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Abstract: Maxwell’s equations in materials are studied jointly with Euler equations using new
knowledge recently appeared in the literature for polyatomic gases. For this purpose, a supplementary
conservation law is imposed; one of the results is a restriction on the law linking the magnetic field in
empty space and the electric field in materials to the densities of the 4-Lorentz force v* and its dual
u*: These are the derivatives of a scalar function with respect to v* and u*, respectively. Obviously,
two of Maxwell’s equations are not evolutive (Gauss’s magnetic and electric laws); to simplify
this mathematical problem, a new symmetric hyperbolic set of equations is here presented which
uses unconstrained variables and the solutions of the new set of equations, with initial conditions
satisfying the constraints, restore the previous constrained set. This is also useful because it allows to
maintain an overt covariance that would be lost if the constraints were considered from the beginning.
This is also useful because in this way the whole set of equations becomes a symmetric hyperbolic
system as usually in Extended Thermodynamics.

Keywords: Maxwell’s equations; Extended Thermodynamics; polyatomic gases

1. Introduction

Up to now it has been shown that Maxwell’s Equations are compatible with a supple-
mentary conservation law [1]; but this property was demonstrated only in the case of the
empty space. Here we want to improve this result by applying it also in the case in which
there is an interaction with a polyatomic gas. Now Maxwell’s equations in materials must
necessarily be coupled with the balance equations of this material and we begin to couple
them with the Euler equations for polyatomic gases; hence the whole set of equations is:
9G¥ =0,

aaV”‘ = O, aaT‘Xﬁ = qkﬁ, aaFocﬁ == _]'8/ atx]a = 0/ (1)

where Ug = L. Vi, m is the particle mass, n = N Vg and c is the speed of light (hence

mn mc
V* = mnU* and UP Ug = c? follow). Furthermore, T*? is the energy momentum tensor,
q is the charge density, g kf = g 1 yPen % Guy is the Lorentz 4-force, J# is the free current
density and, in any fixed reference frame, the tensors F*f and G*f can be decomposed
as follows:

0 cD!  ¢D? D3 0 cBl  ¢B? (B
pp_ | —eDl 0 HY —H» | 5 | —cBl 0 -E F @
| =eD? —-H® 0 H! ’ ~| —cB* E3 0o -—fg' |’

—cD* H* -H' 0 -cB> —E* E' 0

For references on this subject, see for example [2-7] which contain only marginally the
results of the present article (for example, Maxwell equations are not coupled with the
equations for the material), or belong to another context such as general relativity, quantistic
mechanics or the use of a Lagrangian function.
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The Equation (1)1 are Euler’s equations and, when Maxwell’s equations are not
present, T*P has the form

T = Cizu“uﬁ + phap  with h*P = —g*f 4 Clzu“uﬁ, ®)

where e is the energy, p is the pressure and h*f is the projector into the 3-dimensional
subspace orthogonal to U,. Furthermore, ¢ and p are constitutive functions of the absolute
temperature T.

Now in the system (1) there are 14 independent equations, while the tensors that
appear in it have 30 independent components; therefore only a part of these components
can be assumed as independent variables. It follows that it is necessary to express a part
of these components as functions of the rest; they are called constitutive functions and
“the closure problem” deals with how to find them. To this end, we adopt well-known
procedures which we now describe.

1.1. The Closure Problem in Extended Thermodynamics

As usual in Extended Thermodynamics ( see, for example [8-11]), restrictions on these
functions can be found by imposing the Entropy Principle which requires the existence
of the entropy-entropy flux 4-vector h* and of the entropy production X such that the
following supplementary equation holds for each solution of the system (1); »:

A =% > 0. @)

This non-negative entropy production requirement is a binding condition because it must
hold only for each solution of the system (1) 7. Its exploitation becomes easier if we use
Liu’s Theorem [12]; he showed that the requirement (4) for all solutions of the generic
system 9, F*4 = [ is equivalent to assuming the existence of Lagrange multipliers A 4
such that the condition

Ouh® — Ay 0, F4=0,2 =414 >0,

5
holds for every value (no more constrained) of the independent variables . ©)
Subsequently, Dreyer in [13] introduced in the kinetic context the so-called Maximum
Entropy Principle (MEP), i.e., to require that the generalized entropy

+o0 .
0s=h = I*U, — _chua/W Flnfp*¢p(T)dPdT
0

(with kg the Boltzmann constant) has a maximum under the constraints 9, F*4 = [4. This
variational problem allows to find the expression of the distribution function f and the
above A 4 are the associated Lagrange multipliers. In effect Dreyer worked on monoatomic
gases, while the one above is the generalization of his functional to polyatomic gases, as
reported in [14], page 427. However, we do not report further details on this aspect because
they are not necessary for this article. We have said the above only to give a historical
justification for the name “Lagrange multipliers” and because they will be needed when
the present results will be updated to include dissipative phenomena.
Other important articles are [15-17] where it was found that:

e Equation (5); can be written as dh* — A, d F*4 =0,

e The function ' (which they call 4-potential) can be defined by h'* = —h* + A, F*4
so that it follows d W'® = F*Ad )\,

e If we change independent variables, from the original ones to the Lagrange multi-

"
J

pliers A4, then we have F*4 = g1, and the field equations 0, F*4 = I become

2 7 /0 . . . :
% d,Ap = IY. These equations are evidently symmetric so that, for their hyper-
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bolicity in the time-like constant congruence (,, it will be sufficient that the function
&ah'™ is a convex function of the variables A 4 (Convexity requirement).

This methodology allows to express all the unknown functions present in the field
equations in terms of the only function /'*. Then you have to do the inverse of the afore-
mentioned change of variables, from the Lagramge multipliers to the physical variables to
have everything expressed in terms of the latter.

1.2. Application of the above Procedure to the Current Problem

Now, we want to apply this methodology to our problem. We therefore impose the
existence of the supplementary conservation law (4) for all field Equation (1). Now, when
Maxwell’s equations are not present, this is surely the Entropy Principle; for Maxwell’s
equations there is a discussion among researchers on how to consider (4): still the entropy
principle or an equation for energy? We do not want to express an opinion on this, so we
simply call it a “supplementary conservation law”, as in other articles in the literature. In
fact, for what follows, it is not necessary to give it a precise name; we just want to take
advantage of all its fine mathematical properties that we have described above and others
present in the literature, such as the well-posedness of the Cauchy problem, the smooth
dependence on initial values and so on.

So in our case we have the existence of 4-potential #/'* and the Lagrange multipliers
which in our case we call A, Ap, vg, pp, 0. In this way, we have:

AW =VedA+ T dAg+ FPdvg+ GPdpg+ J*dd, L =qkPAg— JPvg>0. (6)
We will see in Sections 3 and 4 that we get the following expression for h'™:

A
b Vyls, )
00

W = ho P 170(/37(5

where 17”‘575 is the 4-dimensional Levi-Civita symbol, Goy = /\ﬁ/\ﬁ and hg is a function
of Goo, G11 = papt®, G2 = pav®, Gz = vuv*, 9. We assume that jig, v4 are not free but
constrained by:

AMuy =0, A% =0, (8)

otherwise the number of independent equations would not equal the number of indepen-
dent variables. We will also find that J# is parallel to AP (see (24),) and kP = vP (see last 3
lines of Section 3, below), so that Equation (6); is satisfied with > = 0.

