=i+1

Pi P̄j) = µν
n−1

∑
i=1

P̃i,

which (with a slightly different notation) is a Grüss-like inequality obtained in [6] (Theorem 4).
Some related results considering positive weights can be found in [7,8].

As in Remark 1, we can consider alternative conditions on weights p

0 ≤ Pn ≤ Pi, i ∈ In−1

or

0 ≤ Pn ≤ P̄i, i ∈ {2, . . . , n}.

In either of those cases, (10) becomes (remember the nonpositivity of ∑n−1
i=1 P̃i)

|C(X, Y; p)| ≤ −µν
n−1

∑
i=1

P̃i.

There is a way to bound the Chebyshev-Steffensen functional without bounding
‖xi+1 − xi‖ and

∥∥yi+1 − yi
∥∥: instead, we have to consider the max Pi P̄j.

Theorem 5. Let X = (x1, · · · , xn) and Y = (y1, · · · , yn) be two n-tuples of elements from Rm.
Then for all real n-tuples p = (p1, . . . , pn) ∈ Rn satisfying (2), the following inequalities hold

|C(X, Y; p)| ≤ max
i∈In−1

j∈In\{1}

{
Pi P̄j

} n−1

∑
i=1

n−1

∑
j=1

∣∣∣〈xi+1 − xi, yj+1 − yj

〉∣∣∣
≤ max

i∈In−1
j∈In\{1}

{
Pi P̄j

} n−1

∑
i,j=1
‖xi+1 − xi‖

∥∥∥yj+1 − yj

∥∥∥. (11)
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Proof. Similarly, as in the proof of Theorem 4, we have

|C(X, Y; p)|

≤
n−1

∑
i=1

(
i−1

∑
j=1

P̄i+1Pj

∣∣∣〈xi+1 − xi, yj+1 − yj

〉∣∣∣+ n

∑
j=i+1

Pi P̄j

∣∣∣〈xi+1 − xi, yj − yj−1

〉∣∣∣)
≤ max

i∈In−1
j∈In\{1}

{
Pi P̄j

} n−1

∑
i=1

(
i−1

∑
j=1

∣∣∣〈xi+1 − xi, yj+1 − yj

〉∣∣∣+ n

∑
j=i+1

∣∣∣〈xi+1 − xi, yj − yj−1

〉∣∣∣)
= max

i∈In−1
j∈In\{1}

{
Pi P̄j

} n−1

∑
i=1

n−1

∑
j=1

∣∣∣〈xi+1 − xi, yj+1 − yj

〉∣∣∣
≤ max

i∈In−1
j∈In\{1}

{
Pi P̄j

} n−1

∑
i=1

n−1

∑
j=1
‖xi+1 − xi‖

∥∥∥yj+1 − yj

∥∥∥.

In [9], the authors proved the following inequality

‖C(α, X; p)‖ ≤ max
i∈In−1

{Pi P̄i+1}
n−1

∑
i=1
|αi+1 − αi|

n−1

∑
i=1
‖xi+1 − xi‖,

where X = (x1, · · · , xn) is an n-tuple of elements from a normed linear space (V, ‖·‖) over
R, α = (α1, . . . , αn) ∈ Rn and weights p = (p1, . . . , pn) ∈ Rn nonnegative. Obviously,
dealing with nonnegative weights gives more liberty because in that case we have

max
i∈In−1
j∈Ii−1

{
Pj P̄i+1

}
≤ max

i∈In−1
j∈In−1

{
Pj P̄i+1

}
= max

i∈In−1
{Pi P̄i+1},

and since for such weights P̄i ≥ P̄j when i ≤ j we get

max
i∈In−1

j∈{i+1,...,n}

{
Pi P̄j

}
≤ max

i∈In−1
{Pi P̄i+1}.

This means that for nonnegative weights, p inequalities (11) can be reformulated in
the following way

|C(X, Y; p)| ≤ max
i∈In−1

{Pi P̄i+1}
n−1

∑
i=1

n−1

∑
j=1

∣∣∣〈xi+1 − xi, yj+1 − yj

〉∣∣∣
≤ max

i∈In−1
{Pi P̄i+1}

n−1

∑
i,j=1
‖xi+1 − xi‖

∥∥∥yj+1 − yj

∥∥∥.

