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Abstract: The security of passwords generated by the graphic lattices is based on the difficulty of
the graph isomorphism, graceful tree conjecture, and total coloring conjecture. A graphic lattice is
generated by a graphic base and graphical operations, where a graphic base is a group of disjointed,
connected graphs holding linearly independent properties. We study the existence of graphic bases
with odd-graceful total colorings and show graphic lattices by vertex-overlapping and edge-joining
operations; we prove that these graphic lattices are closed to the odd-graceful total coloring.

Keywords: lattice-based cryptology; graphic lattice; total coloring; graph labeling; topological
authentication

1. Introduction and Preliminary
1.1. Introduction

Considering current text passwords, once the password file is leaked, most of the
plaintext passwords can be quickly deciphered using current cracking techniques, and
personal privacy and property will face serious losses. Topological authentication is a new
technique based on topological coding, a mixed branch of discrete mathematics, number
theory, algebraic group, graph theory, and so on. This technology is more and more widely
used in real life; for example, the user identity authentication of the smart-phone adopts a
graphic password [1,2]. Johnson et al. proposed a picture signature password to determine
access to computing devices or services [3]. Wang et al. [4] designed a topological code
consisting of a topological structure and graph colorings. According to the order of vertex-
edge-vertex, Yao et al. [5] arranged the labels or colors of each edge and two end-vertices
of a graph G, with p vertices, and q edges in a topological matrix of order 3× q; that is

Tcode =

 f (u1) f (u2) · · · f (uq)
f (e1) f (e2) · · · f (eq)
f (v1) f (v2) · · · f (vq)


3×q

(1)

where f represents a function to obtain the colors of the vertices and edges. The topological
matrix of G can derive (3q)! number strings that can be used as digital-based passwords,
and the preset coloring f can be needed during authentication, called topological authenti-
cation. It is feasible to generate passwords by topological coding, because its deciphering
process involves NP-hard problems, for instance, the graph isomorphism problem and the
graceful tree conjecture. Tian et al. [6] proved that the passwords generated by the labeling
of a graph can resist brute force attacks, dictionary attacks, guessing attacks, reproduction
attack, and denial of service attacks.
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The lattice-based cryptosystem is based on NP-Hard or NP-C problems [7,8], which
makes lattice-based cryptosystem a core research field in cryptosystems against quantum
attacks. A lattice L(B) is defined as the set of all integer combinations

L(B) =

{
n

∑
i=1

xibi : xi ∈ Z, 1 ≤ i ≤ n

}
(2)

of n linearly independent vectors b1, b2, . . . , bn in Rm with n ≤ m, where Z is the integer
set, m is the dimension, and n is the rank of the lattice, and the vector group b1, b2, . . . , bn
is called a lattice base. Lattice theory involves the Shortest Vector Problem [9], Shortest
Independent Vector Problem, Successive Minimum Problem [10], Closet Vector Problem,
and other difficult problems. The security of the lattice-based cryptology depends on the
difficulty of the difficult problems in classical number theory and computational complexity
theory [11], many difficult problems in the lattice have been proven to be NP-hard, so this
mechanism is generally considered to be resistant to the attacks from quantum computers
when it is used in cryptanalysis and design.

Inspired by the ability of lattice-based cryptology to resist supercomputers and quan-
tum computers, we propose graphic lattices for the encryption of network models or
complex systems. According to the method of topological coding, large-scale graphs are
more reliable than small-scale graphs. Therefore, it is necessary to generate large-scale
graphs from existing small-scale graphs for identification. The graphic lattice combines
operations and topological coding of the graphic base to generate the topological coding
of a large-scale graph [12,13]. In this paper, we extend the theoretical tool of topological
coding from graph labeling to graph coloring and define a new type of coloring for building
graphic lattices and providing topological coding based on new coloring.