So we only need to know a scalar function (A, Goo, G11, G12, G2z, 9) to close the
whole system. Its expression depends on the material that is considered and characterizes it.
For example, we may define 1! = ho(A, Ggo, 0, 0,0, 0) and 19 = ho(A, Goo, G11, G12, G2, ©)
— hSA and (6) will give:

~ 9 M ~
VD‘:V;\X/I‘F%/\“, ]Dc:< 0 +ah0>)\“,

A a9 ' 90
oh _ oh oh WP
s (4

s A A
ey P — 6B 110 el WP — a0y 0 .
(a v Goo Ho (a v Goo "

where

o _ O e OMY s M oap
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(see Equation (24) of Section 3) These expressions of Vy; and Tf\‘f are those obtained in
the absence of the electromagnetic field and in Section 4 of [14] it was proved that for
polyatomic gases they are (3) with:

+00 1y T
& _ 8 _kpe p oo ]2,2(1+ W) p(2)dZ
Vm=pU*, p=— ,e=pc ——
m VGu o bLie(@)dI
e 1
Jimn (7) :/ eV NS sinh™ s cosh™ sd's, [y, = Jun {7(14_ mzczﬂ , (11)
0 ,

'Y:%\/GOO-
B

Here 7 indicates the internal energy of the molecule, due to its rotational and vibrational
modes, and 7 is a measure of how polyatomic the gas is; in particular, for polytropic gases
itis ¢(Z) = 7" and monatomic gases are enclosed as a limiting case for a going to —1. More
precisely, a = % where D is relative to the degree of freedom of a molecule (The spatial
dimension 3 plus the contribution of the internal degrees of freedom due to rotational
and vibrational modes) . In the case of monatomic gas, we have D = 3. The expression
¢(Z) = 1" is also classically valid (see the classic part of Equation (47) of [14]).

From (9) we see that the subsystem (in the sense of [18]) of our equations obtained
by simply setting yg = 0, vg = 0, ¥ = 0 and neglecting (1);_5 is that of polyatomic gases
described in [14] for the part concerning the Euler’s equations. It is true that [14] is now
improved (see [19] for the classical case, while the relativistic case [20] is forthcoming),
but these further developments do not change the part concerning the Euler’s Equations
which are here considered. We prefer to insert the present article in the framework of
polyatomic gases because they are more general than the monoatomic gases and include it
as a particular case. Moreover, polyatomic gases allows the formation of dipoles and also
magnetization and polarization effects. As confirmation of the results here described, we
will take in Section 2 their non relativistic limits and we will find that they become the same
of [21] which were obtained there by working directly in the non relativistic framework.

Now the above reported equations are expressed in terms of the Lagraange multipliers
as variables; so the last step remains to convert them in terms of physical variables. Let us
see how to do this step in the simpler case of a weak electro-magnetic field.

1.3. A Simple Example of Inversion from the Lagrange Multipliers to Physical Variables

We consider the simple case of a homogeneous and isotropic medium with a weak
electromagnetic field so that /1y can be considered linear in Gy1 and Gy, and the term with
Gy is not present:

A A too X _.
B — CVOG CGOG A apys B —k / / 5 p* o(2)dZdP,
(72 11+ - 22) o +7 Coo Vols —KBC w Jo e r* o(Z)

) (12)
with y=mA + 1—0——1 Ap’g—O— 1+—I 9.
mc2 )P m c?

Here 19 and € are constants. If we call 1}* the last term of (12);, we see that

PORCAL WS PP P / /Ho s pt (dx)P(T) TP <0
aa/\Aa)\B A B — kb %3 0 e p X (p 7

therefore the convexity of this part of /'* is satisfied; we will see that it also holds for the
other side, at least for a weak electromagnetic field. Now the integrals can be calculated
with a small modification to the one on page 422 of [14] and we find:
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V8 =mnU®, T = U"‘Uﬁ + phf — k po [(CF;O Gll—l—ﬂ(}zz) nh 4 77“97‘5}151/7;15} ,
(13)
]zx — qulxl thﬁ :2]/‘0 u[txyﬂ] + EWOCIP’Yﬂ U¢1/n,, G‘X,B :2€0 u[‘xv.B] + EWMP.B'Y U¢}l7,
with
mA oo _ o 7 \? A
n=d4mrm e kB/ ekB(Hmc)] v 0)dZ,U*=c
0 21( )4’( ) \/?m
mA e _ o z
e=4mnm*ce kB/ e i (1 ) <1+>122( )e(I)dZ,
4 : +o0 _ 8 z )2 T 14
p= 37rm4c56_1_73/ e_@(1er> <1+ 2)]4,0 (v) e(Z)dZT,
0
q_mA oo _ o (1, 7\
g=4mnm e ’fB/ o (o) (1+I) J1(v*) 9(1)dZ,
JO
where we called v = 7= /G and in the last equation we used the identity Jos(y) —

Ja1(v) = J2,1(77). Now, we can take A from (14); and replace it in (14); 3 4; we can also use
the identity v Jao(y) = 3 J21(7) and get

o —t (14 L) .
e e 5 (1) (1+ #)]2,2(7 Je(DdL 2
2= 2 S '
e +°°67%<1+ﬁ) Ja () 9(Z)dT !

9 ’ 7 \? (15
ﬂ_foﬂoe*@(um) ( mc2> o1 (v9) @(2)dT

fr=e B0 gy () p@yaz

Moreover, by using the identities J23(7) = Ja1(7) + J21(7), J20(7) = = Jao(7) + J22(7)
and (15)1, we see that (15), can be expressed in terms of the energy e as:

q e \2 d e 3 e 3

—=—%5) ——(—=) — = - . 1

n <mnc2) 7y (mncz) y(mncz) 72 (16)
Now (15); can be used to desume the Lagrange multiplier ¢ and substitute in (15); so

obtaining e = mnc?e(7y, 1). Therefore, we have changed variables from the Lagrange
multipliers A, Ag, ¢ to the physical variables 1, U*, -y (or p), g. The closure depends on the

function ¢(y, 1). There remains the Lagrange multipliers vg, up but these have already a
physical meaning because, as we will see in Section 3, v is the 4-force acting on an unitary
charge and jig can be considered its dual:

1 ue 1 ue
Ho = ’74’6“7 F*Y <’ 774)6047 G"7 - (17)

2. The Non Relativistic Limit

The same problem of the present article has been treated in [21] but following the
non-relativistic formalism; now the relativistic context is clearly best suited to describe it,
and this is the subject of the present article. However, as a validity test of the present model,
it is useful to see if its non-relativistic limit provides the classical model in [21]. This will be
proved in the present section.