In the special case p = ( 1
n , . . . , 1

n ), we get

max
i∈In−1

{Pi P̄i+1} = Pb n
2 c P̄b n

2 c+1 =
1
n

⌊n
2

⌋
(1− 1

n

⌊n
2

⌋
),
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and

|C(X, Y; p)| ≤ 1
n

⌊n
2

⌋
(1− 1

n

⌊n
2

⌋
)

n−1

∑
i=1

n−1

∑
j=1

∣∣∣〈xi+1 − xi, yj+1 − yj

〉∣∣∣
≤ 1

n

⌊n
2

⌋
(1− 1

n

⌊n
2

⌋
)

n−1

∑
i,j=1
‖xi+1 − xi‖

∥∥∥yj+1 − yj

∥∥∥.

At the end of this section we give a theorem that combines some of the previous approaches.

Theorem 6. Let X = (x1, · · · , xn) and Y = (y1, · · · , yn) be two n-tuples of elements from Rm

and m, M ∈ Rm such that

xi+1 ≥ xi, i ∈ {1, . . . , n− 1},

m ≤ yi ≤ M, i ∈ In.

Then for all real n-tuples p = (p1, . . . , pn) ∈ Rn satisfying (2)

|C(X, Y; p)| ≤
∣∣∣∣∣
〈

n−1

∑
i=1

P̃i(xi+1 − xi), M −m

〉∣∣∣∣∣
≤ ‖M −m‖

∥∥∥∥∥n−1

∑
i=1

P̃i(xi+1 − xi)

∥∥∥∥∥
≤ ‖M −m‖

n−1

∑
i=1

P̃i‖xi+1 − xi‖.

Proof. The conditions of this theorem imply that for all i, j ∈ {1, . . . , n− 1}〈
xi+1 − xi, yj+1 − yj

〉
≤ 〈xi+1 − xi, M −m〉.

By Lemma 1 we get

C(X, Y; p)

=
n−1

∑
i=1

(
i−1

∑
j=1

P̄i+1Pj

〈
xi+1 − xi, yj+1 − yj

〉
+

n

∑
j=i+1

Pi P̄j

〈
xi+1 − xi, yj − yj−1

〉
)

≤
n−1

∑
i=1

(
i−1

∑
j=1

P̄i+1Pj〈xi+1 − xi, M −m〉+
n

∑
j=i+1

Pi P̄j〈xi+1 − xi, M −m〉)

=

〈
n−1

∑
i=1

P̃i(xi+1 − xi), M −m

〉
.

By the Cauchy–Bunyakovsky–Schwarz inequality for inner product spaces and the
triangle inequality we obtain

|C(X, Y; p)| ≤
∥∥∥∥∥n−1

∑
i=1

P̃i(xi+1 − xi)

∥∥∥∥∥‖M −m‖

≤
n−1

∑
i=1

P̃i‖xi+1 − xi‖‖M −m‖,

which completes the proof.
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4. Steffensen-Grüss Inequality

In this section, we show how some of the results from Sections 2 and 3 can be used
to obtain Grüss-like upper bounds for the Jensen-Steffensen functional. In this section,
conv[S] denotes the convex hull of S ⊆ Rm.

Theorem 7. Let U be an open convex subset of Rm and X = (x1, · · · , xn) ∈ Un such that

xi+1 ≥ xi, i ∈ In−1.

Let f : U → R be a continuously differentiable function and m, M ∈ Rm such that

m ≤ ∇ f (x) ≤ M, for all x ∈ conv[x1, . . . , xn]. (12)

Then for all p = (p1, . . . , pn) ∈ Rn satisfying (2), the following inequalities hold∣∣∣∣∣ 1
Pn

n

∑
i=1

pi f (xi)− f (
1
Pn

n

∑
i=1

pixi)

∣∣∣∣∣ ≤ 1
P2

n

∣∣∣∣∣
〈

n−1

∑
i=1

P̃i(xi+1 − xi), M −m

〉∣∣∣∣∣
≤ ‖M −m‖

P2
n

∥∥∥∥∥n−1

∑
i=1

P̃i(xi+1 − xi)

∥∥∥∥∥ (13)

≤ ‖M −m‖
P2

n

n−1

∑
i=1

P̃i‖xi+1 − xi‖.