1.2. Preliminary

The graphs described in this paper are graphs that do not contain double edges. The
labeling of a graph G refers to f : V(G)→ [a, b], there is always f (x) 6= f (y) for any pair of
vertices x, y ∈ V(G). The coloring of the graph G means that a function g : V(G)→ [a, b],
such that g(u) = g(v) for some two vertices u, v ∈ V(G) [14]. The degree of a vertex u of a
(p, q)-graph G is denoted as |N(u)|, where N(u) represents the neighbor set of the vertex
u, and a vertex having degree one is called a leaf. For simplicity of description, we write
f (P) = { f (w) : w ∈ P}, where f : P ⊂ V(G) ∪ E(G)→ [1, M], M > 1 is a positive integer.

A graph G admits a proper total coloring f : V(G) ∪ E(G)→ [1, M] if it satisfies the
following conditions [15,16]. For u, v, w ∈ V(G), then

(1) f (u) 6= f (v) for each edge uv ∈ E(G);
(2) f (uv) 6= f (uw) for v, w ∈ N(u);
(3) f (uv) 6= f (u) for v ∈ N(u).
The symbols used in this paper are shown in Table 1, and the other notations and

terminologies not mentioned here can be found in [15,17].

Table 1. Abbreviations.

Symbol Meaning

(p, q)-graph A undirected graph with p vertices and q edges
[a, b] A set {x ∈ Z : a ≤ x ≤ b} with a, b ∈ N, a < b
[m, n]o An odd integer set {m, m + 2, · · · , n} for two odd integers 1 ≤ m < n
|X| The number of elements of a set X
|N(u)| The degree of a vertex u
f (P) The label/color set f (P) = { f (w) : w ∈ P}, P ⊂ V(G) ∪ E(G)

for the labeling or coloring of a graph G

Definition 1. A (p, q)-graph G admits a total coloring f : V(G) ∪ E(G)→ [1, M], if it satisfies
(1) Each edge uv ∈ E(G) is colored as f (uv) = | f (u)− f (v)|;
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(2) The edge color set is f (E(G)) = [1, 2q− 1]o;
(3) The vertex color set is f (V(G)) ⊆ [1, 2q].
Then f is called a quasi-odd-graceful total coloring if (1) and (2) hold, and f is called an

odd-graceful total coloring if the above three conditions are met. Furthermore, if the vertex set of the
(p, q)-graph G can be divided into V(G) = X ∪Y with X ∩Y = ∅, so that each edge uv ∈ E(G)
satisfies u ∈ X and v ∈ Y, besides, max f (X) < min f (Y) is true, then we call f a set-ordered
odd-graceful total coloring.

Several examples are shown in Figure 1 for understanding Definition 1. Similar to the
definition of a lattice, we give the definition of a graphic lattice.
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Figure 1. Four graphs G1, G2, G3, G4 admit set-ordered odd-graceful total colorings.

Definition 2. Let G = (G1, G2, . . . , Gn) = (Gi)
n
1 be a graphic base composed of n linearly inde-

pendent graphic vectors under a graphical operation “♦”, where each Gi is a colored/uncolored
graph, and Fp,q is a set of colored/uncolored graphs of λ vertices and µ edges with respect to λ ≤ p,
µ ≤ q and 2n− 2 ≤ p. We write the resulting graph obtained by performing a graphical operation
♦ on a graph H and the graphic base G with ai ∈ Z0, denoted as G♦H = H♦n

i=1aiGi. In general,
the graph set

L(G♦Fp,q) = {H♦n
i=1aiGi : ai ∈ Z0, H ∈ Fp,q} (3)

with ∑n
i=1 ai ≥ 1 is called a graphic lattice, G a graphic lattice base, p is the dimension and n is the

rank of L(G♦Fp,q). Moreover, L(G♦Fp,q) is called a linear graphic lattice if every H ∈ Fp,q, each
Gi of base G and H♦n

i=1aiGi are forests or trees. A colored tree-graph lattice is full-rank p = n in
Equation (3).

Based on the following two graphical operations, some large-scale graphs containing
odd-graceful total colorings can be obtained, which increases the cryptographic space.

Definition 3. For two graphs, M1 and M2, the two types of graphical operations related to the
vertices and edges are as follows.

