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Abstract: Maxwell’s equations in materials are studied jointly with Euler equations using new
knowledge recently appeared in the literature for polyatomic gases. For this purpose, a supplementary
conservation law is imposed; one of the results is a restriction on the law linking the magnetic field in
empty space and the electric field in materials to the densities of the 4-Lorentz force να and its dual
µα: These are the derivatives of a scalar function with respect to να and µα, respectively. Obviously,
two of Maxwell’s equations are not evolutive (Gauss’s magnetic and electric laws); to simplify
this mathematical problem, a new symmetric hyperbolic set of equations is here presented which
uses unconstrained variables and the solutions of the new set of equations, with initial conditions
satisfying the constraints, restore the previous constrained set. This is also useful because it allows to
maintain an overt covariance that would be lost if the constraints were considered from the beginning.
This is also useful because in this way the whole set of equations becomes a symmetric hyperbolic
system as usually in Extended Thermodynamics.

Keywords: Maxwell’s equations; Extended Thermodynamics; polyatomic gases

1. Introduction

Up to now it has been shown that Maxwell’s Equations are compatible with a supple-
mentary conservation law [1]; but this property was demonstrated only in the case of the
empty space. Here we want to improve this result by applying it also in the case in which
there is an interaction with a polyatomic gas. Now Maxwell’s equations in materials must
necessarily be coupled with the balance equations of this material and we begin to couple
them with the Euler equations for polyatomic gases; hence the whole set of equations is:

∂αVα = 0 , ∂αTαβ = q kβ , ∂αFαβ = −Jβ , ∂αGαβ = 0 , ∂α Jα = 0 , (1)

where Uβ = 1
m n Vβ, m is the particle mass, n = 1

m c

√
VβVβ and c is the speed of light (hence

Vα = m n Uα and UβUβ = c2 follow). Furthermore, Tαβ is the energy momentum tensor,
q is the charge density, q kβ = q 1

2 ηβεαγ Uε
c Gαγ is the Lorentz 4-force, Jβ is the free current

density and, in any fixed reference frame, the tensors Fαβ and Gαβ can be decomposed
as follows:

Fαβ =


0 cD1 cD2 cD3

−cD1 0 H3 −H2

−cD2 −H3 0 H1

−cD3 H2 −H1 0

 , Gαβ =


0 cB1 cB2 cB3

−cB1 0 −E3 E2

−cB2 E3 0 −E1

−cB3 −E2 E1 0

 , (2)

For references on this subject, see for example [2–7] which contain only marginally the
results of the present article (for example, Maxwell equations are not coupled with the
equations for the material), or belong to another context such as general relativity, quantistic
mechanics or the use of a Lagrangian function.
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The Equation (1)1,2 are Euler’s equations and, when Maxwell’s equations are not
present, Tαβ has the form

Tαβ =
e
c2 UαUβ + p hαβ with hαβ = −gαβ +

1
c2 UαUβ , (3)

where e is the energy, p is the pressure and hαβ is the projector into the 3-dimensional
subspace orthogonal to Uα. Furthermore, e and p are constitutive functions of the absolute
temperature T.

Now in the system (1) there are 14 independent equations, while the tensors that
appear in it have 30 independent components; therefore only a part of these components
can be assumed as independent variables. It follows that it is necessary to express a part
of these components as functions of the rest; they are called constitutive functions and
“the closure problem” deals with how to find them. To this end, we adopt well-known
procedures which we now describe.

1.1. The Closure Problem in Extended Thermodynamics

As usual in Extended Thermodynamics ( see, for example [8–11]), restrictions on these
functions can be found by imposing the Entropy Principle which requires the existence
of the entropy-entropy flux 4-vector hα and of the entropy production Σ such that the
following supplementary equation holds for each solution of the system (1)1,2:

∂αhα = Σ ≥ 0 . (4)

This non-negative entropy production requirement is a binding condition because it must
hold only for each solution of the system (1)1,2. Its exploitation becomes easier if we use
Liu’s Theorem [12]; he showed that the requirement (4) for all solutions of the generic
system ∂αFαA = IA is equivalent to assuming the existence of Lagrange multipliers λA
such that the condition

∂αhα − λA ∂α FαA = 0 , Σ = λA IA ≥ 0 ,

holds for every value (no more constrained) of the independent variables .
(5)

Subsequently, Dreyer in [13] introduced in the kinetic context the so-called Maximum
Entropy Principle (MEP), i.e., to require that the generalized entropy

ρ s = h = hαUα = −kBc Uα

∫
<3

∫ +∞

0
f ln f pαφ(I) d~P d I

(with kB the Boltzmann constant) has a maximum under the constraints ∂αFαA = IA. This
variational problem allows to find the expression of the distribution function f and the
above λA are the associated Lagrange multipliers. In effect Dreyer worked on monoatomic
gases, while the one above is the generalization of his functional to polyatomic gases, as
reported in [14], page 427. However, we do not report further details on this aspect because
they are not necessary for this article. We have said the above only to give a historical
justification for the name “Lagrange multipliers” and because they will be needed when
the present results will be updated to include dissipative phenomena.

Other important articles are [15–17] where it was found that:

• Equation (5)1 can be written as d hα − λA d FαA = 0 ,
• The function h′α (which they call 4-potential) can be defined by h′α = − hα + λA FαA

so that it follows d h′α = FαA d λA,
• If we change independent variables, from the original ones to the Lagrange multi-

pliers λA, then we have FαA = ∂ h′α
∂ λA

and the field equations ∂αFαA = IA become
∂2 h′α

∂ λA ∂ λB
∂αλB = IA. These equations are evidently symmetric so that, for their hyper-
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bolicity in the time-like constant congruence ξα, it will be sufficient that the function
ξαh′α is a convex function of the variables λA (Convexity requirement).

This methodology allows to express all the unknown functions present in the field
equations in terms of the only function h′α. Then you have to do the inverse of the afore-
mentioned change of variables, from the Lagramge multipliers to the physical variables to
have everything expressed in terms of the latter.

1.2. Application of the above Procedure to the Current Problem

Now, we want to apply this methodology to our problem. We therefore impose the
existence of the supplementary conservation law (4) for all field Equation (1). Now, when
Maxwell’s equations are not present, this is surely the Entropy Principle; for Maxwell’s
equations there is a discussion among researchers on how to consider (4): still the entropy
principle or an equation for energy? We do not want to express an opinion on this, so we
simply call it a “supplementary conservation law”, as in other articles in the literature. In
fact, for what follows, it is not necessary to give it a precise name; we just want to take
advantage of all its fine mathematical properties that we have described above and others
present in the literature, such as the well-posedness of the Cauchy problem, the smooth
dependence on initial values and so on.

So in our case we have the existence of 4-potential h′α and the Lagrange multipliers
which in our case we call λ, λβ, νβ, µβ, ϑ. In this way, we have:

d h′α = Vα d λ + Tαβ d λβ + Fαβ d νβ + Gαβ d µβ + Jα d ϑ , Σ = q kβ λβ − Jβ νβ ≥ 0 . (6)

We will see in Sections 3 and 4 that we get the following expression for h′α:

h′α = h0 λα + ηαβγδ
λβ√
G00

νγµδ , (7)

where ηαβγδ is the 4-dimensional Levi-Civita symbol, G00 = λβλβ and h0 is a function
of G00, G11 = µαµα, G12 = µανα, G22 = νανα, ϑ. We assume that µβ, νβ are not free but
constrained by:

λαµα = 0 , λανα = 0 , (8)

otherwise the number of independent equations would not equal the number of indepen-
dent variables. We will also find that Jβ is parallel to λβ (see (24)2) and kβ = νβ (see last 3
lines of Section 3, below), so that Equation (6)2 is satisfied with Σ = 0.

So we only need to know a scalar function h0(λ, G00, G11, G12, G22, ϑ) to close the
whole system. Its expression depends on the material that is considered and characterizes it.
For example, we may define hM

0 = h0(λ, G00, 0, 0, 0, 0) and h̃0 = h0(λ, G00, G11, G12, G22, ϑ)
− hM

0 and (6) will give:

Vα = Vα
M +

∂ h̃0

∂ λ
λα , Jα =

(
∂ hM

0
∂ ϑ

+
∂ h̃0

∂ ϑ

)
λα ,

Tαβ = Tαβ
M + 2

∂ h̃0

∂ G00
λαλβ + h̃0 gαβ − ∂ h̃0

∂ να
νβ − ∂ h̃0

∂ µα
µβ − ηαθγδ hβ

θ√
G00

νγµδ ,

Fαγ hβ
γ = ηαθβδ λθ√

G00
µδ , Gαγ hβ

γ = ηαθψβ λθ√
G00

νψ .