So we start by taking the non-relativistic limit of Equations (6); and (7). To achieve
this goal we recall that from Equation (17) of [14] we have:
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VO ™ 00 _ /0 0o vk ok
lim —=F, lim —=F, Ilim Z(T —CV):G , lim V*=F%, (18)
c—+oo C c—+o00 C c—+oo c—+o00
) . 74y ) .
lim 2¢ (T —cV*) =G, lim T9=TH, lim () — WOl Yim pt = picles,
c——+400 c—-+00 c—>+400 c c—>+00
These properties suggest us to define A%, 1/, A;; and v; from
ho A°
A =A% Aoc, - =H, Ag=2MT(c,vy), (19)
1
where I' is the Lorentz factor I' = (1 - 2’—2) *. In this way from (7) with & = 0, we get:
hlo / Oabcr ; H° /
=i e, o tim =,
also in the present case. Similarly, from (6); with « = 0, we get:
h° Ve Clas 00 0) 40 T Fo
d(c>_ch +2(T —cV)2C+<C>d/\+dvz dyl—l—qr d6 =

0 0i 0i
- %dACl”erZ(TOO —cVO) d(ApT) + (TC> dA;+ %dul-+ %dyﬁu qrds,

where we have taken into account of F®° = 0, G% = 0 and of J* =q
non-relativistic limit of this expression is:

C
N . The

dh' = FdA“" - G g,y + FldA; + Didvi+ Bidyu; + qd 9,

such as in Equation (10); of [21].
We now want to take the non-relativistic limit of Equations (6); and (7) for & = k.

To this end, we first note that from the constraints (8) it follows pg = — £ )'\é‘l =L "Cvl ,
Vg = — V’Tvl Then, from (7) with « = k, we get:
Ao Ap A
h = hy )\k + 17k0cd Ve g + UkbOd vo iy + Ukch b Ve lg =
VG ° vV Goo N
ch vl 0!
= AR kO Py gy kU0 gy zT g — O T oy v Vzc -

1 1
— okt nOkcd T vy pe — ﬂkbOd To, % 1y — kaco T v ve VZU )
whose non relativistic limit is /' = 1/ v* + 170’“”1 e vy like in Equation (18) of [21] with
h3 = 1. (Note that from (19) we have Ay = 2 Aj; v but, by raising a latin index, the result
change sign for the present definition of the metric tensor g, = diag (1, -1, —1, —1) so
that A¥ = — 2 Aj; v, while in the classical context v% = vy).
Let us consider now (6) for « =k, i.e.,
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A = VEdA+ TR d g+ TH AN + FRdvg+ Fidvi+ GRd g+ GMdpu;+ JFdo =

. i . ol
— vk g Clas (Tko —cvk)dAo+ TH A, — cD¥d (— "’Cv) + FNdv— cB*d (— ”f’>+

+GK dp;+ Jkd 9 = VEdACIs 4 2¢ (Tko - cvk) d(AyT) + T d A, + Dkd (vivi) T Fhgy4

+B*d (yivi) +GNdy;+ qTo*do.

The non relativistic limit of this expression is

AW = FEgACs 4 GRLg () + TF d A, + Dkd (vivi> + Fhdy, + Bkd (yivi) + G du;+ gofdo,

1
_ G :)l ,
2¢c Vv 00 1

2
A+tc @ — \Clas _ Agc +2/\”C2 — )\Clas —Z)LIZCZI" —I—Z/\”CZ — )\Clas _2/\”C21~ <1 1 U) _

= )LCZHS — 2/\”C2 T

like in Equation (10); of [21]. We remark that here the presence of the terms D*d (v;0) +
Bkd (uiv') is due to the fact that in the classical context the Equations 9;B* = 0, oDf =g
constitute differential constraints for the field equations, while in the relativistic context it
is not possible to separate these differential constraints from the other equations without
losing manifest covariance. In any case we are able here to overcome this problem by using
constrained variables; but in this way the symmetric form of the field equations cannot be
obtained. Additionally, this problem has been here completely overcome by considering an
extended set of equations and of independent variables, which reduces to the previous one
only by choosing the initial values satisfying the constraints on the independent variables.

Regarding the right hand side of (1);, we note that this equation for 8 = i has
0;F 4 9;FX = g k! as non-relativistic limit and this is the same of Equation (1); supported
by (5); of [21]. The sum of Equation (1); multiplied by — ¢ and of (1), with 8 = 0 has to be
multiplied by 2 ¢ before to take its non relativistic limit. In this way we obtain Equation (1)3
of [21] if lim, 400 2ck® = —2gv; V' (here too the minus sign is due to the choice of the
metric tensor) and this is true because, from the constraint lllpu/3 = 0 and the decomposition
Ug =T (c, v;) we obtain exactly 2ck? = —2g0;v'.

We conclude this section by considering the dependence of ky on A and Gyp; we can
assume without loss of generality, that it depends on these variables as composite functions
of 5- /Goo and A + ¢ v/Gop. From (19) It follows that

c2

N~

(%

2

whose non relativistic limitis A" — Aj; 2.
2
<1 +4/1— ;’2)

This last one is the variable called I in [21].
Finally, we have Gy1 = (;40)2 + i, Gro = pgv® + p'vi, Gy = (1/0)2 + viv; whose non-

. . . ol

relativitic limits are p'p;, y'v;, v'v;, respectively, because, from the above found po = — =,
H l . LR . .

1) = — %, we have that the non relativitic limits of yg and vy are zero.

So also the dependence of i’ on the scalar variables found in [21] has been recovered
(There is only a change of sign from u'y;, p'v;, v'v; to —p'u;, —p'v;, —v'v; , due to the choice
of the metric tensor; however this does not effect the results).

3. Existence of a Supplementary Conservation Law

We will see here how, assuming the existence of an supplementary conservation law,
we find strong restrictions on the generality of the unknown constitutive functions.
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First we simply want to verify that (7) is a solution of (6); in the independent
variablesA, /'\,3, Vg, 1g, ¢ bound by Equation (8). From (8); follows )\5 d ;45 + yﬁ d )\5 =0
from which we infer Ag d b =—ubdr g which we will use in the third of the following steps:

AEA A&
dy“:ggdyﬁ:<— 5+ Gooﬁ)dyﬁ:—hgdyﬁ—cooylgd/\ﬁ. (20)

With similar passages, from (8), we obtain
pu
dv“:—hgdvﬁ— G—Oovﬁd)\ﬂ. (21)
Substituting (7) into (6); and using (20), (21), we get

81/7 GOO ayw GOO

K Ao dhy dhy
17069’}’(5\/%00 I/%Z,l5> d)\lB _|_ (,706975\/?00 V(S _ Aﬂéav,y> hgdl/ﬁ + <170¢91l17 F ‘u a]/w) h.B dV‘B

Ay Ay B Ay Ay ) B B
Y B G 2L Y B Ay — PR dvg — G R dug + [*d 9.
Goo Goo Goo Goo H P L 1t

dhy -, dhy -, Oy arp 5
AN AN+ G A0+ (2L AN g

= V%A + (T“ﬁ — F*7

This relation implies

d hy dhy
o _ Y0 o it
Vi= JdA J= 819 A
dh ah
T*B — par B wy 20 B o 90 haypB 0 Ay B
Goov + G G y+ 3 Goo AFA +hg 81/7600
(22)
pwdho Ay g are A Vg
aV“r Goo VG
A dh A dh
FaY hﬁ — La8B5 10 4y a0 0 hﬁ G~ h‘B abypp Mo Vg + A0 0 h‘B
T G T T Vw T
Now, we have
ay 1,B ay p /\’Y)US wp ay 1,B «p
AgF*V o, = Ay F -+ Coo = —AF*F, andalso AyG"7hy — A,G"P.
So, by contracting (22)4 5 with é—(‘)‘o, we get:
A dh oh A dh dh
ay 27 _ 9M0 pa 970 ay 27 _ 90 o 910

where in the second step we took into account that:

