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1. Introduction

Let B be the class of functions that are analytic and of the form:

f (z) = z +
∞

∑
k=2

akzk, (z ∈ E := {z ∈ C : |z| < 1}). (1)

The Hadamard product (or convolution ) of two functions f , g ∈ B, denoted by f ∗ g,
is defined by

( f ∗ g)(z) = f (z) ∗ g(z) = z +
∞

∑
k=2

akbkzk,

where f is given by (1) and g(z) = z +
∞
∑

k=2
bkzk. In 1978, Silverman et al. [1] obtained

characterizations of convex, starlike and spiral-like functions in terms of convolutions.
For each of these classes χ, they determined a function g that depends on χ, such that
1
z ( f ∗ g) 6= 0. both fundamental and adequate for f to be in χ. As a result of the work by
Silverman et al. [1], many important properties of certain subclasses of analytic functions
were studied by various authors (for related works, one may refer to [2–8]). For q ∈ (0, 1),
the Jackson q-derivative of a function f ∈ B is given by (see [9,10])

Dq f (z) =

{
f (qz)− f (z)
(q−1)z (z 6= 0),

f
′
(0) (z = 0).

(2)

Thus, from (2), we have

Dq f (z) = 1 +
∞

∑
k=2

[k]qakzk−1, (3)

where

[n]q =
1− qn

1− q
,
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and, as q→ 1−, [n]q → n. Here we used

Dq(zn) =
qn − 1
q− 1

zn−1 = [n]qzn−1(n ∈ N := {1, 2, 3, . . .}),

and
lim

q→1−
Dq(zn) = nzn−1 =

d
dz

zn.

Moreover , we have the following q-derivative rules

Dq[ f (z)g(z)] = g(z)Dq f (z) + f (qz)Dqg(z)

and

Dq
f (z)
g(z)

=
g(z)Dq f (z)− f (z)Dqg(z)

g(z)g(qz)
.

We recall a known differential operator Ωn
q (z), which was introduced by Govindaraj

and Sivasubramanian (see [11]), and is also known as the Salagean q-differential operator,
defined recursively on n ∈ N0 := N∪ {0} as follows: For f ∈ B and q ∈ (0, 1),

Ω0
q f (z) := f (z), Ω1

q f (z) := zDq f (z), ..., Ωn
q f (z) := zDq

(
Ωn−1

q f (z)
)

. (4)

Then, we find that

Ωn
q f (z) = ( f ∗ Gn

q )(z) (n ∈ N0, f ∈ B), (5)

where

Gn
q (z) := z +

∞

∑
k=2

[k]nq zk (n ∈ N0, z ∈ E).

Definition 1. A function f ∈ B is said to be in the class S∗λ,q(A, B) if and only if

(1− λ)
f (z)

z
+ λDq f (z) ≺ 1 + Az

1 + Bz
(z ∈ E), (6)

where q ∈ (0, 1), 0 ≤ λ ≤ 1,−1 ≤ B < A ≤ 1, Dq is the Jackson q-derivative and ≺ denotes the
usual subordination (see [12–14] ).

Definition 2. A function f ∈ B is said to be in the class Cλ,q(A, B) if and only if

Dq f (z) + λqzDq
(

Dq f (z)
)
≺ 1 + Az

1 + Bz
(z ∈ E), (7)

where q ∈ (0, 1), 0 ≤ λ ≤ 1,−1 ≤ B < A ≤ 1 and Dq is the Jackson q-derivative.

With the help of the Salagean q-differential operator Ωn
q given by (5), we have the

following definition.

Definition 3. A function f ∈ B is said to be in the class S∗λ,q(n, A, B) if and only if

(1− λ)
Ωn

q f (z)
z

+ λ
Ωn+1

q f (z)
z

≺ 1 + Az
1 + Bz

(z ∈ E),

where q ∈ (0, 1), −1 ≤ B < A ≤ 1, 0 ≤ λ ≤ 1 and n ∈ N0 = {0, 1, 2, . . .}.
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In this paper, we use a technique similar to that given by Silverman et al. [1] in
order to obtain certain convolution properties of the two classes S∗λ,q(A, B) and Cλ,q(A, B).
Furthermore, the coefficient conditions and inclusion properties of the functions in these
classes are established.

2. Convolution Conditions

Theorem 1. Let f (z) be a function of the form (1). Then f (z) ∈ S∗λ,q(A, B) if and only if

1
z

[
f (z) ∗

{
(1− λ)

z− Cz2

(1− z)
+ λ

z− (qC + (1− qz)C)z2

(1− z)(1− qz)

}]
6= 0 (z ∈ E) (8)

where C = Cθ = e−iθ+A
A−B , and 0 ≤ θ < 2π.

Proof. Let function f be in the class S∗λ,q(A, B) if and only if

(1− λ)
f (z)

z
+ λDq f (z) =

1 + Aω(z)
1 + Bω(z)

,

which is equivalent to

(1− λ)
f (z)

z
+ λDq f (z) 6= 1 + Aeiθ

1 + Beiθ , (z ∈ E, θ ∈ [0, 2π) )

which simplifies to[
(1− λ) f (z) + λzDq f (z)

](
1 + Beiθ

)
− z
(

1 + Aeiθ
)
6= 0. (9)

Since
f (z) = f (z) ∗ z

(1− z)
,

and
Dq f (z) =

1
(1− z)(1− qz)

. (10)

This implies that

(1− λ) f (z) + λzDq f (z) = f (z) ∗ z− (1− λ)qz2

(1− z)(1− qz)
. (11)