(9)

where

Vα
M =

∂ hM
0

∂ λ
, Tαβ

M = 2
∂ hM

0
∂ G00

λαλβ + hM
0 gαβ . (10)
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(see Equation (24) of Section 3) These expressions of Vα
M and Tαβ

M are those obtained in
the absence of the electromagnetic field and in Section 4 of [14] it was proved that for
polyatomic gases they are (3) with:

Vα
M = ρ Uα , p =

kBc
m

ρ√
G00

, e = ρ c2

∫ +∞
0 J∗2,2

(
1 + I

m c2

)
ϕ(I) d I∫ +∞

0 J∗2,1 ϕ(I) d I

Jm,n(γ) =
∫ +∞

0
e− γ cosh s sinhm s coshn s d s , J∗m,n = Jm,n

[
γ

(
1 +

I
m c2

)]
,

γ =
m c
kB

√
G00 .

(11)

Here I indicates the internal energy of the molecule, due to its rotational and vibrational
modes, and I is a measure of how polyatomic the gas is; in particular, for polytropic gases
it is ϕ(I) = I a and monatomic gases are enclosed as a limiting case for a going to−1. More
precisely, a = D−5

2 where D is relative to the degree of freedom of a molecule (The spatial
dimension 3 plus the contribution of the internal degrees of freedom due to rotational
and vibrational modes) . In the case of monatomic gas, we have D = 3. The expression
ϕ(I) = I a is also classically valid (see the classic part of Equation (47) of [14]).

From (9) we see that the subsystem (in the sense of [18]) of our equations obtained
by simply setting µβ = 0, νβ = 0, ϑ = 0 and neglecting (1)3−5 is that of polyatomic gases
described in [14] for the part concerning the Euler’s equations. It is true that [14] is now
improved (see [19] for the classical case, while the relativistic case [20] is forthcoming),
but these further developments do not change the part concerning the Euler’s Equations
which are here considered. We prefer to insert the present article in the framework of
polyatomic gases because they are more general than the monoatomic gases and include it
as a particular case. Moreover, polyatomic gases allows the formation of dipoles and also
magnetization and polarization effects. As confirmation of the results here described, we
will take in Section 2 their non relativistic limits and we will find that they become the same
of [21] which were obtained there by working directly in the non relativistic framework.

Now the above reported equations are expressed in terms of the Lagraange multipliers
as variables; so the last step remains to convert them in terms of physical variables. Let us
see how to do this step in the simpler case of a weak electro-magnetic field.

1.3. A Simple Example of Inversion from the Lagrange Multipliers to Physical Variables

We consider the simple case of a homogeneous and isotropic medium with a weak
electromagnetic field so that h0 can be considered linear in G11 and G22 and the term with
G12 is not present:

h′α =
( c µ0

2
G11 +

c ε0

2
G22

) λα

√
G00

+ ηαβγδ
λβ√
G00

νγµδ − kB c
∫
<3

∫ +∞

0
e−1− χ

kB pα ϕ(I) d I d ~P ,

with χ = m λ +

(
1 +

I
m c2

)
λβ pβ +

(
1 +

I
m c2

)2
ϑ .

(12)

Here µ0 and ε0 are constants. If we call h′α1 the last term of (12)1, we see that

λα
∂2 h′α1

∂ λA ∂ λB
d λA d λB = − c

kb

∫
<3

∫ +∞

0
e−1− χ

kB pα (d χ)2 ϕ(I) d I d ~P < 0 ,

therefore the convexity of this part of h′α is satisfied; we will see that it also holds for the
other side, at least for a weak electromagnetic field. Now the integrals can be calculated
with a small modification to the one on page 422 of [14] and we find:
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Vα = m n Uα , Tαβ =
e
c2 UαUβ + p hαβ − m c

kBγ

[( c µ0

2
G11 +

c ε0

2
G22

)
hαβ + ηαθγδhβ

θ νγ µδ

]
,

Jα = q Uα , Fαβ = 2 µ0 U[αµβ] +
1
c

ηαφγβ Uφ νγ , Gαβ = 2 ε0 U[ανβ] +
1
c

ηαφβγ Uφ µγ ,
(13)

with

n = 4 π m3 c3e−1−m λ
kB

∫ +∞

0
e−

ϑ
kB

(
1+ I

m c2

)2

J2,1(γ
∗) ϕ(I) d I , Uα = c

λα

√
G00

e = 4 π m4 c5e−1−m λ
kB

∫ +∞

0
e−

ϑ
kB

(
1+ I

m c2

)2 (
1 +

I
m c2

)
J2,2 (γ

∗) ϕ(I) d I ,

p =
4
3

π m4 c5e−1−m λ
kB

∫ +∞

0
e−

ϑ
kB

(
1+ I

m c2

)2 (
1 +

I
m c2

)
J4,0 (γ

∗) ϕ(I) d I ,

q = 4 π m3 c3e−1−m λ
kB

∫ +∞

0
e−

ϑ
kB

(
1+ I

m c2

)2 (
1 +

I
m c2

)2
J2,1(γ

∗) ϕ(I) d I ,

(14)

where we called γ = m c
kB

√
G00 and in the last equation we used the identity J2,3(γ) −

J4,1(γ) = J2,1(γ). Now, we can take λ from (14)1 and replace it in (14)2,3,4; we can also use
the identity γ J4,0(γ) = 3 J2,1(γ) and get

e
m n c2 =

∫ +∞
0 e−

ϑ
kB

(
1+ I

m c2

)2 (
1 + I

m c2

)
J2,2 (γ

∗) ϕ(I) d I∫ +∞
0 e−

ϑ
kB

(
1+ I

m c2

)2

J2,1 (γ∗) ϕ(I) d I
, p =

m n c2

γ
,

q
n
=

∫ +∞
0 e−

ϑ
kB

(
1+ I

m c2

)2 (
1 + I

m c2

)2
J2,1 (γ

∗) ϕ(I) d I∫ +∞
0 e−

ϑ
kB

(
1+ I

m c2

)2

J2,1 (γ∗) ϕ(I) d I
.

(15)

Moreover, by using the identities J2,3(γ) = J4,1(γ) + J2,1(γ), J2,0(γ) = − J4,0(γ) + J2,2(γ)
and (15)1, we see that (15)2 can be expressed in terms of the energy e as:

q
n
=
( e

m n c2

)2
− ∂

∂ γ

( e
m n c2

)
− 3

γ

( e
m n c2

)
− 3

γ2 . (16)

Now (15)2 can be used to desume the Lagrange multiplier ϑ and substitute in (15)1 so
obtaining e = m n c2 ε(γ , q

n ). Therefore, we have changed variables from the Lagrange
multipliers λ, λβ, ϑ to the physical variables n, Uα, γ (or p), q. The closure depends on the
function ε(γ , q

n ). There remains the Lagrange multipliers νβ, µβ but these have already a
physical meaning because, as we will see in Section 3, νβ is the 4-force acting on an unitary
charge and µβ can be considered its dual:

µφ = − 1
2

ηφεαγ Fαγ Uε

c
, νφ =

1
2

ηφεαγ Gαγ Uε

c
. (17)

2. The Non Relativistic Limit

The same problem of the present article has been treated in [21] but following the
non-relativistic formalism; now the relativistic context is clearly best suited to describe it,
and this is the subject of the present article. However, as a validity test of the present model,
it is useful to see if its non-relativistic limit provides the classical model in [21]. This will be
proved in the present section.

So we start by taking the non-relativistic limit of Equations (6)1 and (7). To achieve
this goal we recall that from Equation (17) of [14] we have:
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lim
c→+∞

V0

c
= F , lim

c→+∞

T0i

c
= Fi , lim

c→+∞
2
(

T00 − cV0
)
= Gll , lim

c→+∞
Vk = Fk , (18)

lim
c→+∞

2c
(

Tk0 − cVk
)
= Gkll , lim

c→+∞
Tki = Tki , lim

c→+∞

(
h′0

c

)
= h′Clas , lim

c→+∞
h′i = h′i Clas .

These properties suggest us to define λClas, h′, λll and vi from

λ = λClas − λ0c ,
h0 λ0

c
= h′ , λβ ≡ 2 λll Γ (c , vi) , (19)

where Γ is the Lorentz factor Γ =
(

1− v2

c2

)− 1
2 . In this way from (7) with α = 0, we get:

h′0

c
= h′ + η0abc Γ va

c2 νbµc , → lim
c→+∞

h′0

c
= h′ ,

also in the present case. Similarly, from (6)1 with α = 0, we get:

d
(

h′0

c

)
=

V0

c
d λClas + 2

(
T00 − cV0

) d λ0

2 c
+

(
T0i

c

)
d λi +

F0i

c
d νi +

G0i

c
d µi + q

1√
G00

λ0 d ϑ =

=
V0

c
d λClas + 2

(
T00 − cV0

)
d (λll Γ) +

(
T0i

c

)
d λi +

F0i

c
d νi +

G0i

c
d µi + q Γ d ϑ ,

where we have taken into account of F00 = 0, G00 = 0 and of Jα = q c√
G00

λα. The
non-relativistic limit of this expression is:

d h′ = F d λClas + Gkk d λll + Fi d λi + Di d νi + Bi d µi + q d ϑ ,

such as in Equation (10)1 of [21].
We now want to take the non-relativistic limit of Equations (6)1 and (7) for α = k.