Proof. First, note that continuity of the partial derivatives on U implies the existence of
some m, M ∈ Rm such that (12) holds. Furthermore, under condition (2) on the weights p,
we have

x̄ =
1
Pn

n

∑
i=1

pixi ∈ conv[x1, . . . , xn] ⊂ U.

From the mean-value theorem we know that for any x, y ∈ conv[x1, . . . , xn] there
exists some θ ∈ (0, 1) such that

f (x)− f (y) = 〈∇ f (z), x− y〉,

where z = y + θ(x− y). Applying this to x = xi, y = x̄ and z = zi = x̄ + θi(xi − x̄) ∈
conv[x1, . . . , xn] we obtain

f (xi)− f (x̄) = 〈∇ f (zi), xi − x̄〉, i ∈ In.

Multiplying the above equality by pi and summing over i we obtain

n

∑
i=1

pi f (xi)− Pn f (x̄) =
n

∑
i=1

pi〈∇ f (zi), xi − x̄〉

=
n

∑
i=1

pi(〈xi,∇ f (zi)〉 − 〈x̄,∇ f (zi)〉),

and therefore, after multiplication with Pn,

Pn

n

∑
i=1

pi f (xi)− P2
n f (x̄) = Pn

n

∑
i=1

pi〈xi,∇ f (zi)〉 −
〈

n

∑
i=1

pixi,
n

∑
i=1

pi∇ f (zi)

〉
.
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If in Theorem 6 we choose yi = ∇ f (zi), we get

|C(X, Y; p)| =
∣∣∣∣∣Pn

n

∑
i=1

pi〈xi, yi〉 −
〈

n

∑
i=1

pixi,
n

∑
i=1

piyi

〉∣∣∣∣∣
≤ ‖M −m‖

n−1

∑
i=1

P̃i‖xi+1 − xi‖.

This implies∣∣∣∣∣Pn

n

∑
i=1

pi f (xi)− P2
n f (x̄)

∣∣∣∣∣ ≤
∣∣∣∣∣
〈

n−1

∑
i=1

P̃i(xi+1 − xi), M −m

〉∣∣∣∣∣
≤ ‖M −m‖

∥∥∥∥∥n−1

∑
i=1

P̃i(xi+1 − xi)

∥∥∥∥∥
≤ ‖M −m‖

n−1

∑
i=1

P̃i‖xi+1 − xi‖,

which, after division by P2
n , becomes (13).

Posing a stronger condition on ∇ f , namely the condition of Lipschitz continuity, we
are able to remove the monotonicity condition for X = (x1, · · · , xn).

Theorem 8. Let U be an open convex subset of Rm and X = (x1, · · · , xn) ∈ Un. Let f : U → R
be a differentiable function such that for some L > 0 ∇ f satisfies the Lipschitz condition

‖∇ f (y)−∇ f (x)‖ ≤ L‖y− x‖, for all x, y ∈ conv[x1, . . . , xn].

Then for all p = (p1, . . . , pn) ∈ Rn satisfying (2), the following inequality holds∣∣∣∣∣ 1
Pn

n

∑
i=1

pi f (xi)− f (
1
Pn

n

∑
i=1

pixi)

∣∣∣∣∣ ≤ L∆
P2

n
max
i∈In−1

j∈In\{1}

{
Pi P̄j

} n−1

∑
i=1
‖xi+1 − xi‖,

where

∆ = max
1≤i<j≤n

∥∥xi − xj
∥∥.

Proof. First, observe that for any a, b ∈ conv[x1, . . . , xn] there exist some ui, vi ∈ [0, 1], i ∈
In, such that ∑n

i=1 ui = ∑n
i=1 vi = 1 and

a =
n

∑
i=1

uixi, b =
n

∑
i=1

vixi.

Then

‖a− b‖ =
∥∥∥∥∥ n

∑
i=1

vi

n

∑
i=1

uixi −
n

∑
i=1

ui

n

∑
i=1

vixi

∥∥∥∥∥ =

∥∥∥∥∥ n

∑
i,j=1

uivj(xi − xj)

∥∥∥∥∥
≤

n

∑
i,j=1

uivj
∥∥xi − xj

∥∥ ≤ ∆
n

∑
i,j=1

uivj = ∆.