(1) Vertex-overlapping operation refers to overlapping a vertex u in graph M1 with a vertex v
in graph M2 to form a new vertex w, then the neighbors of w are the union of the neighbors of u and
the neighbors of v; the operation is denoted as u� v.

(2) Edge-joining operation means adding a new edge between a vertex u in the graph M1 and
a vertex v in the graph M2, the operation is expressed as u⊕ v.

2. Graphic Lattices with Odd-Graceful Total Colorings

Lemma 1. Each tree admits a quasi-odd-graceful total coloring.

Proof. Let |E(T)| = q be the number of edges of a tree T, we proceed with the proof by
induction on the number of edges of tree T. When q = 1, T has one edge e = uv, there
is a quasi-odd graceful total coloring f ′ defined as: f ′(uv) = 1, f ′(u) = 2 and f ′(v) = 3.
Suppose that this lemma is true for the tree with q − 1 edges, then, when |E(T)| = q,
we suppose that the vertex u is a leaf of tree T and its neighbor is vertex v. Because the
tree T − u admits a quasi-odd-graceful total coloring f ′ so that the edge color set of tree
T − u is f ′(E(T − u)) = [1, 2(q − 1) − 1]o, based on this fact, we define a coloring f of
tree T as follows: f (w) = f ′(w) for w ∈ V(T) ∪ E(T) \ {u, uv}, f (u) = f ′(v) + 2q− 1 and
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f (uv) = 2q− 1, obviously, f (u)− f (v) = f (uv). Therefore, the edge color set of tree T is
just [1, 2q− 1]o, which means that f is a quasi-odd-graceful total coloring of tree T. The
lemma follows induction.

2.1. Results Based on the Vertex-Overlapping Operation

Given a graphic base G = (Gi)
n
1 with disjoint graphs G1, G2, . . . , Gn, and a connected

graph H with n vertices, we overlap a vertex u of graph H with a vertex vi of graph Gi into
a new vertex for i ∈ [1, n] , the resulting connected graph is called a, H-graph, denoted as
H �n

i=1 Gi.

Theorem 1. Each Gi of a graphic base G = (Gi)
n
1 and another connected bipartite graph H with

n vertices admits a set-ordered odd-graceful total coloring for i ∈ [1, n], then the H-graph is a
connected bipartite graph and admits a set-ordered odd-graceful total coloring.

Proof. The numbers of vertices and edges of the connected bipartite graph Gi in the graphic
base G are pi and qi. Suppose that (Xi, Yi) is the bipartition of vertex set of Gi, where
Xi = {xi,1, xi,2, . . . , xi,ai}, Yi = {yi,1, yi,2, . . . , yi,bi

} and ai + bi = |V(Gi)| = pi. According to
the assumption in the theorem, each connected bipartite graph Gi admits a set-ordered odd-
graceful total coloring fi, so max fi(Xi) < min fi(Yi) holds true, without a loss of generality,
we have fi(xi,k) ≤ fi(xi,k+1) for k ∈ [1, ai − 1], fi(xi,ai ) < fi(yi,1) and fi(yi,l) ≤ fi(yi,l+1) for
l ∈ [1, bi − 1].

Let w1, w2, . . . , wn be the vertices of the connected bipartite graph H, |V(H)| = p(H)
and |E(H)| = q(H), the vertex bipartition of the graph H is denoted as (X, Y), where
X = {w1, w2, . . . , ws} and Y = {ws+1, ws+2, . . . , wn}. Because H admits a set-ordered odd-
graceful total coloring α, we can get max α(X) < min α(Y), α(wn)− α(w1) = 2q(H)− 1
and α(ws+1)− α(ws) = 1.

We overlap a vertex of graph H with a vertex of each graph Gi into a new vertex
to obtain a connected H-graph, and let A(n) = ∑n

k=1 qk, A∗(m, n) = ∑n
k=m qk for m ≤ n,

B(k) = ∑k
j=1 qs+j. We first define another total coloring g of the graph H as: g(wi) = α(wi)

for i ∈ [1, s], g(wj) = α(wj) + 2A(n) for j ∈ [s + 1, n], then each edge wiwj is colored as

g(wiwj) = g(wj)− g(wi) = α(wj) + 2A(n)− α(wi) = 2A(n) + α(wiwj). (4)

So the edge color set of graph H is g(E(H)) = [2A(n) + 1, 2A(n) + 2q(H)− 1]o. Next, we
give each graph Gi of the base G a new total coloring.