To this end, we first note that from the constraints (8) it follows µ0 = − µiλ
i

λ0 = − µivi

c ,

ν0 = − νivi

c . Then, from (7) with α = k, we get:

h′k = h0 λk + ηk0cd λ0√
G00

νc µd + ηkb0d λb√
G00

ν0 µd + ηkbc0 λb√
G00

νc µ0 =

=
c h′

λ0 λk + ηk0cd Γ νc µd − ηkb0d Γ vb
νivi

c
µd − ηkbc0 Γ vb νc

µivi

c
= ,

= h′ vk + η0kcd Γ νd µc − ηkb0d Γ vb
νivi

c
µd − ηkbc0 Γ vb νc

µivi

c
,

whose non relativistic limit is h′k = h′ vk + η0kcd µc νd like in Equation (18) of [21] with
h3 = 1. (Note that from (19) we have λk = 2 λll vk but, by raising a latin index, the result
change sign for the present definition of the metric tensor gαβ = diag (1 , −1 , −1 , −1) so
that λk = − 2 λll vk while in the classical context vk = vk).

Let us consider now (6)1 for α = k, i.e.,
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d h′k = Vk d λ + Tk0 d λ0 + Tki d λi + Fk0 d ν0 + Fki d νi + Gk0 d µ0 + Gki d µi + Jk d ϑ =

= Vk d λClas +
(

Tk0 − c Vk
)

d λ0 + Tki d λi − c Dk d
(
− νivi

c

)
+ Fki d νi − c Bk d

(
− µivi

c

)
+

+Gki d µi + Jk d ϑ = Vk d λClas + 2 c
(

Tk0 − c Vk
)

d (λllΓ) + Tki d λi + Dk d
(

νivi
)
+ Fki d νi+

+Bk d
(

µivi
)
+ Gki d µi + q Γ vk d ϑ .

The non relativistic limit of this expression is

d h′k = Fk d λClas + Gkll d (λll) + Tki d λi + Dk d
(

νivi
)
+ Fki d νi + Bk d

(
µivi

)
+ Gki d µi + q vk d ϑ ,

like in Equation (10)2 of [21]. We remark that here the presence of the terms Dk d
(
νivi)+

Bk d
(
µivi) is due to the fact that in the classical context the Equations ∂kBk = 0, ∂kDk = q

constitute differential constraints for the field equations, while in the relativistic context it
is not possible to separate these differential constraints from the other equations without
losing manifest covariance. In any case we are able here to overcome this problem by using
constrained variables; but in this way the symmetric form of the field equations cannot be
obtained. Additionally, this problem has been here completely overcome by considering an
extended set of equations and of independent variables, which reduces to the previous one
only by choosing the initial values satisfying the constraints on the independent variables.

Regarding the right hand side of (1)2, we note that this equation for β = i has
∂tFi + ∂kFki = q ki as non-relativistic limit and this is the same of Equation (1)2 supported
by (5)1 of [21]. The sum of Equation (1)1 multiplied by − c and of (1)2 with β = 0 has to be
multiplied by 2 c before to take its non relativistic limit. In this way we obtain Equation (1)3
of [21] if limc→+∞ 2 c k0 = − 2 q vi νi (here too the minus sign is due to the choice of the
metric tensor) and this is true because, from the constraint Uβνβ = 0 and the decomposition
Uβ = Γ (c , vi) we obtain exactly 2 c k0 = − 2 q vi νi.

We conclude this section by considering the dependence of h0 on λ and G00; we can
assume without loss of generality, that it depends on these variables as composite functions
of 1

2 c
√

G00 and λ + c
√

G00. From (19) It follows that

1
2 c

√
G00 = λll ,

λ + c
√

G00 = λClas − λ0c + 2λllc2 = λClas − 2λllc2 Γ + 2λllc2 = λClas − 2λllc2 Γ

(
1 −

√
1− v2

c2

)
=

= λClas − 2λllc2 Γ
v2

c2(
1 +

√
1− v2

c2

) whose non relativistic limit is λClas − λll v2 .

This last one is the variable called µ̂ in [21].
Finally, we have G11 = (µ0)

2 + µiµi, G12 = µ0ν0 + µiνi, G22 = (ν0)
2 + νiνi whose non-

relativitic limits are µiµi, µiνi, νiνi, respectively, because, from the above found µ0 = − µivi

c ,

ν0 = − νivi

c , we have that the non relativitic limits of µ0 and ν0 are zero.
So also the dependence of h′ on the scalar variables found in [21] has been recovered

(There is only a change of sign from µiµi, µiνi, νiνi to −µiµi, −µiνi, −νiνi , due to the choice
of the metric tensor; however this does not effect the results).

3. Existence of a Supplementary Conservation Law

We will see here how, assuming the existence of an supplementary conservation law,
we find strong restrictions on the generality of the unknown constitutive functions.
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First we simply want to verify that (7) is a solution of (6)1 in the independent
variablesλ, λβ, νβ, µβ, ϑ bound by Equation (8). From (8)1 follows λβ d µβ + µβ d λβ = 0
from which we infer λβ d µβ = −µβ d λβ which we will use in the third of the following steps:

d µα = gα
β d µβ =

(
− hα

β +
λα λβ

G00

)
d µβ = − hα

β d µβ − λα

G00
µβ d λβ . (20)

With similar passages, from (8)2 we obtain

d να = − hα
β d νβ − λα

G00
νβ d λβ . (21)

Substituting (7) into (6)1 and using (20), (21), we get

∂ h0

∂ λ
λα d λ +

∂ h0

∂ ϑ
λα d ϑ +

(
2

∂ h0

∂ G00
λαλβ + h0 gαβ − λα ∂ h0

∂ νγ

λγ

G00
νβ − λα ∂ h0

∂ µγ

λγ

G00
µβ−

ηαθγδ hβ
θ√

G00
νγµδ

)
d λβ +

(
ηαθγδ λθ√

G00
µδ − λα ∂ h0

∂ νγ

)
hβ

γ d νβ +

(
ηαθψγ λθ√

G00
µψ − λα ∂ h0

∂ µγ

)
hβ

γ d µβ =

= Vα d λ +

(
Tαβ − Fαγ λγ

G00

λγ

G00
νβ − Gαγ λγ

G00

λγ

G00
µβ

)
d λβ − Fαγ hβ

γ d νβ − Gαγ hβ
γ d µβ + Jα d ϑ .

This relation implies

Vα =
∂ h0

∂ λ
λα , Jα =

∂ h0

∂ ϑ
λα ,

Tαβ = Fαγ λγ

G00
νβ + Gαγ λγ

G00
µβ + 2

∂ h0

∂ G00
λαλβ + h0 gαβ − λα ∂ h0

∂ νγ

λγ

G00
νβ−

λα ∂ h0

∂ µγ

λγ

G00
µβ − ηαθγδ hβ

θ√
G00

νγµδ ,

Fαγ hβ
γ = ηαθβδ λθ√

G00
µδ + λα ∂ h0

∂ νγ
hβ

γ , Gαγ hβ
γ = ηαθψβ λθ√

G00
νψ + λα ∂ h0

∂ µγ
hβ

γ .

(22)

Now, we have

λαFαγ hβ
γ = λαFαγ

(
− gβ

γ +
λγ λβ

G00

)
= − λαFαβ , and also λαGαγ hβ

γ − λαGαβ .

So, by contracting (22)4,5 with λα
G00

, we get:

Fαγ λγ

G00
=

∂ h0

∂ νγ
hα

γ = − ∂ h0

∂ να
, Gαγ λγ

G00
=

∂ h0

∂ µγ
hα

γ = − ∂ h0

∂ µα
, (23)

where in the second step we took into account that:

∂ h0

∂ νγ
=

∂ h0

∂ G12
µγ + 2

∂ h0

∂ G22
νγ → ∂ h0

∂ νγ
λγ = 0 ,

∂ h0

∂ νγ
hα

γ = −∂ h0

∂ να
,

and similarly, ∂ h0
∂ µγ

hα
γ = − ∂ h0

∂ µα
. Hence Equation (22) simplifies to:
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Vα =
∂ h0

∂ λ
λα , Jα =

∂ h0

∂ ϑ
λα ,

Tαβ = − ∂ h0

∂ να
νβ − ∂ h0

∂ µα
µβ + 2

∂ h0

∂ G00
λαλβ + h0 gαβ − ηαθγδ hβ

θ√
G00

νγµδ ,

Fαγ hβ
γ = ηαθβδ λθ√

G00
µδ − λα ∂ h0

∂ νβ
, Gαγ hβ

γ = ηαθψβ λθ√
G00

νψ − λα ∂ h0

∂ µβ
.

(24)

Since Equation (24)4,5 contracted with λα
G00

give (23), they can be replaced by their contrac-
tions with hδ

α, that is:

hδ
αFαγ hβ

γ = − ηδθβψ λθ√
G00

µδ , hδ
αGαγ hβ

γ = −ηδθψβ λθ√
G00

νψ . (25)

Now, Equations (23) and (25) fully determine Fαβ and Gαβ, while Vα, Jα and Tαβ are
determined by (24)1−3.

In particular, from (24)1 we see that λα is parallel to Vα = m n Uα; therefore Equation (19)3
now becomes λβ = 2 λll Uβ with Uβ ≡ Γ (c , vi) which ensures that vi is the 3-velocity of
the fluid.