3 3o 3
Ay =0, aihlx - v,

dhg _ dhy . . Ohy
av7_8G12V + anzy - 81/7

and smularly, aho he, = aho . Hence Equation (22) simplifies to:
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dho

oy
(4 o [ 0
Vi=gx A =9 M
oh oh oh WP
afp 0 - 0 B 0 yayB ch'ytS 0
! I T T Fhogt? Voo e 3
A Y A Y
FIX’Y h/g: wfpé 0 )\tx 0 GIX’y h/S: abpp M0 0 Aa 0
TG T ey T T e T

Since Equation (24)4 5 contracted w1th g1ve (23), they can be replaced by their contrac-

tions with /¢, that is:
Y e MY Yo SV . R (25)
S Vo T VG !
Now, Equations (23) and (25) fully determine F*f and G*, while V*, |* and T*? are
determined by (24);_s.

In particular, from (24); we see that A* is parallel to V* = m n U*; therefore Equation (19)3
now becomes Ag = 2 A Ug with Ug = T (¢, v;) which ensures that v; is the 3-velocity of
the fluid.

From Equation (24); we see that J* = g U* with q = a 3 <\/§ h )

The Equation (25) can be contracted with 774¢5p T and give the above reported (17),
where the property 77¢¢p 17‘595‘/’% UTE = -2 h([;hf] = -2 h$ was used. The result shows the

physical meaning of the Lagrange multipliers i and vy by relating them to F*7, G*7 and U".
In particular from (17), by using (2) and Ug = T (c, v;), we obtain ji = T (ﬁ — TN 5)

and 7 =T (]:j + TA E). Together with jyU? = 0, usU? = 0, we thus obtain that vy is the
4-force acting on a unit charge and .y can be considered its dual.

4. An Extended Set of Field Equations with the Symmetric Hyperbolic Form

In the non-relativistic approach [21] we were able to find a set of field equations with
the symmetric hyperbolic form; this was possible because we separated the differential con-
straints from (1)3_5 and used them in this framework. In the current relativistic approach
this is not possible without losing the manifest covariance. So we adopt a different strategy
by considering an extended set of independent variables. Consequently, we will find the
expressions (31)3 4 for the tensors F*? and G*7, which are certainly more elegant than (9)4 5
and (17).

To this end, we define Go; = A* vy, Goa = A . In other words we leave out the
constraints (8) and we will see that considering them only as constraints on the initial
manifold, then they will be satisfied even outside it simply as a consequence of the field
equations.

With this in mind, let us introduce four-vectors:

A
W't = hoA* 4+ hyp® + hov®* + hg U“‘P'Y‘ST(POOWY}Q + G()lh/l“ + Gozhlza ,

(26)
with I’llla = l[]()/\a + l[)l}la + lpzl/a , h/za = GgA* + 91]40( + 0%,

where h;, ¢;, 6; are functions of A, ¢, Ggo, Go1, Goz, G11, G12, G22. We look for these scalar
coefficients and two additional ones X and Y such that:

Al pe I "
2 —Yg“ﬂ-f—G()]a /5) + Goo aVﬁ)

7

0 V,B)
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In the reference frame where A* = (1/Ggp, 0, 0, 0), u* = (yo, yl ,0,0),v" =
the components 33, 23, 13, 03 of the previous equations give:

(1/0, vl 2, 0),

Ohy o s o ks dhs o dky

X=h,Y=h
v > 9Gn d G " oG 9 Goy "9 Gp

We see, in particular, that i3 does not depend on i, and v,. From components 22, 12, 11 we
obtain:
dhy dhy i dhy dhy i Jdh

— , — , 2 f , = ’ = ; = . 27
d G2 0 dGxp 0 aGlz+ d Gy 0 dGxp 0 dGn 0 d Gy 0. @7

From these results we see that /1; and h; do not depend on Gi1, Gy and Gyp. Finally,
components 00, 01, 02 give:
dhy ohy dhy dhy dIn

hlltx:_i_ - o pe— 270 « ahZ

_70(
e 3Gy " T 9Gy | 1 2 v 9Gn" " 3GnY T ®

As a consequence of these results, we get:

Py a ho dH® dhly
=2\ 220 o g 7B v, +G + Goo

d g d g 18 1 Goo T 013#,3 Zous’

o™ oh o o hlx
_ [« 970 aB appsd 2

81//3 2A al/ﬁ] + hy 29 +h377 \/7‘11(5+G01 3 v (;Ozavl3 .

= G*P which are skew-

Now, we want that (ah’* = F*B and (a W

Inp ) Goo=0,Gop=0 Ivp ) Go1=0,Gp=0
symmetric. This is only possible if i1 = 0 and hy = 0. After that, (26) and (28) give:

3 ho 3 ho
9 la ~ G gy

Ag
W% = hoA® + hy 07 2y ys —
Ui \/Gi()o TH
The function /3 may depend on A, & and Gy but it is reasonable to simply assume that
h3 = 1. In this case (29), calculated in the physical case Gyp; = 0, Gpo = 0 provides the
above Equation (7).
The resulting field equations are (1)1 2 5 with

Got 5— (29)

ot _ g, o Pho o Pk

Vi= o= A~ Gouays — — G srn
IA  9A IND fa NI
oh'™ dh oh dh
T — — hoo™B i OO g agyopp _ %% g2
PR R Te ool gtatte =1 5 TV g
(30)
2 (G~ 210y Gy 0 s
9 Gooua 2 3Gyove) '
on'*  9hg 9%y 9%y
06_7:7 & - v
=% =3¢ Gmaﬂaya C2 3590,
while (1)3_4 are replaced by:
9% h 9% h
O | PP — Gy —=2— — G L
a( Olayaay}g Ozavaayﬁ J
(31)

2h ?h
g(ﬁ_ 0 _ 0 —
a“<G G‘”ayaavﬁ Gozavaavﬁ> 0,
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oh A oh A
with F¥ =2l 220 o papyp 20 gap —p Al 0 pagps D9 o
a]/l/g] T \/GOO 7 allﬁ] T \/GOO Ha

The last two of these equations are restrictions on the law linking the magnetic field in the
empty space and the electric field in materials: Without the imposition of a supplementary
conservation law, we would have that F “f and G*P are arbitrary skew-symmetric tensorial
functions of Vg and p % here they are determined except for the scalar function k.