Overlap the vertex ys+1,bs+1 of graph Gs+1 and the vertex ws+1 of graph H into a vertex
ys+1,bs+1 � ws+1, and the vertex ys+1,bs+1 is recolored as

g(ys+1,bs+1) = g(ws+1) = α(ws+1) + 2A(n)

= fs+1(ys+1,bs+1) + α(ws+1) + 2A(n)− 2qs+1.
(5)

The other vertices of graph Gs+1 can be colored as

g(xs+1,k) = fs+1(xs+1,k) + α(ws+1) + 2A(n)− 2qs+1, k ∈ [1, as+1]; (6)

g(ys+1,l) = fs+1(ys+1,l) + α(ws+1) + 2A(n)− 2qs+1, l ∈ [1, bs+1]. (7)

Thereby, the edge color set of graph Gs+1 is just g(E(Gs+1)) = [1, 2qs+1 − 1]o.
For graph Gs+2, overlapping the vertex ys+2,bs+2 of Gs+2 and the vertex ws+2 of graph

H into a vertex ys+2,bs+2 � ws+2, the new color of vertex ys+2,bs+2 is

g(ys+2,bs+2) = g(ws+2) = α(ws+2) + 2A(n)

= fs+2(ys+2,bs+2) + α(ws+2) + 2A(n)− 2qs+2,
(8)
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we also have

g(xs+2,k) = fs+2(xs+2,k) + α(ws+2) + 2A(n)− 2(qs+2 + qs+1), k ∈ [1, as+2]; (9)

g(ys+2,l) = fs+2(ys+2,l) + α(ws+2) + 2A(n)− 2qs+2, l ∈ [1, bs+2]; (10)

hence, the edge xs+2,kys+2,l can be colored as

g(xs+2,kys+2,l) = g(ys+2,l)− g(xs+2,k) = fs+2(xs+2,kys+2,l) + 2qs+1. (11)

We get the edge color set of the graph Gs+2 as g(E(Gs+2)) = [2qs+1 + 1, 2(qs+1 + qs+2)− 1]o.
Generally, we overlap the vertex ys+r,bs+r of graph T and the vertex ws+r of graph H into
a vertex ys+r,bs+r � ws+r, and recolor the vertices and edges of connected bipartite graph
Gs+r for r ∈ [3, t], where s + t = n, we have

g(ys+r,bs+r ) = g(ws+r) = α(ws+r) + 2A(n)

= fs+r(ys+r,bs+r ) + α(ws+r) + 2A(n)− 2qs+r;
(12)

the other vertices in the graph Gs+r can be colored as

g(xs+r,k) = fs+r(xs+r,k) + α(ws+r) + 2A(n)− 2B(r), k ∈ [1, as+r]; (13)

g(ys+r,l) = fs+r(ys+r,l) + α(ws+r) + 2A(n)− 2qs+r, l ∈ [1, bs+r]; (14)

so the coloring of edge xs+r,kys+r,l is

g(xs+r,kys+r,l) = g(ys+r,l)− g(xs+r,k) = fs+r(xs+r,kys+r,l) + 2B(r− 1). (15)

Thereby, we get the set Gs+r as g(E(Gs+r)) = [2B(r− 1) + 1, 2B(r)− 1]o for r ∈ [3, t].
Based on the above coloring process, we also get an edge color set g(

⋃t
r=1 E(Gs+r)) =

[1, 2 ∑t
r=1 qs+r − 1]o, the maximum value of colors used is

max

{
g(v) : v ∈

t⋃
r=1

V(Gs+r)

}
= α(ws+t) + 2A(n) = 2A(n) + 2q(H). (16)

The above part has given the new total colorings of graphs Gs+1, Gs+2, . . . , Gn. Further,
we recolor the graphs G1, G2, . . . , Gs in the following. For each graph Gi with i ∈ [1, s], we
perform the vertex-overlapping operation on the vertex xi,1 of Gi and the vertex wi of H,
then we determine a new total coloring of Gi, i = 1, 2, · · · , s.