From Equation (24)2 we see that Jα = q Uα with q = ∂
∂ ϑ

(√
G00
c h0

)
.

The Equation (25) can be contracted with ηφεδβ
Uε

c and give the above reported (17),

where the property ηφεδβ ηδθβψ Uθ
c

Uε

c = −2 h[δφ hψ]
δ = −2 hψ

φ was used. The result shows the
physical meaning of the Lagrange multipliers µφ and νφ by relating them to Fαγ, Gαγ and Uα.

In particular from (17), by using (2) and Uβ ≡ Γ (c , vi), we obtain ~µ = Γ
(
~H − ~v ∧ ~D

)
and~ν = Γ

(
~E + ~v ∧ ~B

)
. Together with µφUφ = 0, νφUφ = 0, we thus obtain that νφ is the

4-force acting on a unit charge and µφ can be considered its dual.

4. An Extended Set of Field Equations with the Symmetric Hyperbolic Form

In the non-relativistic approach [21] we were able to find a set of field equations with
the symmetric hyperbolic form; this was possible because we separated the differential con-
straints from (1)3−5 and used them in this framework. In the current relativistic approach
this is not possible without losing the manifest covariance. So we adopt a different strategy
by considering an extended set of independent variables. Consequently, we will find the
expressions (31)3,4 for the tensors Fαγ and Gαγ, which are certainly more elegant than (9)4,5
and (17).

To this end, we define G01 = λα να, G02 = λα µα. In other words we leave out the
constraints (8) and we will see that considering them only as constraints on the initial
manifold, then they will be satisfied even outside it simply as a consequence of the field
equations.

With this in mind, let us introduce four-vectors:

h′α = h0λα + h1µα + h2να + h3 ηαφγδ λφ√
G00

νγµδ + G01h′α1 + G02h′α2 ,

with h′α1 = ψ0λα + ψ1µα + ψ2να , h′α2 = θ0λα + θ1µα + θ2να ,
(26)

where hi, ψi, θi are functions of λ, ϑ, G00, G01, G02, G11, G12, G22. We look for these scalar
coefficients and two additional ones X and Y such that:

∂ h′(α

∂ µβ)
= Xgαβ + G01

∂ h′(α1
∂ µβ)

+ G02
∂ h′(α2
∂ µβ)

,
∂ h′(α

∂ νβ)
= Ygαβ + G01

∂ h′(α1
∂ νβ)

+ G02
∂ h′(α2
∂ νβ)

.
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In the reference frame where λα ≡ (
√

G00 , 0 , 0 , 0), µα ≡ (µ0 , µ1 , 0 , 0), να ≡ (ν0 , ν1 , ν2 , 0),
the components 33, 23, 13, 03 of the previous equations give:

X = h1 , Y = h2 ,
∂ h3

∂ G12
= 0 ,

∂ h3

∂ G22
= 0 ,

∂ h3

∂ G11
= 0 ,

∂ h3

∂ G01
= 0 ,

∂ h3

∂ G02
= 0 .

We see, in particular, that h3 does not depend on µα and να. From components 22, 12, 11 we
obtain:

∂ h2

∂ G12
= 0 ,

∂ h2

∂ G22
= 0 ,

∂ h1

∂ G12
+ 2

∂ h2

∂ G11
= 0 ,

∂ h1

∂ G22
= 0 ,

∂ h1

∂ G11
= 0 ,

∂ h1

∂ G12
= 0 . (27)

From these results we see that h1 and h2 do not depend on G11, G12 and G22. Finally,
components 00, 01, 02 give:

h′α1 = − ∂ h0

∂ µα
− ∂ h1

∂ G01
µα − ∂ h2

∂ G01
να , h′α2 = − ∂ h0

∂ να
− ∂ h1

∂ G02
µα − ∂ h2

∂ G02
να . (28)

As a consequence of these results, we get:

∂ h′α

∂ µβ
= 2 λ[α ∂ h0

∂ µβ]
+ h1gαβ + h3 ηαφγβ λφ√

G00
νγ + G01

∂ h′α1
∂ µβ

+ G02
∂ h′α2
∂ µβ

,

∂ h′α

∂ νβ
= 2 λ[α ∂ h0

∂ νβ]
+ h2gαβ + h3 ηαφβδ λφ√

G00
µδ + G01

∂ h′α1
∂ νβ

+ G02
∂ h′α2
∂ νβ

.

Now, we want that
(

∂ h′α
∂ µβ

)
G00=0 ,G02=0

= Fαβ and
(

∂ h′α
∂ νβ

)
G01=0 ,G02=0

= Gαβ which are skew-

symmetric. This is only possible if h1 = 0 and h2 = 0. After that, (26) and (28) give:

h′α = h0λα + h3 ηαφγδ λφ√
G00

νγµδ − G01
∂ h0

∂ µα
− G02

∂ h0

∂ να
. (29)

The function h3 may depend on λ, ϑ and G00 but it is reasonable to simply assume that
h3 = 1. In this case (29), calculated in the physical case G01 = 0, G02 = 0 provides the
above Equation (7).

The resulting field equations are (1)1,2,5 with

Vα =
∂ h′α

∂ λ
=

∂ h0

∂ λ
λα − G01

∂2 h0

∂ λ ∂ µα
− G02

∂2 h0

∂ λ ∂ να
,

Tαβ =
∂ h′α

∂ λβ
= h0gαβ + 2

∂ h0

∂ G00
λαλβ − 1√

G00
ηαφγδhβ

φνγµδ − µβ ∂ h0

∂ µα
− νβ ∂ h0

∂ να

− 2
(

G01
∂2 h0

∂ G00 ∂ µα
+ G02

∂2 h0

∂ G00 ∂ να

)
λβ ,

Jα =
∂ h′α

∂ θ
=

∂ h0

∂ ϑ
λα − G01

∂2 h0

∂ ϑ ∂ µα
− G02

∂2 h0

∂ ϑ ∂ να
,

(30)

while (1)3−4 are replaced by:

∂α

(
Fαβ − G01

∂2 h0

∂ µα ∂ µβ
− G02

∂2 h0

∂ να ∂ µβ

)
= −Jβ ,

∂α

(
Gαβ − G01

∂2 h0

∂ µα ∂ νβ
− G02

∂2 h0

∂ να ∂ νβ

)
= 0 ,

(31)
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with Fαβ = 2 λ[α ∂ h0

∂ µβ]
+ ηαφγβ λφ√

G00
νγ , Gαβ = 2 λ[α ∂ h0

∂ νβ]
+ ηαφβδ λφ√

G00
µδ .

The last two of these equations are restrictions on the law linking the magnetic field in the
empty space and the electric field in materials: Without the imposition of a supplementary
conservation law, we would have that Fαβ and Gαβ are arbitrary skew-symmetric tensorial
functions of νβ and µβ; here they are determined except for the scalar function h0.

We now prove the above property, namely that G01 = 0 and G02 = 0 as long as they
are null in the initial manifold. To this end, we consider (31) contracted with λβ, that is,

− ∂2 h0

∂ µα ∂ µβ
λβ ∂αG01 −

∂2 h0

∂ να ∂ µβ
λβ ∂αG02 = − λβ

(
∂αFαβ + Jβ

)
+

+ G01 λβ ∂α

(
∂2 h0

∂ µα ∂ µβ

)
+ G02 λβ ∂α

(
∂2 h0

∂ να ∂ µβ

)
,

− ∂2 h0

∂ µα ∂ νβ
λβ ∂αG01 −

∂2 h0

∂ να ∂ νβ
λβ ∂αG02 = − λβ ∂αGαβ + G01 λβ ∂α

(
∂2 h0

∂ µα ∂ νβ

)
+

+ G02 λβ ∂α

(
∂2 h0

∂ να ∂ νβ

)
.

If we calculate here the coefficients of ∂αG01, ∂αG02 and the right-hand members in G01 = 0,
G02 = 0, it becomes:2 ∂ h0

∂ G11

∂ h0
∂ G12

∂ h0
∂ G12

2 ∂ h0
∂ G22


 λα ∂αG01

λα ∂αG02

 =

 λβ

(
∂αFαβ + Jβ

)
λβ ∂αGαβ

 ,

and we will demonstrate in Section 7 (as a consequence of the hyperbolicity requirement)
that the coefficient matrix on the left has a positive determinant. From this fact it follows
that, if ϑ̄, λ̄, λ̄β, µ̄β, ν̄β, is the solution of the non-extended set (1), corresponding to the
initial condition ϑ(0), λ(0), λβ(0), µβ(0), νβ(0), then ϑ̄, λ̄, λ̄β, µ̄β, ν̄β, G01 = 0, G02 = 0 is
the solution of the extended set corresponding to the initial condition ϑ(0), λ(0), λβ(0),
µβ(0), νβ(0), G01(0) = 0, G02(0) = 0 and this completes our proof.