We now prove the above property, namely that Gyp; = 0 and Gy, = 0 as long as they
are null in the initial manifold. To this end, we consider (31) contracted with Aﬁ, that s,

a azigommﬁ 9aGo1 — ai:goﬂﬁ Ap0aGoz = — Ap (a"‘FNﬁ +]ﬂ)+
+ Go1 Ap O (%) + G2 Ap0a (83;21[;1/3) ,

- aZig‘ng)&ﬁaaGM _ aiig()vﬁ)\ﬁ 9xGoz = — Mg 9uG™ + Goy A 0u (aiig%ﬁ) +
+ Go2 Ag O (aiigg/lg) '

If we calculate here the coefficients of 9,Gp1, da Goz and the right-hand members in Gy; = 0,
Gop = 0, it becomes:

Jh oh
256 i ( A% 9, Goy ) ( Ag (9.F*F + JP) )

A% 94 Gop Ap 0GP

GLL) 9 9ho
dGp dGx
and we will demonstrate in Section 7 (as a consequence of the hyperbolicity requirement)
that the coefficient matrix on the left has a positive determinant. From this fact it follows
that, if 8, A, Ag, fig, 7, is the solution of the non-extended set (1), corresponding to the
initial condition 8(0), A(0), Ag(0), #p(0), v(0), then 8, A, Ag, fig, Vg, Go1 = 0, Gop = O is
the solution of the extended set corresponding to the initial condition ©¢(0), A(0), Ag(0),
15(0),v5(0), Go1(0) = 0, Gp2(0) = 0 and this completes our proof.

5. Wave Speeds for the above Field Equations

We aim here to calculate the speeds of the propagation waves. The characteristic
equations corresponding to (30) and (31) are the following:

ah(] P a2h0 a2h0 _
"""d[MA Co S o 2 aravn] =Y
oh 1 doh oh
dlheo® 1 210 qayp L L agyepP _p2M p20
Pu [og =+ 3 Goo %Goon pVrHs — 1 3 in v FITh

32h0 azho
— ——— —_— /S u—
Z(GmaGooaszJrGozaGooaV)/\} 0

02 hy 92 hy (32)
== — G, =0,
000y 0901,

[ Ak A 92 hg 92 hy
Al 250 e 8y, G - =0,
Byﬁ] T v/ Goo 7 Olayaayﬁ °2au,xay,;

Pud %)\“— Go1

Pad

[ dhg s Ag
d |2 =2 0P Ty — Gy — Goz =0,
P 1 z I

dvg VGao
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Wlth q)ﬂé =Ny — %ga, é’ﬂ(é’[x - 1, nan“ - _1, gana - O,

and the Eigenvalues y corresponding to the Eigenvectors are the characteristic velocities.
Since in the physical case we have Gg; = 0, Ggp = 0, it is not restrictive to calculate
the coefficients of the differentials in Gp; = 0, Gop = 0; we will do this in the subsequent
calculations, even without explicitly saying it.
First of all, we note that an Eigenvalue is:

uo_n*A. 0y
C = —5“)\“ , le, @"Ay=0. (33)
In fact, for every pair of values d A, d & constrained only by:

dhy dhy , .

1 AdA+ = 59 dv =0,
the derivatives of this relation also hold with respect to A, Goy, G11, G12, G2o, ¥; this fact
makes it easy to verify that dA, dd, dA* = 0, du* = 0, dv* = 0 is an Eigenvector of the
system (32) corresponding to the Eigenvalue (33). This Eigenvalue has at least multiplicity
1. In particular cases its multiplicity can be greater than 1. For example,

If @uu* =0, pv* =0, 17"‘4’75%/\4,;171/5 # 0, therefore, for any value ofd A, d 9, X

constrained only by dho A4+ 250 9 ho d hy

31 59 dl9+2XGooa

=0,
we get an Eigenvector with d A* = X A%, du* = 0, dv* = 0. So in this case the Eigenvalue
@Ay = 0 has multiplicity 2.

We note that this Eigenvalue is present also without the electromagnetic field (and, con-
sequently, also without the variable ¢); in fact, in this case, we have only the Equation (32); »
which now reduce to:

dhg X g (9ho dhy -
a/\qo“d}\ =0, ¢ aAd/\+28GOOA dAy ) =0,
because ¢*A, = 0. So, now we have the 5 unknowns subject only to the two conditions
Pad A =0, %h)f’ dA+25 ol Gog AT d Ay = 0. It follows that the Eigenvalue (33) has multiplicity
3 in this case.

We note also that, in the reference frame where & = (1, 0, 0, 0) and with the decom-
position A* = \/Ggo I'(v) (1 , %’) , the Eigenvalue (33) becomes y = 7 - i, as in the classical
case [21].

For the research of other wave velocities, it is preferred for simplicity to consider the
particular case

ho = hy(A, ¢, Goo) + (#0 G11 +€0Gn2), (34)

N
jh
)

Go

with pp and €g constants. This case is important because, by executing its non relativistic
limit as in Section 2, we obtain that the classical expression of i’ which corresponds to
it is equal to that in Equation (29) of [21] with i3 = 1, h* = lim¢ {0 ¥ S’OO hj. So we can
recognize that (34) is the expression of /iy in an homogeneous and isotropic media. With
this expression, Equation (32) becomes:
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ohy o) _ Ihy ,a _
(P“d(a/\)‘) 0, (P“d(aﬂA> 0,

* C
oPd [ho + 2vCos (1o G11 + €0 Gzz)} +
a)p
e A ]
Goo «/Go

dhg
9 Goo 2\/

+ pad |2 ”‘¢”§hﬁvw(s

(Ho Gi1+ € Gpn) —=—

35
c o B . B AP (35)
,\/?0004074 P +egvtv )] FG (1o pap™ d Go1 + €9 @av™ d Gp) =0,

A
(pad{z‘:”%[wﬁuq“"’ﬂ 9 1/7] I WP dGy =0,

v Goo v Goo v Goo
2ce A ce
e[ Tog A ] = s o am .

Returning to the Eigenvalue ¢*A, = 0, we now see that (35); » are equivalent to ¢, d A* = 0,
(35)4,5 contracted by ¢g give d Go1 = 0,d Gop = 0 (It is not possible that (pl3 ¢p = 0, otherwise
we would have n, = % Ca followed by —1 = (%)2). After that, Equation (35), 5 contracted
by Ag give the expressions of ¢, d u* and of ¢, dv*, respectively. The same equations,
contracted by h% give the expressions of ] d v, and of 1) d ju,, respectively. Using also the
result d Go; = 0,d G = 0, we obtain the following expressions:

2ce AP
dpP = {(4’0(1’ ) { © (@ev )P sy gvene‘”%swﬂ - GOO#"} d Ay,

2¢ppGoo

“1[—2¢ ; 1 ' AP
dvf = {(%(P") {TO”O (9en )" P 259y + 5 s qvene"‘”/\aw(f)ﬁ} " Goo W} dMy.