Recolor vertex xs,1 as

g(xs,1) = g(ws) = α(ws) = fs(xs,1) + α(ws)− 1, (17)

and other vertices of graph Gs as

g(xs,k) = fs(xs,k) + α(ws)− 1, k ∈ [1, as], (18)

g(ys,l) = fs(ys,1) + 2[A(s− 1) + A∗(s + 1, n)] + α(ws)− 1, l ∈ [1, bs]. (19)

Each edge xs,kys,l of the graph Gs is recolored as

g(xs,kys,l) = g(ys,l)− g(xs,k) = fs(xs,kys,l) + 2[A(s− 1) + A∗(s + 1, n)]. (20)

Therefore, the edge color set is

g(E(Gs)) = [2A(s− 1) + 2A∗(s + 1, n) + 1, 2A(s− 1) + 2A∗(s + 1, n) + 2qs − 1]o.
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We recolor the vertex xs−1,1 as

g(xs−1,1) = g(ws−1) = h(ws−1) = fs−1(xs−1,1) + α(ws−1)− 1, (21)

and recolor other vertices in the graph Gs−1 as

g(xs−1,k) = fs−1(xs−1,k) + α(ws−1)− 1, k ∈ [1, as−1]; (22)

g(ys−1,l) = fs−1(ys−1,l) + 2[A(n)− qs−1 − qs] + α(ws−1)− 1, l ∈ [1, bs−1]. (23)

g(xs−1,kys−1,l) = fs−1(xs−1,kys−1,l)− 2(qs−1 + qs) + 2A(n). (24)

Obviously, we get the edge color set g(E(Gs−1)) = [2A(n)− 2qs−1 − 2qs + 1, 2A(n)−
2qs − 1]o. In general, for d ∈ [2, s− 1], we have

g(xs−d,1) = g(ws−d) = α(ws−d) = fs−d(xs−d,1) + α(ws−d)− 1, (25)

g(xs−d,k) = fs−d(xs−d,k) + α(ws−d)− 1, k ∈ [1, as−d]; (26)

g(ys−d,l) = fs−d(ys−d,l) + 2[A(n)− A∗(s− d, s)] + α(ws−d)− 1, l ∈ [1, bs−d]. (27)

We color each edge xs−d,kys−d,l of graph Gs−d as

g(xs−d,kys−d,l) = g(ys−d,l)− g(xs−d,k)

= fs−d(xs−d,kys−d,l) + 2[A(n)− A∗(s− d, s)].
(28)

thus, we get the edge color set of the graph Gs−d,
g(E(Gs−d)) = [2A(n)− 2A∗(s− d, s) + 1, 2A(n)− 2A∗(s− d, s) + 2qs−d − 1]o.
By recoloring the graph H and the graphs Gi in the graphic base G, we obtain the

vertex color set of H-graph H �n
i=1 Gi to be g(V(H �n

i=1 Gi)) ⊆ [1, 2A(n) + 2q(H)], the
edge color set of the H-graph to be g(E(H �n

i=1 Gi))) = [1, 2A(n) + 2q(H)− 1]o. Thereby,
we claim that g is a set-ordered odd-graceful total coloring of graph H�n

i=1 Gi. An example
of the proof process of Theorem 1 is shown in Figure 2.
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Figure 2. An example for illustrating the proof of Theorem 2.

2.2. Results Based on the Edge-Joining Operation

We divide the graphs obtained by edge operation into two categories according to the
number of newly added edges between the graphs Gi and Gj in the graphic base G, where
i, j ∈ [1, n] and i 6= j.
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2.2.1. Single-Series Graphs

A single-series graph is obtained by connecting a vertex of the graph Gi and a vertex
of the graph Gi+1 with a new edge for i ∈ [1, n− 1], abbreviated as Es ⊕n

i=1 Gi, Es contains
all of the newly added edges.