5. Wave Speeds for the above Field Equations

We aim here to calculate the speeds of the propagation waves. The characteristic
equations corresponding to (30) and (31) are the following:

ϕα d
[

∂ h0

∂ λ
λα − G01

∂2 h0

∂ λ ∂ µα
− G02

∂2 h0

∂ λ ∂ να

]
= 0 ,

ϕα d
[

h0 gαβ + 2
∂ h0

∂ G00
λαλβ − 1√

G00
ηαφγδhβ

φνγµδ − µβ ∂ h0

∂ µα
− νβ ∂ h0

∂ να

− 2
(

G01
∂2 h0

∂ G00 ∂ µα
+ G02

∂2 h0

∂ G00 ∂ να

)
λβ

]
= 0 ,

ϕα d
[

∂ h0

∂ ϑ
λα − G01

∂2 h0

∂ ϑ ∂ µα
− G02

∂2 h0

∂ ϑ ∂ να

]
= 0 ,

ϕα d

[
2 λ[α ∂ h0

∂ µβ]
+ ηαφγβ λφ√

G00
νγ − G01

∂2 h0

∂ µα ∂ µβ
− G02

∂2 h0

∂ να ∂ µβ

]
= 0 ,

ϕα d

[
2 λ[α ∂ h0

∂ νβ]
+ ηαφβδ λφ√

G00
µδ − G01

∂2 h0

∂ µα ∂ νβ
− G02

∂2 h0

∂ να ∂ νβ

]
= 0 ,

(32)
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with ϕα = nα −
µ

c
ξα , ξαξα = 1 , nαnα = −1 , ξαnα = 0 ,

and the Eigenvalues µ corresponding to the Eigenvectors are the characteristic velocities.
Since in the physical case we have G01 = 0, G02 = 0, it is not restrictive to calculate

the coefficients of the differentials in G01 = 0, G02 = 0; we will do this in the subsequent
calculations, even without explicitly saying it.

First of all, we note that an Eigenvalue is:

µ

c
=

nαλα

ξαλα
, i.e., ϕαλα = 0 . (33)

In fact, for every pair of values d λ, d ϑ constrained only by:

∂ h0

∂ λ
d λ +

∂ h0

∂ ϑ
d ϑ = 0 ,

the derivatives of this relation also hold with respect to λ, G00, G11, G12, G22, ϑ; this fact
makes it easy to verify that d λ, d ϑ, d λα = 0, d µα = 0, d να = 0 is an Eigenvector of the
system (32) corresponding to the Eigenvalue (33). This Eigenvalue has at least multiplicity
1. In particular cases its multiplicity can be greater than 1. For example,

If ϕαµα = 0 , ϕανα = 0 , ηαφγδ ϕαλφµγνδ 6= 0 , therefore, for any value of d λ , d ϑ , X

constrained only by
∂ h0

∂ λ
d λ +

∂ h0

∂ ϑ
d ϑ + 2 X G00

∂ h0

∂ G00
= 0 ,

we get an Eigenvector with d λα = X λα, d µα = 0, d να = 0. So in this case the Eigenvalue
ϕαλα = 0 has multiplicity 2.

We note that this Eigenvalue is present also without the electromagnetic field (and, con-
sequently, also without the variable ϑ); in fact, in this case, we have only the Equation (32)1,2
which now reduce to:

∂ h0

∂ λ
ϕα d λα = 0 , ϕβ

(
∂ h0

∂ λ
d λ + 2

∂ h0

∂ G00
λγ d λγ

)
= 0 ,

because ϕαλα = 0. So, now we have the 5 unknowns subject only to the two conditions
ϕα d λα = 0, ∂ h0

∂ λ d λ+ 2 ∂ h0
∂ G00

λγ d λγ = 0. It follows that the Eigenvalue (33) has multiplicity
3 in this case.

We note also that, in the reference frame where ξα ≡ (1 , 0 , 0 , 0) and with the decom-
position λα =

√
G00 Γ(v)

(
1 , vi

c

)
, the Eigenvalue (33) becomes µ = ~v ·~n, as in the classical

case [21].
For the research of other wave velocities, it is preferred for simplicity to consider the

particular case

h0 = h∗0(λ , ϑ , G00) +
c

2
√

G00
(µ0 G11 + ε0 G22) , (34)

with µ0 and ε0 constants. This case is important because, by executing its non relativistic
limit as in Section 2, we obtain that the classical expression of h′ which corresponds to
it is equal to that in Equation (29) of [21] with h3 = 1, h∗ = limc→+∞

√
G00
c h∗0 . So we can

recognize that (34) is the expression of h0 in an homogeneous and isotropic media. With
this expression, Equation (32) becomes:
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ϕα d
(

∂ h∗0
∂ λ

λα

)
= 0 , ϕα d

(
∂ h∗0
∂ ϑ

λα

)
= 0 ,

ϕβ d
[

h∗0 +
c

2
√

G00
(µ0 G11 + ε0 G22)

]
+

+ ϕα d

[
2

∂ h∗0
∂ G00

λαλβ − c
2
√

G00
(µ0 G11 + ε0 G22)

λαλβ

G00
− 1√

G00
ηαφγδhβ

φνγµδ

− c√
G00

(
µ0 µαµβ + ε0 νανβ

)]
+

c√
G00

λβ

G00
(µ0 ϕαµα d G01 + ε0 ϕανα d G02) = 0 ,

ϕα d
[

2 c µ0√
G00

λ[α µβ] + ηαφγβ λφ√
G00

νγ

]
− c µ0√

G00
ϕβ d G01 = 0 ,

ϕα d
[

2 c ε0√
G00

λ[α νβ] + ηαφβδ λφ√
G00

µδ

]
− c ε0√

G00
ϕβ d G02 = 0 .

(35)

Returning to the Eigenvalue ϕαλα = 0, we now see that (35)1,2 are equivalent to ϕα d λα = 0,
(35)4,5 contracted by ϕβ give d G01 = 0, d G02 = 0 (It is not possible that ϕβ ϕβ = 0, otherwise

we would have nα = µ
c ξα followed by −1 =

( µ
c
)2). After that, Equation (35)4,5 contracted

by λβ give the expressions of ϕα d µα and of ϕα d να, respectively. The same equations,
contracted by hθ

β give the expressions of hγ
δ d νγ and of hγ

δ d µγ, respectively. Using also the
result d G01 = 0, d G02 = 0, we obtain the following expressions:

d µβ =

{(
ϕθ ϕθ

)−1
[

2 c ε0
G00

(ϕενε)ηµδβγλδ ϕµ −
1

2 c µ0G00
ϕεηεδµγλδνµ ϕβ

]
− λβ

G00
µγ

}
d λγ ,

d νβ =

{(
ϕθ ϕθ

)−1
[
− 2 c µ0

G00
(ϕεµε)ηψδβγλδ ϕψ +

1
2 c ε0G00

ϕεηεδψγλδµψ ϕβ

]
− λβ

G00
νγ

}
d λγ .

In the calculations we have used the identies reported here in the Appendix A. It now
remains to replace these partial results in (35)3, which now reduces to:

ϕβ d
[

h∗0 + c
µ0 G11 + ε0 G22

2
√

G00

]
− ϕα d

[
1√
G00

ηαφγδhβ
φνγµδ +

c√
G00

(
µ0 µαµβ + ε0 νανβ

)]
= 0 .

This is equivalent to its contractions with λβ, ϕβ and with the tensor hθ
β +

ϕβ ϕθ

ϕψ ϕψ , that is

ϕα
c√
G00

(
µ0 µαµβ + ε0 νανβ

)
d λβ = 0 , (36)

d
[

h∗0 + c
µ0 G11 + ε0 G22

2
√

G00

]
−

ϕα ϕβ

ϕψ ϕψ d
[

1√
G00

ηαφγδhβ
φνγµδ +

c√
G00

(
µ0 µαµβ + ε0 νανβ

)]
= 0 ,(

hθ
β +

ϕβ ϕθ

ϕψ ϕψ

)
ϕα d

[
1√
G00

ηαφγδhβ
φνγµδ +

c√
G00

(
µ0 µαµβ + ε0 νανβ

)]
= 0 .

We have taken into account here that ϕα ηαφγδhβ
φνγµδ = 0 because in the reference frame Σ

with
λβ√
G00
≡ (1 , 0 , 0 , 0), ϕα ≡ (0 , ϕ1 , 0 , 0) all indices of ηαφγδ are different from 0. By

calculating all the differentials in (36)3 and, after that, by substituting there the previous
expressions of d µβ, d νβ, it becomes

−
(

hθ
β +

ϕβ ϕθ

ϕψ ϕψ

)
ϕα

c
G00

(
µ0 µαµβ + ε0 νανβ

) λγ

√
G00

d λγ +
1

2 G00

λφ√
G00

ϕα ηφαψβνψµβhθγd λγ = 0 . (37)

It is easier to demonstrate the equivalence of (36)3 and (37) in the above mentioned reference
frame Σ. The conclusions of these calculations are as follows:
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• If ηφαψβλφ ϕανψµβ 6= 0, (ϕαµα)2 + (ϕαµα)2 6= 0, hence the Eigenvalue ϕαλα = 0 has
multiplicity 1. Indeed, we can infer hθγd λγ from (37) and replace in (36)1 which now
becomes

− 2c2
(

ηφαψβλφ ϕανψµβ

)−1
S

λγ

√
G00

d λγ = 0 with

S =
(

µ0 ϕαµαµβ + ε0 ϕανανβ
)(

hβθ +
ϕβ ϕθ

ϕψ ϕψ

)(
µ0 ϕα′µ

α′µθ + ε0 ϕα′ν
α′νθ

)
.