In the calculations we have used the identies reported here in the Appendix A. It now
remains to replace these partial results in (35)3, which now reduces to:

Gi1 +€0G
ﬁd{h*+c7yo 170 22}7 { "“PWhﬁv + 5+evv5]
% 0 2\/6700 \/@’7 YHs \/7 <V0]’l I 0 )
This is equivalent to its contractions with Ag, ¢ and with the tensor h pt Pp (Plp , thatis
£ ay b wyp -
¢am(yoyy +eov1/)d/\ﬁ 0, (36)

" Gi11+€G Pa @ 1
R el pop? {@”awhﬁ””‘” o (sl +eov) | <o,

PP
O B

We have taken into account here that ¢, 17‘)“1’"Y‘5hgl/7 #s = 0 because in the reference frame ©

with % =(1,0,0,0), 9. = (0, ¢1, 0, 0) all indices of 17“‘/’7‘5 are different from 0. By
calculating all the differentials in (36)3 and, after that, by substituting there the previous
expressions of d yﬁ, dvP, it becomes

PpP
_<h’% q)ﬁq)“’)% (yoy # ot et Vﬁ)\/qd/\ +2GOOF‘Pa’7¢“¢ﬁV¢Vﬁh7d/\7:O (37)

It is easier to demonstrate the equivalence of (36)3 and (37) in the above mentioned reference
frame X.. The conclusions of these calculations are as follows:
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If U‘P“‘Pﬁ/\¢goav¢yﬁ £ 0, (@ap®)* + (@ap®)* # 0, hence the Eigenvalue ¢,A* = 0 has
multiplicity 1. Indeed, we can infer hord A from (37) and replace in (36); which now
becomes

-1 A

=22 (VPN yuv S——dA, =0 with

(™ Agwai) 8 Jedia 38)
PpPo / ,

S= (HO Pl 1P + € qvw“vﬁ) <hﬁ + (Pﬁqﬂ,) (Vo Pur k™ 1 + €0 P 1/9>.

We now have S # 0, otherwise in the above frame ¥ we would have g @ u*u? +
€0 Pav™v? = 0, po Pup® 1> + €9 Pav*v® = 0 which is a system in the 2 unknowns o @ *

and €y ¢,v* whose determinant of the coefficients is p?v> — u3v2 = —(1/Goo) -
NP VP Ay @avyip # 0. Then the system would give ¢, u* = 0 and ¢,v* = 0 against the

hypothesis. So our equation gives %d A, = 0 which, replaced in (37) gives d A, = 0.

So there remain the free unknowns d A, d ¢ constrained by (36),.

If 9P Appavypip # 0, @ap® = 0, pup® = 0, then the Eigenvalue ¢,A% = 0 has
multiplicity 2. Indeed, we can repeat the the previous steps and get (38). However,
now S = 0 so that there remain the free unknowns d A, 49, A7 d A, constrained only
by (36),.

If n9*YPAp@uvypp = 0, (h% jﬁg¢> (1o @an®uP + €9 pav*vP) # 0, then the Eigen-
value ¢p,A* = 0 has multiplicity 2. Indeed, in this case (37) returns A7 d A, = 0; then
the 6 free unknowns remain d A, d 9, d A, constrained only by the scalar conditions
)L'yd)t,y =0, qud/\ry =0, (36)12

If PP Ay avppip = 0, (hg f:ﬁzlp) (1o pup™ 1P + €9 pov™vP) = 0, hence the Eigen-
value p,A* = 0 has multiplicity 4. Indeed, in this case (37) and (36); are identities;
then the 6 free unknowns remain d A, d ¢, d A, costrained only by the scalar conditions
¢7d Ay = 0and (36),. We note that this is the situation if the electromagnetic field is
not present, except that we do not have the free unknown d ¢ so that the multiplicity
is 3.

For other Eigenvalues, we first note that h“ﬁ(pﬁ # 0, otherwise we would have

P = é\—;/\ﬁgolg from which it follows —1 + Z—zz = @up" = G%)O(Aﬁ(pﬁ)z > 0 against the

fact that y? < ¢?. This fact allows us to define

H* — B _ (hqu)’Y) (hﬁéqoé)
h* @ ¢y

4

which is the projector into the 2-dimensional subspace orthogonal to A, and to ¢,. After
that, any equation X = 0 is equivalent to the system /\ﬁX/S =0, (pﬁXﬁ =0, HaﬁXﬁ =0.

By contracting (35)45 with Ag, ¢, Hgg, they become:
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ot = (CVO Gooﬂamls% héw Ap— éOO#&) s, 9p9"d G =0,

Haﬁ%{GOO\/”LMyﬁmm + L‘O (A“dy5+yﬁdA“_y sz)

,7“4775 hé apyp

dv } =0,
\/Goo i

(39)
1 AgoP
(P“dva B <C€o Goo UMPW(POL hﬁ; Ho Aﬁ - Cﬁ;OO #5> s (Pﬁ(Pﬁd co =00

AYPAT AN, 4 S0 (pagyP B gre o g AP
““"“[coom Y WGTO( v v aar)

A
aprByd M g papvp P g } =0.
o ? VGw 1 v Goo i

By using the identity:

h9(5 A /\
HY @, n*¢7B), = {hﬂ S (_ 4 P > tﬁ} VBN = —p 10N,
B P 1] ¢ B h],”/q)‘u Py gﬁlp GOO QT Pal ¢ = ~Pul] ¢

from Equation (39); ¢ we desume:
1
Hid P = (ppAY) " W @ d Ay H 4P + gup HE d AP + i 17“4’79% Ap dvy}

1
¢ po Goo

Hgnmm vy dAs,
(40)

1 1
Hg dvP = (pypA?) ! W ¢, d /'\VHg VP + q)av”‘Hg dAP — aiy”‘me% Apd y,y} +

HG wdyp As .
Ceo Gog P Ag oy d As

Now in (40); the term 7% g, Ay d 1, can be written as — 7, A¢H;Y, d yi, and we can
use H;Y, d .y from (40)y; in this way (40), becomes:

W oupy  Goo -1
(1 0t ) = o) 0t 1 g

1 ! !
+ HOp Ay dAs+ ——— %70 A | (WY 0, d A Hoig uP + @uu*H. g d AP| —
ceg Goo pll apy @A ceo (qow)\lp)Z U Pa ¢[( P V) ypH Pup Liyp }

1
c2 e po Goo (@ypAY)

10 9o AgHyg 1" 7PAq vy d Ay

-2

1
Here the underlined terms are equal to —— <1 - 5
PyAY c? € po

)V[“r d A, 7 s HY,

-1 ¢"ou

and the remaining terms are equal to 5
€0 (pypA¥)

72PNy Hg ppd Ay,
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as it can be seen more easily in the reference frame > where \/% =(1,0,0,0), ¢x =
(90, 91,0, 0). Using these properties, the above result can be written as:
Woupy G
0 nPv 00 .
Hﬁdvﬁ<1 z/zzczey>_
(ppA¥)” €0 to (41)

A Thb = —

-2 1 ) 5 o 1 9oy 0
— 2 (1 Vo da g HM — PP by B L d A
(Pllf/\w < C2 €0 Ho ['Y V] ' ce (q)w/\l/})2 U ® ‘P]lﬁ Y

Now let us look for two coefficients X and Y and see if d u* = X ¢*, dv* =Y ¢*, dA =0,
d9 =0,dA* = 0is a solution of the system in the case ¢* @, = 0. Substituting in (35) we
obtain that they are identically satisfied. So X and Y remain free unknowns and we can say
that ¢* ¢, = 0 gives Eigenvalues with multiplicity 2; these Eigenvalues are 4 = £c.