Theorem 2. Each Gi in a graphic base G is a connected bipartite graph and admits a set-ordered odd-
graceful total coloring; then a single-series graph admits a set-ordered odd-graceful total coloring.

Proof. Suppose that (Xi, Yi) is the bipartition of vertex set of connected bipartite graph
Gi in the graphic base G, where Xi = {xi,1, xi,2, . . . , xi,si}, Yi = {yi,1, yi,2, . . . , yi,ti} and
si + ti = |V(Gi)| = pi, |E(Gi)| = qi. Since graph Gi admits a set-ordered odd-graceful total
coloring fi, the colors of all of the vertices can be arranged as fi(xi,1) ≤ fi(xi,2) ≤ · · · ≤
fi(xi,si ) < fi(yi,1) ≤ fi(yi,2) ≤ · · · ≤ fi(yi,ti ). The edge color set of graph Gi under coloring
fi is

fi(E(Gi)) = { fi(xi,kyi,l) = | fi(yi,l)− fi(xi,k)| : xi,kyi,l ∈ E(Gi)}
= [1, 2qi − 1]o, i ∈ [1, n].

(29)

Let F(r) = ∑r
j=1 f j(xj,sj) and M(r) = ∑r

j=1 qn−j+1, we define another total coloring g
of graph Gi as follows: g(x1,k) = f1(x1,k) for x1,k ∈ X1, g(x2,k) = f2(x2,k) + f1(x1,s1) + 1
for x2,k ∈ X2. Generally, when 3 ≤ i ≤ n, we have g(xi,k) = fi(xi,k) + F(i− 1) + i− 1 for
xi,k ∈ Xi.

Recolor vertex yn,l in the graph Gn as

g(yn,l) = fn(yn,l) + F(n− 1) + n− 1, (30)

then the color of edge xn,kyn,l ∈ E(Gn) is

g(xn,kyn,l) = g(yn,l)− g(xn,k)

= fn(yn,l) + F(n− 1) + n− 1− fn(xn,k)− F(n− 1)− n + 1

= fn(xn,kyn,l),

(31)

the edge color set of graph Gn is g(Gn) = [1, 2qn− 1]o. Then, we recolor vertex yn−1,l ∈ Yn−1
in the graph Gn−1 as

g(yn−1,l) = fn−1(yn−1,l) + F(n− 2) + n + 2qn, (32)

then the coloring of edge xn−1,kyn−1,l in the graph Gn−1 can be expressed as

g(xn−1,kyn−1,l) =g(yn−1,l)− g(xn−1,k)

= fn−1(yn−1,l) + F(n− 2) + n + 2qn − [ fn−1(xn−1,k) + F(n− 2) + n− 2]

= fn−1(xn−1,kyn−1,l) + 2qn + 2,

(33)

hence the edge color set of graph Gn−1 is g(E(Gn−1)) = [2qn + 3, 2(qn + qn−1) + 1]o.
When 2 ≤ m ≤ n− 1, we recolor the vertex yn−m,l ∈ Yn−m as

g(yn−m,l) = fn−m(yn−m,l) + F(n−m− 1) + 2M(m) + n + m− 1, (34)

and color the edge xn−m,kyn−m,l by

g(xn−m,kyn−m,l) =g(yn−m,l)− g(xn−m,k)

= fn−m(yn−m,l) + F(n−m− 1) + 2M(m) + n + m− 1

− [ fn−m(xn−m,k) + F(n−m− 1) + n−m− 1]

=2M(m) + 2m + fn−m(xn−m,kyn−m,l).

(35)
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We can calculate that the edge color set of each graph Gn−m for m ∈ [2, n− 1] as

g(E(Gn−m)) = [2M(m) + 2m + 1, 2M(m + 1) + 2m− 1]o.