(38)

We now have S 6= 0, otherwise in the above frame Σ we would have µ0 ϕαµαµ2 +
ε0 ϕαναν2 = 0, µ0 ϕαµαµ3 + ε0 ϕαναν3 = 0 which is a system in the 2 unknowns µ0 ϕαµα

and ε0 ϕανα whose determinant of the coefficients is µ2ν3 − µ3ν2 = −
(

ϕ1
√

G00
)−1

ηφαψβλφ ϕανψµβ 6= 0. Then the system would give ϕαµα = 0 and ϕανα = 0 against the
hypothesis. So our equation gives λγ

√
G00

d λγ = 0 which, replaced in (37) gives d λγ = 0.
So there remain the free unknowns d λ, d ϑ constrained by (36)2.

• If ηφαψβλφ ϕανψµβ 6= 0, ϕαµα = 0, ϕαµα = 0, then the Eigenvalue ϕαλα = 0 has
multiplicity 2. Indeed, we can repeat the the previous steps and get (38). However,
now S = 0 so that there remain the free unknowns d λ, d ϑ, λγ d λγ constrained only
by (36)2.

• If ηφαψβλφ ϕανψµβ = 0,
(

hθ
β +

ϕβ ϕθ

ϕψ ϕψ

)(
µ0 ϕαµαµβ + ε0 ϕανανβ

)
6= 0, then the Eigen-

value ϕαλα = 0 has multiplicity 2. Indeed, in this case (37) returns λγ d λγ = 0; then
the 6 free unknowns remain d λ, d ϑ, d λγ constrained only by the scalar conditions
λγ d λγ = 0, ϕγ d λγ = 0, (36)1,2.

• If ηφαψβλφ ϕανψµβ = 0,
(

hθ
β +

ϕβ ϕθ

ϕψ ϕψ

)(
µ0 ϕαµαµβ + ε0 ϕανανβ

)
= 0, hence the Eigen-

value ϕαλα = 0 has multiplicity 4. Indeed, in this case (37) and (36)1 are identities;
then the 6 free unknowns remain d λ, d ϑ, d λγ costrained only by the scalar conditions
ϕγ d λγ = 0 and (36)2. We note that this is the situation if the electromagnetic field is
not present, except that we do not have the free unknown d ϑ so that the multiplicity
is 3.

For other Eigenvalues, we first note that hαβ ϕβ 6= 0, otherwise we would have

ϕα = λα

G00
λβ ϕβ from which it follows −1 + µ2

c2 = ϕα ϕα = 1
G00

(
λβ ϕβ

)2
> 0 against the

fact that µ2 ≤ c2. This fact allows us to define

Hαβ = hαβ −
(hαγ ϕγ)

(
hβδ ϕδ

)
hµν ϕµ ϕν

,

which is the projector into the 2-dimensional subspace orthogonal to λα and to ϕα. After
that, any equation Xβ = 0 is equivalent to the system λβXβ = 0, ϕβXβ = 0, HαβXβ = 0.

By contracting (35)4,5 with λβ, ϕβ, Hθβ, they become:
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ϕαd µα =

(
−1

c µ0 G00
ηαφγβ ϕα hδ

φ νγ λβ −
λβ ϕβ

G00
µδ

)
d λδ , ϕβ ϕβ d G01 = 0 ,

Hαβ ϕα

[
−c µ0

G00
√

G00
λαµβλγ d λγ +

c µ0√
G00

(
λα d µβ + µβ d λα − µα d λβ

)
−

ηαφγβhδ
φ

νγ√
G00

d λδ + ηαφγβ λφ√
G00

d νγ

]
= 0 ,

ϕαd να =

(
1

c ε0 G00
ηαφγβ ϕα hδ

φ µγ λβ −
λβ ϕβ

G00
µδ

)
d λδ , ϕβ ϕβ d G02 = 0 ,

Hαβ ϕα

[
−c ε0

G00
√

G00
λανβλγ d λγ +

c ε0√
G00

(
λα d νβ + νβ d λα − να d λβ

)
+

+ ηαφγβhδ
φ

µγ√
G00

d λδ − ηαφγβ λφ√
G00

d µγ

]
= 0 .

(39)

By using the identity:

Hθ
β ϕα ηαφγβλφ =

[
hθ

β −
hθδ ϕδ

hµν ϕµ ϕν

(
−gβψ +

λβλψ

G00

)
ϕψ

]
ϕα ηαφγβλφ = −ϕα ηαφγθλφ ,

from Equation (39)3,6 we desume:

Hθ
β d µβ =

(
ϕψλψ

)−1
[

hµν ϕµ d λν Hθ
β µβ + ϕαµα Hθ

β d λβ +
1

c µ0
ηαφγθ ϕα λφ d νγ

]
−

1
c µ0 G00

Hθ
βηαδγβλα νγ d λδ ,

Hθ
β d νβ =

(
ϕψλψ

)−1
[

hµν ϕµ d λν Hθ
β νβ + ϕανα Hθ

β d λβ − 1
c ε0

ηαφγθ ϕα λφ d µγ

]
+

+
1

c ε0 G00
Hθ

βηαδγβλα µγ d λδ .

(40)

Now in (40)2 the term ηαφγθ ϕα λφ d µγ can be written as − ηαφγ′θ ϕα λφHγ
γ′ d µγ and we can

use Hγ
γ′ d µγ from (40)1; in this way (40)2 becomes:

Hθ
β d νβ

(
1−

hµν ϕµ ϕν(
ϕψλψ

)2
G00

c2ε0 µ0

)
=
(

ϕψλψ
)−1
[(

hµν ϕµ d λν

)
Hθ

β νβ + ϕανα Hθ
β d λβ

]
+

+
1

c ε0 G00
Hθ

βηαδγβλα µγ d λδ +
1

c ε0
(

ϕψλψ
)2 ηα′φγ′θ ϕα′ λφ

[(
hµν ϕµ d λν

)
Hγ′β µβ + ϕαµα Hγ′β d λβ

]
−

1
c2 ε0 µ0 G00

(
ϕψλψ

) ηα′φγ′θ ϕα′ λφ Hγ′β ηαδγβλα νγ d λδ .

Here the underlined terms are equal to
− 2

ϕψλψ

(
1− 1

c2 ε0 µ0

)
ν[γ d λµ] hγδ ϕδ Hµθ ,

and the remaining terms are equal to
− 1
c ε0

ϕµ ϕµ(
ϕψλψ

)2 ηαφβγλα Hθ
φ µβ d λγ ,
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as it can be seen more easily in the reference frame Σ where
λβ√
G00
≡ (1 , 0 , 0 , 0), ϕα ≡

(ϕ0 , ϕ1 , 0 , 0). Using these properties, the above result can be written as:

Hθ
β d νβ

(
1−

hµν ϕµ ϕν(
ϕψλψ

)2
G00

c2ε0 µ0

)
=

=
− 2

ϕψλψ

(
1− 1

c2 ε0 µ0

)
ν[γ d λµ] hγδ ϕδ Hµθ − 1

c ε0

ϕµ ϕµ(
ϕψλψ

)2 ηαφβγλα Hθ
φ µβ d λγ .

(41)

Now let us look for two coefficients X and Y and see if d µα = X ϕα, d να = Y ϕα, d λ = 0,
d ϑ = 0, d λα = 0 is a solution of the system in the case ϕα ϕα = 0. Substituting in (35) we
obtain that they are identically satisfied. So X and Y remain free unknowns and we can say
that ϕα ϕα = 0 gives Eigenvalues with multiplicity 2; these Eigenvalues are µ = ± c.

6. The Vlasov Equation

It is useful to compare some of the present results with those of refs. [22–25] which were
obtained in the context of monoatomic gases. They considered the Vlasov Equation [22]
multiplied by the rest particle mass, i.e.,

pα∂α f − q
2 n c

ηαβγδGγδ pα
∂ f

∂ pβ
= 0 , (42)

(We have only substituted q
n for the electron charge and − 1

2 c ηαβγδGγδ to their Fαβ because
their article dealt with the effects of Maxwell’s equations on matter but only as an external
field; this fact allowed them to use Maxwell equations in the empty space where Fαβ and
Gαβ are each the dual of the other; this is not true in the present more general context
and we have to use the appropriate field). Now, for polyatomic gases (see [14,26]), the
distribution function is:

f = e−1− 1
KB

[
m λ+

(
1+ I

m c2

)
pµλµ

]
. (43)

However, (42) has been derived in the context of monoatomic gases where (43) reduces to

f = e−1− 1
KB

[m λ+ pµλµ], so that (42) becomes:

pα∂α f + f
q

2 n c kB
λβ ηαβγδGγδ pα = 0 . (44)

It is reasonable (as we will see later) to assume (44) also for polyatomic gases, but with f
given by (43).