6. The Vlasov Equation

It is useful to compare some of the present results with those of refs. [22-25] which were
obtained in the context of monoatomic gases. They considered the Vlasov Equation [22]
multiplied by the rest particle mass, i.e.,

[
Pronf - 2nc

171x/575 Gyﬁ P aa;;fﬁ =0, (42)
(We have only substituted I for the electron charge and — 5 7*f7° G to their F*f because
their article dealt with the effects of Maxwell’s equations on matter but only as an external
field; this fact allowed them to use Maxwell equations in the empty space where F*# and
G*P are each the dual of the other; this is not true in the present more general context
and we have to use the appropriate field). Now, for polyatomic gases (see [14,26]), the
distribution function is:

foe R [mAt (1 5 ) pia] (43)

However, (42) has been derived in the context of monoatomic gases where (43) reduces to
- L
f=e 1= g [+ M"}, so that (42) becomes:

p ouf + f ZnZkB /\ﬁ ﬂ“ﬁwGw pa = 0. (44)

It is reasonable (as we will see later) to assume (44) also for polyatomic gases, but with f
given by (43).

If we multiply (44) by ¢ ¢(Z) and then integrate in d Pd Z, we get:
+ o0

Ap 1G5 Vg = 0, with v;\’g:mc/w Fpto(T)dPdT.
JO

. q
Wit 35

However, Ag is parallel to Ug (A = + ) so that this equation reduces to d,V}; = 0, i.e., the
usual mass conservation law.
If we multiply (44) by pf ¢ (1 + #) ¢(Z) and then integrate in d P d Z, we obtain:

ZnZkB A ™Gy Ty, with Thf = C/‘S / frtpP <1+ ) ¢(I)dPdT, (45)

as in [23-25]. The right hand side of Equation (45) is:

ZnZZ T Uy ”ﬁﬂwc qc Uy ”ﬁywcw‘ = ‘71’5 ,
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where in the last step we used (17),. So we found the right hand side of (1);. This confirms
the above choice of Equation (44) together with (43). If we had chosen (42) together
with (43), then the right-hand side of Equation (45) was Bg q vP with

0 "5 (1 + %) ¢(Z)d1

T e(T)dT

In this case the right hand side of Equation (45) is not the Lorentz force, but only propor-
tional to it through the coefficient By which is 1 for monoatomic gases and also in the non
relativistic limit of polyatomic gases.

Bg =

7. The Hyperbolicity Requirement

In the previous sections we have seen how the balance equations consisting of the
Euler Equations for the material and the Maxwell Equations in that material can be written
in symmetrical form. To be sure that this set of equations is hyperbolic, it remains to be seen
whether it also satisfies the convexity of h™* with respect to its variables (see Section 1.2)
Using the multi-index notation X4 to denote the Lagrange multipliers ¢, A, Ag, g, vg, this
means that the quadratic form

82 e
9XA0Xp

Ix
dXAdXB:Aad<ah>dXA,

Q= Ay X,

is negative definite in the variables d X 4. Let us impose this condition when d X4 = 0 except
for d pg, dvg and use (29). Moreover, since Gg; and Gp, have no physical meaning and
were introduced here only as a mathematical tool to have a symmetric system of equations,
we can assume without loss of generality that iy does not depend on Gy and G, and,
furthermore, that Gy = h“ﬁ‘uaylg, Gpp = h"‘ﬁyavﬁ, Gy = h“ﬁvavlg, with h*f = — g‘xﬁ + %{;\Oﬁ
The second term in the expression (29) of h'* gives no contribution because it is orthogonal
to A4 and in the above expression of Q there is a contraction with A,. The first term in the
expression (29) of h'* is hpA* and it gives to Q the contribution

dhy dhy B
B dhy w6 . 9ho B dhy B d hy B
= Gy [d(zacny,yh +8G v h"P ) dpg + d aGqu +2aG v TP ) dvg |

Goo

12 22
By performing the calculations in the reference frame where A* = (A%, 0,0,0), u* =
(yo , yl ,0,0),v* = (%, v, 1?2, 0), we obtain that this contribution becomes equal to
Q1 + Qy with

- 3 . 3k o .
Q1 =—Gqo [2 FYem (d‘ug,) +2 3G (d ]/13)(d1/3) +2 3G (dl/g,) ,
Q2 = Goo {011 (dp1)® +2appd pydvy +2a15d py d o + 2a14d py d vy + az (dvy)*+
+2ay3d vy d py + 2004 d vy d vy + a3 (d po)* + 2030 d po d vy + agy (d Vz)z} ,
with

9% hy 2 ?hy 11, 9*h 2 d ho
] =4—- +4 v+ 1) — 2 ,
N aGn)? (k1) 9G119Gp" 3(Gr2)? () dGn
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a +4———u'v +2—— (1) — —,
2 aGnaGlz( ) 9G119Gan " a(Glz)ZF 0GndGr d G1z
Pho 1o, Pho g, Phy 5 Phy 1,
a —_— v, Ay =4 +2 -t vh?,
BT 961G 3(Gpp)? SR TeRT I 9G120G2
1 — 4 9% hy () + 4 9% hy 1,1 0 (uy)? -2 dho
2 3(Gn)® 9G29Grz' 3(Gpp)? # 090Gy’
ho 1o, ho 1o Phy 1, Phy 1o
a ve, =4 v+ 2 —m—
2 796ndGn a( 12)2V 2 3 (Gn)? 961296 "
) Pho_ 2y Pho_ 2 Ol
® (Go)? 2 G~ T anza G2 G’
I 9% hy (u 2 Iy
T (Gn)? 5 090Gy

Finally, we compute the contribution to Q of the last two terms in the expression (29) of h'*;
itis

0 dhy dhy
—d [ayﬁ (2(G01) FTen + Go1Goz 3G, )

d dhy dhy
—d {ayg (Z(Goz) ﬁ + Go1Go2 5 =— 3G )
Now, we want to calculate the coefficients of the differentials in Gy; = 0, Ggo = 0; then the

terms of the expression above where (Go1)?, Go1Goz, (Ggz)? are not derivated with respect
to pp or vg give zero contribution. Consequently, of the above quadratic form remains

d > dhy 0 hy
dpg— d[ ﬁ( (Gor)? FYen +G01GozaG )]d Vg

dhy dh
dpp — d{ ﬁ((Goz)JerGoz 0

dl/‘g.

2G acu)

oh
_ p 9o
d<4<;01A .

3 ho dho
+G2/\ﬁaG)dy/5 d(GOlAﬁaG )duﬁ

doh oh dhy
— g 20 — pLro g Lm0
d(Goz/\ )d“l/l‘g d(4G02)\ aG22+G01/\ )dl/ﬁ

d G12 9 G12

Here too the terms in which Gy; and Gy are not differentiated give the zero contribution
zero and, moreover, AP d ug = d Goy, A4 vg = d Gpp. So the contribution to Q of the last
two terms in the expression (29) of h'* is

dh dh oh
Q3= — BGO (dGo)* — BGO (d Ga)? —4ﬁdco1dc;ozl

and Q = Q1 + Qy + Q3. Since they depend on distinct variables, each of them must be
negative defined. In particular, this is true for Q; if and only if

5 2hy Ay
aho BGH aG]z
——>0 , >0, (46)
dGyy Ak 5 ko

dG1p 9 G

and we have used the second of these properties in the previous sections.
We see that also Q3 is negative defined as a consequence of (46). Consequently, our
choice to use an extended set of independent variables did not imply further conditions.