Combining the following two equations

g(xn−m,1) = fn−m(xn−m,1) + F(n−m− 1) + n−m− 1, (36)

g(yn−m−1,1) = fn−m−1(yn−m−1,1) + F(n−m− 2) + n + 2M(m + 1) + m, (37)

we can get fn−m−1(yn−m−1,1)− fn−m(xn−m,1) = fn−m−1(xn−m−1,sn−m−1), and the condition
fn−m(xn−m,1) = 1, then we have

g(xn−m,1yn−m−1,1) =g(yn−m−1,1)− g(xn−m,1)

= fn−m−1(yn−m−1,1) + F(n−m− 2) + n + 2M(m + 1)

+ m− [ fn−m(xn−m,1) + F(n−m− 1) + n−m− 1]

=2M(m + 1) + fn−m−1(yn−m−1,1)− fn−m(xn−m,1)

− fn−m−1(xn−m−1,sn−m−1) + 2m + 1

=2M(m + 1) + 2m + 1.

(38)

For d ∈ [0, n − 2], we connect two vertices xn−d,1 and yn−d−1,1 with a new edge
xn−d,1yn−d−1,1 to obtain a connected single-series graph Es ⊕n

i=1 Gi, the set Es means
Es = {xn−d,1yn−d−1,1 : d ∈ [0, n − 2]}. We can obtain the following color set under
total coloring g,

g(Es) = {2[M(1) + 1]− 1, 2[M(2) + 2]− 1, 2[M(3) + 3]− 1, . . . , 2[M(n− 1) + n− 1]− 1}.

By the above deduction, the color set of the single-series graph Es ⊕n
i=1 Gi is

g(E(Es ⊕n
i=1 Gi)) = g(Es) ∪

(
n⋃

i=1

g(E(Gi))

)
= [1, 2A(n) + 2n− 3]o,

where A(n) = ∑n
j=1 qj. We let X = X1 ∪ X2 ∪ · · · ∪ Xn and Y = Y1 ∪ Y2 ∪ · · · ∪ Yn, then

(X, Y) is the vertex set bipartition of Es ⊕n
i=1 Gi, in conclusion, g is a set-ordered odd-

graceful total coloring of the single-series graph Es ⊕n
i=1 Gi. An example of the proof

process of Theorem 2 is shown in Figure 3.

75

7
7

7
3

69 59

6
5

6
3

78

1

74

74

76

3 9

11

3

3

5
5

41

64

66 66

64

21

15

68

70

6213

39

57

7

5

44

42

46

31

39

37

39 42

40

25

2
9

48

50

60

58

56 52

23

23

29

2923

17

 G1  G2  G3  G4

Figure 3. A single-series graph, made by the four graphs shown in Figure 1, admits a set-ordered
odd-graceful total coloring.

2.2.2. Multiple-Series Graphs

There is only one edge between two adjacent graphs Gi−1 and Gi in the single-series
graph for i ∈ [2, n]. However, when the number of new edges between two graphs Gi and
Gj (i 6= j) is not equal to 1, but t ≥ 1 new edges, the resulting graph Ec ⊕n

i=1 Gi is called a
multiple-series graph, Ec represents the edge set of between Gi and Gj in graphic base G.
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Theorem 3. Each Gi in a graphic base G admits a set-ordered odd-graceful total coloring, then the
multiple-series graph admits a set-ordered odd-graceful total coloring.

Proof. According to the assumptions in the theorem, the connected bipartite graph Gi
admits a set-ordered odd-graceful total coloring fi, we suppose that (Xi, Yi) is the bipartition
of the vertex set of the connected bipartite graph Gi, where Xi = {xi,1, xi,2, . . . , xi,si},
Yi = {yi,1, yi,2, . . . , yi,ti} and si + ti = pi, |E(Gi)| = qi. Arrange the colors of all vertices
as follows

fi(xi,1) ≤ fi(xi,2) ≤ · · · ≤ fi(xi,si ) < fi(yi,1) ≤ fi(yi,2) ≤ · · · ≤ fi(yi,ti ), (39)

then the edge color set of graph Gi is

fi(E(Gi)) = { fi(xi,kyi,l) = | fi(yi,l)− fi(xi,k)| : xi,kyi,l ∈ E(Gi)}
= [1, 2qi − 1]o, i ∈ [1, n].