If we multiply (44) by m c ϕ(I) and then integrate in d ~P d I , we get:

∂αVα
M +

q
2 n c kB

λβ ηαβγδGγδ VMα = 0 , with Vα
M = m c

∫
<3

∫ +∞

0
f pα ϕ(I) d ~P d I .

However, λβ is parallel to Uβ (λβ =
Uβ

T ) so that this equation reduces to ∂αVα
M = 0, i.e., the

usual mass conservation law.
If we multiply (44) by pβ c

(
1 + I

m c2

)
ϕ(I) and then integrate in d ~P d I , we obtain:

∂αTαβ
M = − q

2 n c kB
λµ ηαµγδGγδ Tβ

Mα , with Tαβ
M = c

∫
<3

∫ +∞

0
f pα pβ

(
1 +

I
m c2

)
ϕ(I) d ~P d I , (45)

as in [23–25]. The right hand side of Equation (45) is:

q p
2 n c kB T

Uµ ηβµγδGγδ =
q

2 c
Uµ ηβµγδGγδ = q νβ ,
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where in the last step we used (17)2. So we found the right hand side of (1)2. This confirms
the above choice of Equation (44) together with (43). If we had chosen (42) together
with (43), then the right-hand side of Equation (45) was B9 q νβ with

B9 =

∫ +∞
0 J∗2,1

(
1 + I

m c2

)
ϕ(I) d I∫ +∞

0 J∗2,1 ϕ(I) d I
.

In this case the right hand side of Equation (45) is not the Lorentz force, but only propor-
tional to it through the coefficient B9 which is 1 for monoatomic gases and also in the non
relativistic limit of polyatomic gases.

7. The Hyperbolicity Requirement

In the previous sections we have seen how the balance equations consisting of the
Euler Equations for the material and the Maxwell Equations in that material can be written
in symmetrical form. To be sure that this set of equations is hyperbolic, it remains to be seen
whether it also satisfies the convexity of h′α with respect to its variables (see Section 1.2)
Using the multi-index notation XA to denote the Lagrange multipliers ϑ, λ, λβ, µβ, νβ, this
means that the quadratic form

Q = λα
∂2 h′α

∂ XA ∂ XB
d XA d XB = λα d

(
∂ h′α

∂ XA

)
d XA ,

is negative definite in the variables d XA. Let us impose this condition when d XA = 0 except
for d µβ, d νβ and use (29). Moreover, since G01 and G02 have no physical meaning and
were introduced here only as a mathematical tool to have a symmetric system of equations,
we can assume without loss of generality that h0 does not depend on G01 and G02 and,
furthermore, that G11 = hαβµαµβ, G12 = hαβµανβ, G22 = hαβνανβ, with hαβ = − gαβ + λαλβ

G00
.

The second term in the expression (29) of h′α gives no contribution because it is orthogonal
to λα and in the above expression of Q there is a contraction with λα. The first term in the
expression (29) of h′α is h0λα and it gives to Q the contribution

G00

[
d

(
∂ h0

∂ µβ

)
d µβ + d

(
∂ h0

∂ νβ

)
d νβ

]
=

= G00

[
d
(

2
∂ h0

∂ G11
µγhγβ +

∂ h0

∂ G12
νγhγβ

)
d µβ + d

(
∂ h0

∂ G12
µγhγβ + 2

∂ h0

∂ G22
νγhγβ

)
d νβ

]
.

By performing the calculations in the reference frame where λα ≡ (λ0 , 0 , 0 , 0), µα ≡
(µ0 , µ1 , 0 , 0), να ≡ (ν0 , ν1 , ν2 , 0), we obtain that this contribution becomes equal to
Q1 + Q2 with

Q1 = −G00

[
2

∂ h0

∂ G11
(d µ3)

2 + 2
∂ h0

∂ G12
(d µ3)(d ν3) + 2

∂ h0

∂ G22
(d ν3)

2
]

,

Q2 = G00

[
a11 (d µ1)

2 + 2a12 d µ1 d ν1 + 2a13 d µ1 d µ2 + 2a14 d µ1 d ν2 + a22 (d ν1)
2 +

+2a23 d ν1 d µ2 + 2a24 d ν1 d ν2 + a33 (d µ2)
2 + 2a34 d µ2 d ν2 + a44 (d ν2)

2
]

,

with

a11 = 4
∂2 h0

∂(G11)
2 (µ1)

2 + 4
∂2 h0

∂ G11∂ G12
µ1ν1 +

∂2 h0

∂(G12)
2 (ν1)

2 − 2
∂ h0

∂ G11
,
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a12 = 2
∂2 h0

∂ G11∂ G12
(µ1)

2 + 4
∂2 h0

∂ G11∂ G22
µ1ν1 +

∂2 h0

∂(G12)
2 µ1ν1 + 2

∂2 h0

∂ G22∂ G12
(ν1)

2 − ∂ h0

∂ G12
,

a13 = 2
∂2 h0

∂ G11∂ G12
µ1ν2 +

∂2 h0

∂(G12)
2 ν1ν2 , a14 = 4

∂2 h0

∂ G11∂ G22
µ1ν2 + 2

∂2 h0

∂G12∂G22
ν1ν2 ,

a22 = 4
∂2 h0

∂(G22)
2 (ν1)

2 + 4
∂2 h0

∂ G22∂ G12
µ1ν1 +

∂2 h0

∂(G12)
2 (µ1)

2 − 2
∂ h0

∂ G22
,

a23 = 2
∂2 h0

∂ G22∂ G12
ν1ν2 +

∂2 h0

∂(G12)
2 µ1ν2 , a24 = 4

∂2 h0

∂(G22)
2 ν1ν2 + 2

∂2 h0

∂G12∂G22
µ1ν2 ,

a33 =
∂2 h0

∂(G12)
2 (ν2)

2 − 2
∂ h0

∂ G11
, a34 = 2

∂2 h0

∂ G22∂ G12
(ν2)

2 − ∂ h0

∂ G12
,

a44 = 4
∂2 h0

∂(G22)
2 (ν2)

2 − 2
∂ h0

∂ G22
.

Finally, we compute the contribution to Q of the last two terms in the expression (29) of h′α;
it is

−d

[
∂

∂µβ

(
2(G01)

2 ∂ h0
∂ G11

+ G01G02
∂ h0

∂ G12

)]
d µβ − d

[
∂

∂νβ

(
2(G01)

2 ∂ h0
∂ G11

+ G01G02
∂ h0

∂ G12

)]
d νβ

−d

[
∂

∂µβ

(
2(G02)

2 ∂ h0
∂ G22

+ G01G02
∂ h0

∂ G12

)]
d µβ − d

[
∂

∂νβ

(
2(G02)

2 ∂ h0
∂ G22

+ G01G02
∂ h0

∂ G12

)]
d νβ .

Now, we want to calculate the coefficients of the differentials in G01 = 0, G02 = 0; then the
terms of the expression above where (G01)

2, G01G02, (G02)
2 are not derivated with respect

to µβ or νβ give zero contribution. Consequently, of the above quadratic form remains

−d
(

4 G01 λβ ∂ h0

∂ G11
+ G02 λβ ∂ h0

∂ G12

)
d µβ − d

(
G01 λβ ∂ h0

∂ G12

)
d νβ

−d
(

G02 λβ ∂ h0

∂ G12

)
d µβ − d

(
4 G02 λβ ∂ h0

∂ G22
+ G01 λβ ∂ h0

∂ G12

)
d νβ .

Here too the terms in which G01 and G02 are not differentiated give the zero contribution
zero and, moreover, λβ d µβ = d G01, λβ d νβ = d G02. So the contribution to Q of the last
two terms in the expression (29) of h′α is

Q3 = − 4
∂ h0

∂ G11
(d G01)

2 − 4
∂ h0

∂ G22
(d G02)

2 − 4
∂ h0

∂ G12
d G01 d G02 ,

and Q = Q1 + Q2 + Q3. Since they depend on distinct variables, each of them must be
negative defined. In particular, this is true for Q1 if and only if

∂ h0

∂ G11
> 0 ,

∣∣∣∣∣∣∣
2 ∂ h0

∂ G11

∂ h0
∂ G12

∂ h0
∂ G12

2 ∂ h0
∂ G22

∣∣∣∣∣∣∣ > 0 , (46)

and we have used the second of these properties in the previous sections.
We see that also Q3 is negative defined as a consequence of (46). Consequently, our

choice to use an extended set of independent variables did not imply further conditions.
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As for Q2, it is negative defined if the fourth-order matrix (aij) is negative defined.
Although this condition is mathematically a bit complex, we have seen that it is equivalent
to saying that the function h0 is convex function of µα and να.