Mathematics 2022, 10, 110 19 of 22

As for Qy, it is negative defined if the fourth-order matrix (a;;) is negative defined.
Although this condition is mathematically a bit complex, we have seen that it is equivalent
to saying that the function h is convex function of y, and v,.

To date, we have imposed that Q is negative defined, but only when d X4 = 0 except
for d g, dvg. This has yielded some important results; they are useful for dealing more
easily with the general case and we find, after many but direct calculations, that

a ho 0 I’l() d hO
Q= Q1+Q2+Q3+Gooa d( ) +2G008Aal9d)\dl9+2\/coo(ZGOOa/\aG +

02 h
1 0 2
+a/\>d/\d)\0+2Goo (ZBABGHV +8/\8G12V )d/\dyl +2G0078A8G vedAdux+

92 hy 1 92 hy 9% hy 5 9% hy
a/\angv 319G U )d)tdl/l +4G0078A6G221/ d/\dU2+Gooal92 do )

+2+/Goo (ZGOOaﬁBG —i—al9>dl9d)t0+2G00 <28198G11y +8198G12V dddu+
2 2
Pho i Ph

0099 Gy 000Gy

+2Gqo <2

9%h
+2G00szdﬁd}lz+2Goo (2 ]/ll> dﬁdl/l—‘—

02 ho

405536,

v2d9dv, +2G 2Pl g 43900 d (Ag)?
2 00 8198(600)2 00 3 Goo 0

32 hy 1 92 hy d hy dhy
—2}111/201/\011)\3—2@[<48G003G11” +26G008G12 >GOO+28GV +3G12U].

~dAgdur — 24/ Gyo —_— —I-Zﬂ 9 ho v+ 9 ho dAgdv
04 00 ac;ooac;22 aGOOaGu” 3G acﬂ 0411
d hy
‘ZVG0< mc T )V Ahod e
S 9% hy dho
—4 GOO( WG + aG >V d}\odV2+

d hy d hy 5 d hy 5 d hy 2
[ 23G00 G00+2aG11(141) +23G22(V1) +28G12V1V1 d (A1) +

dho

+2 2ﬂvl+% vpdAidAy —2vpdAdyuz +2|— ——
d Goo

dGp 3G
dhy

+2r1dAyd s +2u1dAydvs —2 aG

Good()tg,) +21/2d)\3d]41 *21/1&1/\35[]/[2 *2]41&1/\35[1/2,
where Q1, Q2, Q3 have the above expressions.

In conclusion, we see that the function hy is not arbitrary but must satisfy the condi-
tions (46) (which were useful at the end of Section 4), it must be a convex function of i,
and v,, and the above expression of Q must be negative defined.

As a simple case, let us consider that of a homogeneous and isotropic medium, that is,
the expression (12). We have already seen that the last term in this equation is a convex
function; so it remains to be seen that the first 2 terms also give a convex contribution. So,
let us consider

A
apys P
VG T

c ce A%
i (e o)
00
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In the corresponding expression of Q we can calculate the coefficients of the differentials in
u* = 0,v* = 0 (for the hypothesis of a weak electromagnetic field), so that there remains

Q=cuo @dyﬁdyﬁ + ceg @duﬁdvﬁ <0.
The reason behind this sign is that d u d pp = dpadpg ¢ = —du,d Mg WP + %.
However, Ud jiy = d (U* py) — p*dU, = — u*d U,. Since we are calculating the co-
efficients of the differentials in u* = 0, v* = 0, it follows U*d i, = 0 and d ufd Mg =
—dpgdyg h*f < 0. The same thing can be said for d vf d vg thus completing the proof of
the convexity.

8. Conclusions

We found a restriction on the law linking the electromagnetic tensors F*f and G*F to
the 4-force v and its dual pg (which are some components of F*f and G*P). Now these
skew-symmetric tensors are determined except for the scalar function k. This result was
achieved by imposing a supplementary conservation law. This further law also made it
possible to globally obtain a symmetric system of partial differential equations which is
also hyperbolic if i satisfies the convexity condition. Furthermore, the non-relativistic
limit of the present results gives those already known in the literature that have been
derived directly in the non-relativistic context. The present model can be used in a future
article to treat the case where dissipative effects are present, i.e., not limited to Euler
Equations for the material but with further balance equations. Furthermore, it can be
implemented considering also multi-component gas mixtures such as the one considered
in [27]. Regarding this last article, it must be said that Maxwell’s Equations were not
imposed at the beginning but obtained at the end as a result; unfortunately, they are not
Maxwell’s Equations in matter, but only those in empty space. So also in this respect further
investigation is needed.
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Appendix A. Identies Holding for the 4-Dimensional Levi-Civita Symbol

The 4-dimensional Levi-Civita symbol is defined as

1 if aBfyd isaneven permutationof 0123
n*% =<8 1 if «Bys isanodd permutation of 0123 .
0 if aByd isnotapermutationof 0123

Now, we have that

o123 = 1"P7°8u0 8p1 82 853 = — 11" 2.
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It follows that 77,5, = — 77, ie.,
—1 if aBfyd isaneven permutationof 0123
Napys = 1 if aByé isanodd permutationof 0123 .
0 if aByd isnotapermutationof 0123
We now want to prove the following identity
A AY
wpBo ¢ —_9 h[“ h‘B] (Al)
%) .
T Vow Mee T T

In fact, in the reference frame where \//\T% =(1,0,0, 0), the left hand side of (A1) equals

1% 006 = 1" oys = —2 h* hﬁ] .

To prove the last step, we note that both sides are skew-symmetric with respect to a5 and
with respect to vy; then just prove the result for af = 12 and vy = 12. In this case the
above relationship becomes

P00 =~ + hihy = —1

and this is an identity for the above.
Another identity which has been used in the main text of this article is the following

A A
apps b VIR0 = o pbla Bl 2V (A2)
T T T VGoo

To prove it, we note that its left hand side can be written as

— e ﬁ( i) (=85) (= 88) oy =

ﬂ“"’ﬁ"yr SHEHS s (— 87 )ve(— gl )Y =

5 A ’ A0
. , P v 0
170( ¢13 \/Gihz hﬁ,h(;/ 771//#],}/5 hg Ve <hz o (;0()) hlp .

/ ! st . . .
However, we have 17,1,/5 Iy h¥9hY hd = 0; so we can continue the previous steps and find

!

)\ / 5! )\ / )\V 1
,7“47135\/?‘/’7% Moo AR 96 \/Lh B 5/ Mv'yy's e v JCos Ayh¥? JCoo =
- _ 0‘47!357‘/’ hV’ € L/\ Lo I«
! Ve et T G M Vew
v 1
— pagpe 29 sl Ve Aph¥? = 2nl hﬁ] B Ve A RV —
=1 /7G00 771/]1/ Y6 ﬁGO v ﬁGO GOO
A
— —onflepflyep, —— —opfleyBl 2L
¢ ! \/Goo v Goo

where in the step marked with = we changed the order of the indexes v'1 and in the step
marked with = we used (A1). This completes our proof.
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