(40)

The multiple-series graph Ec ⊕n
i=1 Gi is generated by iterations. First of all, we define

another total coloring g1 for the two graphs G1 and G2 in graphic base G. Let t1 represents
the number of new edges added between G1 and G2. We have g1(x1,k) = f1(x1,k) for
x1,k ∈ X1, g1(x2,k) = f2(x2,k) + f1(x1,s1) + 1 and g1(y2,l) = f2(y2,l) + f1(x1,s1) + 1 for
x2,k ∈ X2, y2,l ∈ Y2, also g1(y1,l) = f1(y1,l) + 2(q2 + t1) for y1,l ∈ Y1, and g1(x2,ky2,l) =
f2(x2,ky2,l) for x2,ky2,l ∈ E(G2); therefore, the edge color set in the connected graph G2 is
g1(E(G2)) = [1, 2q2− 1]o, the coloring of the edge x1,ky1,l ∈ E(G1) can be further calculated
as g1(x1,ky1,l) = f1(x1,ky1,l)+ 2(q2 + t1), then g1(E(G1)) = [2(q2 + t1)+ 1, 2(q1 + q2 + t1)−
1]o, we can get g1(E(G1))∪ g1(E(G2)) = [1, 2q2− 1]o ∪ [2(q2 + t1) + 1, 2(q1 + q2 + t1)− 1]o.
Moreover, we have

g1(x1,ky2,l) = g1(y2,l)− g1(x1,k) = f2(y2,l) + f1(x1,s1) + 1− f1(x1,k), (41)

and f2(y2,t2) = 2q2. In addition,

g1(y1,l x2,k) = g1(y1,l)− g1(x2,k) = f1(y1,l) + 2(q2 + t1)− f2(x2,k)− f1(x1,s1)− 1. (42)

For w ∈ [1, t1], we get the following inequality from the above derivation,

g1(x1,ky2,l) ≥ 2q2 − 1 + w, (43)

g1(y1,l x2,k) ≥ 2q2 − 1 + w. (44)

Obviously, (X, Y) is the vertex bipartition of the connected graph Ec1 ⊕ (G1 ∪ G2),
where X = X1 ∪ X2 and Y = Y1 ∪ Y2. The edge x1,ky2,l or y1,l x2,k satisfies the above
inequality conditions form a set Ec1, so that |Ec1| = t1, we claim that g1 is a set-ordered odd-
graceful total coloring of Ec1 ⊕ (G1 ∪ G2). Next, let O2 = Ec1 ⊕ (G1 ∪ G2), then consider
the total coloring of connected graph O2 and graph G3. According to the above method, the
edge set Ec2 can be obtained, which is the set of all edges between O2 and G3; thereby, we
can obtain a set-ordered odd-graceful total coloring g2 of O3 = Ec2⊕ (O2 ∪G3), in this way,
the theorem is proven. An example of the proof process of Theorem 3 is shown in Figure 4.
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Figure 4. An example for illustrating the proof of Theorem 3.

3. Conclusions

This paper studies the existence of graphic bases with odd-graceful total colorings
and shows graphic lattices by vertex-overlapping operations and edge-joining operations;
further, we prove that these graphic lattices are closed to the odd-graceful total coloring. If
the password generated by the graphic lattices is used to encrypt important information,
then the problem of determining the graph isomorphism and some coloring conjectures
will be involved in the process of decryption, so it is not easy to crack it, in addition, it has
the characteristics of diverse and simple generation methods.

The theoretical research of graphic lattice and its corresponding key design has great
practical significance, the topological authentication generated by combining the topological
structure of graph with labeling or a coloring can be used to obtain honeywords [6], and can
be used in fields, such as cryptographic design [18], topological coding [19] and network
information security [20,21]. Our future work will further promote the concept of the
graphic lattices, not limited to odd-graceful total coloring, but combines the topological
structure of the graph with different new colorings or new labelings, and uses the graphic
lattices to generate more authentication passwords.
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