To date, we have imposed that Q is negative defined, but only when d XA = 0 except
for d µβ, d νβ. This has yielded some important results; they are useful for dealing more
easily with the general case and we find, after many but direct calculations, that

Q = Q1 + Q2 + Q3 + G00
∂2 h0

∂ λ2 d (λ)2 + 2 G00
∂2 h0

∂ λ ∂ ϑ
d λ d ϑ + 2

√
G00

(
2 G00

∂2 h0

∂ λ ∂ G00
+

+
∂ h0

∂ λ

)
d λ d λ0 + 2G00

(
2

∂2 h0

∂ λ ∂ G11
µ1 +

∂2 h0

∂ λ ∂ G12
ν1
)

d λ d µ1 + 2G00
∂2 h0

∂ λ ∂ G12
ν2 d λ d µ2+

+2G00

(
2

∂2 h0

∂ λ ∂ G22
ν1 +

∂2 h0

∂ λ ∂ G12
µ1
)

d λ d ν1 + 4G00
∂2 h0

∂ λ ∂ G22
ν2 d λ d ν2 + G00

∂2 h0

∂ ϑ2 d (ϑ)2+

+2
√

G00

(
2 G00

∂2 h0

∂ ϑ ∂ G00
+

∂ h0

∂ ϑ

)
d ϑ d λ0 + 2G00

(
2

∂2 h0

∂ ϑ ∂ G11
µ1 +

∂2 h0

∂ ϑ ∂ G12
ν1
)

d ϑ d µ1+

+2G00
∂2 h0

∂ ϑ ∂ G12
ν2 d ϑ d µ2 + 2G00

(
2

∂2 h0

∂ ϑ ∂ G22
ν1 +

∂2 h0

∂ ϑ ∂ G12
µ1
)

d ϑ d ν1+

+4G00
∂2 h0

∂ ϑ ∂ G22
ν2 d ϑ d ν2 + 2G00

(
2

∂2 h0

∂ ϑ ∂(G00)
2 G00 + 3

∂ h0

∂ G00

)
d (λ0)

2

−2µ1ν2 d λ0 d λ3 − 2
√

G00

[(
4

∂2 h0

∂ G00 ∂ G11
µ1 + 2

∂2 h0

∂ G00 ∂ G12
ν1
)

G00 + 2
∂ h0

∂ G11
µ1 +

∂ h0

∂ G12
ν1
]
·

· d λ0 d µ1 − 2
√

G00

[(
4

∂2 h0

∂ G00 ∂ G22
ν1 + 2

∂2 h0

∂ G00 ∂ G12
µ1
)

G00 + 2
∂ h0

∂ G22
ν1 +

∂ h0

∂ G12
µ1
]

d λ0 d ν1

− 2
√

G00

(
2

∂2 h0

∂ G00 ∂ G12
G00 +

∂ h0

∂ G12

)
ν2 d λ0 d µ2

− 4
√

G00

(
2

∂2 h0

∂ G00 ∂ G22
G00 +

∂ h0

∂ G22

)
ν2 d λ0 d ν2+[

−2
∂ h0

∂ G00
G00 + 2

∂ h0

∂ G11
(µ1)

2 + 2
∂ h0

∂ G22
(ν1)

2 + 2
∂ h0

∂ G12
µ1 ν1

]
d (λ1)

2+

+2
(

2
∂ h0

∂ G22
ν1 +

∂ h0

∂ G12
µ1

)
ν2 d λ1 d λ2 − 2ν2 d λ1 d µ3 + 2

[
− ∂ h0

∂ G00
G00 +

∂ h0

∂ G22
(ν2)

2
]

d (λ2)
2+

+2ν1 d λ2 d µ3 + 2µ1 d λ2 d ν3 − 2
∂ h0

∂ G00
G00 d (λ3)

2 + 2ν2 d λ3 d µ1 − 2ν1 d λ3 d µ2 − 2µ1 d λ3 d ν2 ,

where Q1, Q2, Q3 have the above expressions.
In conclusion, we see that the function h0 is not arbitrary but must satisfy the condi-

tions (46) (which were useful at the end of Section 4), it must be a convex function of µα

and να, and the above expression of Q must be negative defined.
As a simple case, let us consider that of a homogeneous and isotropic medium, that is,

the expression (12). We have already seen that the last term in this equation is a convex
function; so it remains to be seen that the first 2 terms also give a convex contribution. So,
let us consider

h′α =
( c µ0

2
G11 +

c ε0

2
G22

) λα

√
G00

+ ηαβγδ
λβ√
G00

νγµδ .
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In the corresponding expression of Q we can calculate the coefficients of the differentials in
µα = 0, να = 0 (for the hypothesis of a weak electromagnetic field), so that there remains

Q = c µ0
√

G00 d µβ d µβ + c ε0
√

G00 d νβ d νβ < 0 .

The reason behind this sign is that d µβ d µβ = d µα d µβ gαβ = − d µα d µβ hαβ + (Uαd µα)
2

c2 .
However, Uαd µα = d (Uα µα) − µαd Uα = − µαd Uα. Since we are calculating the co-
efficients of the differentials in µα = 0, να = 0, it follows Uαd µα = 0 and d µβ d µβ =

− d µα d µβ hαβ < 0. The same thing can be said for d νβ d νβ thus completing the proof of
the convexity.

8. Conclusions

We found a restriction on the law linking the electromagnetic tensors Fαβ and Gαβ to
the 4-force νβ and its dual µβ (which are some components of Fαβ and Gαβ). Now these
skew-symmetric tensors are determined except for the scalar function h0. This result was
achieved by imposing a supplementary conservation law. This further law also made it
possible to globally obtain a symmetric system of partial differential equations which is
also hyperbolic if h0 satisfies the convexity condition. Furthermore, the non-relativistic
limit of the present results gives those already known in the literature that have been
derived directly in the non-relativistic context. The present model can be used in a future
article to treat the case where dissipative effects are present, i.e., not limited to Euler
Equations for the material but with further balance equations. Furthermore, it can be
implemented considering also multi-component gas mixtures such as the one considered
in [27]. Regarding this last article, it must be said that Maxwell’s Equations were not
imposed at the beginning but obtained at the end as a result; unfortunately, they are not
Maxwell’s Equations in matter, but only those in empty space. So also in this respect further
investigation is needed.
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Appendix A. Identies Holding for the 4-Dimensional Levi-Civita Symbol

The 4-dimensional Levi-Civita symbol is defined as

ηαβγδ =


1 if αβγδ is an even permutation of 0123
−1 if αβγδ is an odd permutation of 0123

0 if αβγδ is not a permutation of 0123
.

Now, we have that

η0123 = ηαβγδgα0 gβ1 gγ2 gδ3 = − η0123 .



Mathematics 2022, 10, 110 21 of 22

It follows that ηαβγδ = − ηαβγδ, i.e.,

ηαβγδ =


−1 if αβγδ is an even permutation of 0123

1 if αβγδ is an odd permutation of 0123
0 if αβγδ is not a permutation of 0123

.

We now want to prove the following identity

ηαφβδ λφ√
G00

ηνψγδ
λψ

√
G00

= −2 h[αν hβ]
γ . (A1)

In fact, in the reference frame where λφ√
G00
≡ (1 , 0 , 0 , 0), the left hand side of (A1) equals

ηα0βδ ην0γδ = η0αβδ η0νγδ = −2 h[αν hβ]
γ .

To prove the last step, we note that both sides are skew-symmetric with respect to αβ and
with respect to νγ; then just prove the result for αβ = 12 and νγ = 12. In this case the
above relationship becomes

η0123 η0123 = − h1
1 h2

2 + h2
1 h1

2 = − 1 ,

and this is an identity for the above.
Another identity which has been used in the main text of this article is the following

ηαφβδ λφ√
G00

ηνψγδ νγhψθ = 2 hθ[α νβ] λν√
G00

. (A2)

To prove it, we note that its left hand side can be written as

− ηα′φβ′δ′ λφ√
G00

(− gα
α′)
(
− gβ

β′

)(
− gδ

δ′

)
ηνψγδ νγhψθ =

= − ηα′φβ′δ′ λφ√
G00

hα
α′h

β
β′h

δ
δ′ ην′ψγ′δ

(
− gγ′

ε

)
νε
(
− gν′

ν

)
hψθ =

= − ηα′φβ′δ′ λφ√
G00

hα
α′h

β
β′h

δ
δ′ ην′ψγ′δ hγ′

ε νε

(
hν′

ν −
λν′λν

G00

)
hψθ .

However, we have ην′ψγ′δ hν′
ν hψθhγ′

ε hδ′
δ = 0; so we can continue the previous steps and find

ηαφβδ λφ√
G00

ηνψγδ νγhψθ = ηα′φβ′δ′ λφ√
G00

hα
α′h

β
β′h

δ
δ′ ην′ψγ′δ hγ′

ε νε λν′

√
G00

λνhψθ 1√
G00

=

= − ηαφβδ λφ√
G00

ην′ψγ′δ hγ′
ε νε λν′

√
G00

λνhψθ 1√
G00

∗
=

= ηαφβδ λφ√
G00

ηψν′γ′δ hγ′
ε νε λν′

√
G00

λνhψθ 1√
G00

∗∗
= −2 h[αψ hβ]

γ′ h
γ′
ε νε λν hψθ 1√

G00
=

= −2 hθ[α hβ]
ε νε λν

1√
G00

= 2 hθ[α νβ] λν√
G00

,

where in the step marked with ∗
= we changed the order of the indexes ν′ψ and in the step

marked with ∗∗= we used (A1). This completes our proof.
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