Consequently, for zi, i ∈ In, defined as in the proof of Theorem 7, we have∥∥zi − zj
∥∥ ≤ ∆, i, j ∈ In.
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Now, similarly as in the proof of Theorem 7, we have

Pn

n

∑
i=1

pi f (xi)− P2
n f (x̄) = Pn

n

∑
i=1

pi〈xi,∇ f (zi)〉 −
〈

n

∑
i=1

pixi,
n

∑
i=1

pi∇ f (zi)

〉
.

If in Theorem 5 we choose yi = ∇ f (zi), we obtain

|C(X, Y; p)| =
∣∣∣∣∣Pn

n

∑
i=1

pi〈xi, yi〉 −
〈

n

∑
i=1

pixi,
n

∑
i=1

piyi

〉∣∣∣∣∣
≤ max

i∈In−1
j∈In\{1}

{
Pi P̄j

} n−1

∑
i,j=1
‖xi+1 − xi‖

∥∥∥yj+1 − yj

∥∥∥
≤ max

i∈In−1
j∈In\{1}

{
Pi P̄j

} n−1

∑
i,j=1
‖xi+1 − xi‖

∥∥∇ f (zj+1)−∇ f (zj)
∥∥

≤ L max
i∈In−1

j∈In\{1}

{
Pi P̄j

} n−1

∑
i,j=1
‖xi+1 − xi‖

∥∥zj+1 − zj
∥∥

≤ L∆ max
i∈In−1

j∈In\{1}

{
Pi P̄j

} n−1

∑
i=1
‖xi+1 − xi‖.

After division by P2
n we obtain the desired result.

5. Applications Involving Generalized Convex Functions

The results from Section 4 can be used to establish new upper bounds for the Jensen-
Steffensen functional involving certain generalized convex functions, namely P-convex
functions and functions with nondecreasing increments.

Let f be a real-valued function defined by J = [a, b] ⊂ R. A k-th order divided
difference of f at distinct points x0, ..., xk ∈ J may be defined recursively by

[xi] f = f (xi)

[x0, ..., xk] f =
[x1, ..., xk] f − [x0, ..., xk−1] f

xk − x0
.

A function f : J → R is said to be k-convex on [a, b] if

[x0, ..., xk] f ≥ 0, for all distinct x0, ..., xk ∈ J.

This definition was generalized in [10] in the following way: Let J1 = [a, b] and
J2 = [c, d] be two intervals in R and let f be a real-valued function defined by J1 × J2.
A divided difference of order (k, m) at k + 1 distinct points x0, ..., xk from J1 and m + 1
distinct points y0, ..., ym from J2 is defined by

[x0, ..., xk][y0, ..., ym] f = [x0, ..., xk]([y0, ..., ym] f )

= [y0, ..., ym]([x0, ..., xk] f ).

A function f : J1 × J2 → R is said to be convex of order (k, m) by J1 × J2 if

[x0, ..., xk][y0, ..., ym] f ≥ 0

for all x0, ..., xk ∈ J1, y0, ..., ym ∈ J2 such that x0 < ... < xk and y0 < ... < ym.
A similar class of functions was considered in [11].
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Definition 2. Let f be a real-valued function defined by J1× J2. We say that f is P-convex of order
k if

[x0, ..., xi][y0, ..., yk−i] f ≥ 0 , i ∈ {0, 1, ..., k},

for all x0, ..., xk ∈ J1 and y0, ..., yk ∈ J2 such that x0 < ... < xk and y0 < ... < yk, i.e., if f is
convex of order (i, k − i) for all i ∈ {0, 1, ..., k}. We say that f is P-concave of order k if − f is
P-convex of order k.

If a function f is P-convex of order 2, we simply say that the f is P-convex. Obviously,
this definition can be extended for functions with more than two variables. In the same
paper [11], the author proved several properties of P-convex functions of order k related to
the properties of k-convex functions.

(i) A P-convex function of order k is not necessarily continuous on J1 × J2.
(ii) If the kth partial derivatives of a function f : J1 × J2 → R exist, then f is P-convex of

order k if these partial derivatives are nonnegative.
(iii) If the (k− 1)th partial derivatives of a function f : J1× J2 → R exist, then f is P-convex

of order k if these partial derivatives are nondecreasing in each argument.

An interesting P-convex (but not convex) function is f : R2 → R defined by

f (x, y) = xy

which provides a beautiful connection between the Chebyshev-Steffensen inequality and
the Jensen-Steffensen inequality.

Wright-convex functions have an important generalization for functions of several
variables introduced in [12] and [1] (p. 14).

An interval [a, b] in Rm, where a, b ∈ Rm and a ≤ b, is the set

[a, b] = {x ∈ Rm : a ≤ x ≤ b}.

Definition 3. A real-valued function f defined on an interval J ⊂ Rm is said to have nondecreasing
increments if

f (x + h)− f (x) ≤ f (y + h)− f (y)

whenever 0 ≤ h ∈ Rm, x ≤ y, x, y + h ∈ J.

In the same paper [12] Brunk also proved that:

(i) A function with nondecreasing increments is not necessarily continuous.
(ii) If the first partial derivatives of a function f : J → R exists for x ∈ J, then f has

nondecreasing increments if each of these partial derivatives is nondecreasing in each
argument.

(iii) If the second partial derivatives of a function f : J → R exists for x ∈ J, then f has
nondecreasing increments if each of these partial derivatives is nonnegative.

We may note here that if n = 2 and we consider only functions with partial derivatives
of the second-order, then the class of P-convex functions and the class of functions with
nondecreasing increments coincide.

P-convex functions and functions with nondecreasing increments have an important
common property that ordinary convex functions of several variables do not have: the
Jensen-Steffensen inequality holds for them (see [11,13] and [1] (p. 62)).

In the next theorem, we show how Theorem 7 can be used to establish a new upper
bound for the Jensen-Steffensen functional for functions with nondecreasing increments.
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Theorem 9. Let J be an interval in Rm and X = (x1, · · · , xn) ∈ Jn such that

xi+1 ≥ xi, i ∈ In−1.

Let f : J → R be a function with nondecreasing increments continuously differentiable on
int(J) and m, M ∈ Rm such that (12) holds. Then for all p = (p1, . . . , pn) ∈ Rn satisfying (2),
the following inequalities hold

0 ≤ 1
Pn

n

∑
i=1

pi f (xi)− f (
1
Pn

n

∑
i=1

pixi) (14)

≤ ‖M −m‖
P2

n

n−1

∑
i=1

P̃i‖xi+1 − xi‖.

Proof. By Theorem 7 we know that∣∣∣∣∣ 1
Pn

n

∑
i=1

pi f (xi)− f (
1
Pn

n

∑
i=1

pixi)

∣∣∣∣∣ ≤ ‖M −m‖
P2

n

∥∥∥∥∥n−1

∑
i=1

P̃i(xi+1 − xi)

∥∥∥∥∥
≤ ‖M −m‖

P2
n

n−1

∑
i=1

P̃i‖xi+1 − xi‖,

and since f is a function with nondecreasing increments we know that

1
Pn

n

∑
i=1

pi f (xi)− f (
1
Pn

n

∑
i=1

pixi) ≥ 0.

This completes the proof.

Obviously, an analogous result can be formulated for P-convex functions.

Theorem 10. Let J be an interval in R2 and X = (x1, · · · , xn) ∈ Jn such that

xi+1 ≥ xi, i ∈ In−1.

Let f : J → R be a P-convex function continuously differentiable by int(J) and m, M ∈ R2

such that (12) holds. Then for all p = (p1, . . . , pn) ∈ Rn satisfying (2) inequalities (14) hold.

6. Conclusions

In this paper, we have proven the Chebyshev-Steffensen inequality involving the inner
product on the real m-space, which is a new and interesting result. This new inequality en-
ables us to establish some upper bounds for the weighted Chebyshev-Steffensen functional,
as well as the Jensen-Steffensen functional for the inner product under various conditions
involving (possibly) negative weights. The obtained results are new and, in our opinion,
interesting and formulated in a mathematically beautiful way.
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8. Pečarić, J.; Tepeš, B. Improvements of some inequalities for moments of guessing function. Math. Inequal. Appl. 2005, 8, 53–62.

[CrossRef]
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