Using (9) and (11), we get

1
z

[
f (z) ∗

{(
z− (1− λ)qz2)(1 + Beiθ)− z(1− z)(1− qz)

(
1 + Aeiθ)

(1− z)(1− qz)

}]
6= 0 (12)

that is, that

1
z

 f (z) ∗

[−(1− λ)(1− qz)
{
(A− B)zeiθ − z2(1 + Aeiθ)}

−λ
{
(A− B)zeiθ −

(
q
(
1 + Aeiθ)+ (1− qz)

(
1 + Aeiθ))z2}]

(1− z)(1− qz)

 6= 0 (13)

or, equivalently,

1
z

 f (z) ∗ −(1− λ)


z− (e−iθ+A)

(A−B) z2

(1− z)

− λ


z−

(
q(e−iθ+A)
(A−B) +

(1−qz)(e−iθ+A)
(A−B)

)
z2

(1− z)(1− qz)


 6= 0.
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Then, (12) can be rewritten as the following

1
z

[
f (z) ∗

{
(1− λ)

z− Cz2

(1− z)
+ λ

z− (qC + (1− qz)C)z2

(1− z)(1− qz)

}]
6= 0 (z ∈ E).

Hence, the first part of Theorem 1 was proven.
Conversely, since assumption (8) holds for C = 0, it follows that

(1− λ) f (z) + λzDq f (z) 6= 0 for all z ∈ E,

hence the function ϕ(z) = (1− λ) f (z) + λzDq f (z) is analytic in E (i.e., it is regular in
z0 = 0, with ϕ(0) = 1).

We obtain from the first part that

(1− λ)
f (z)

z
+ λDq f (z) 6= 1 + Aeiθ

1 + Beiθ , (z ∈ E, 0 ≤ θ < 2π ). (14)

If we denote
Ψ(z) =

1 + Az
1 + Bz

, (z ∈ E),

relation (14) shows that ϕ(E) ∩ Ψ(∂E) = φ. Thus, the simply connected domain ϕ(E) is
included in a connected component of C�Ψ(∂E).From here, using the fact that ϕ(0) =
Ψ(0) together with the univalent of the function Ψ, it follows that ϕ(z) ≺ Ψ(z); that is
f (z) ∈ S∗λ,q(A, B). Thus, the second part of Theorem 1 was proven.

Taking λ = 1 in Theorem 1, we get the following corollary.

Corollary 1. Let the function f be of the form (1). Then

Dq f (z) ≺ 1 + Az
1 + Bz

(0 < q < 1,−1 ≤ B < A ≤ 1),

if and only if
1
z

[
f (z) ∗ z− (qC + (1− qz)C)z2

(1− z)(1− qz)

]
6= 0 (z ∈ E)

where C = Cθ = e−iθ+A
A−B ,and 0 ≤ θ < 2π.

Letting q→ 1− in Theorem 1, we acquire the following corollary

Corollary 2. Let the function f be of the form (1). Then,

(1− λ)
f (z)

z
+ λ f

′
(z) ≺ 1 + Az

1 + Bz
(−1 ≤ B < A ≤ 1),

if and only if

1
z

[
f (z) ∗

(
(1− λ)

z− Cz2

(1− z)
+ λ

z− (C + (1− z)C)z2)

(1− z)2

)]
6= 0 (z ∈ E)

where C = Cθ = e−iθ+A
A−B and 0 ≤ θ < 2π.

Theorem 2. A function f (z) of the form (1) is in the class S∗λ,q(n, A, B) if and only if

1−
∞

∑
k=2

[k]nq

(
e−iθ + B

A− B

)[
(1− λ) + λ[k]q

]
akzk−1 6= 0 (15)
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for all 0 ≤ θ < 2π and z ∈ E.

Proof. Note that
f ∈ S∗λ,q(n, A, B)⇔ Ωn

q f (z) ∈ S∗λ,q(A, B).

From Theorem 1, we have f ∈ S∗λ,q(n, A, B) if and only if

1
z

[
Ωn

q f (z) ∗
{
(1− λ)

z− Cz2

(1− z)
+ λ

z− (qC + (1− qz)C)z2

(1− z)(1− qz)

}]
6= 0 (z ∈ E) (16)

where C = Cθ = e−iθ+A
A−B , and 0 ≤ θ < 2π. Now we can easily deduce that

1
z

[
Ωn

q f (z) ∗
{
(1− λ)

z− Cz2

(1− z)
+ λ

z− (qC + (1− qz)C))z2

(1− z)(1− qz)

}]
=

1
z

[
Ωn

q f (z) ∗ (1− λ)

{
Cz +

z(1− C)
(1− z)

}
+ λ

{
Cz +

z(1− C)
(1− z)(1− qz)

}]
. (17)

Using
z

1− z
= z +

∞

∑
k=2

zk,
z

(1− z)(1− qz)
= z +

∞

∑
k=2

[k]qzk,

and

Ωn
q f (z) = z +

∞

∑
k=2

[k]nq akzk,

(17) may be written as

1 +
∞

∑
k=2

[k]nq (1− C)
[
(1− λ) + λ[k]q

]
akzk−1 (18)

since C = e−iθ+A
A−B , then (18) gives

1−
∞

∑
k=2

[k]nq

(
e−iθ + B

A− B

)[
(1− λ) + λ[k]q

]
akzk−1

therefore, (16) becomes

1−
∞

∑
k=2

[k]nq

(
e−iθ + B

A− B

)[
(1− λ) + λ[k]q

]
akzk−1 6= 0.

This finishes the proof of Theorem 2.

Theorem 3. If f (z) ∈ B satisfies the inequality

∞

∑
k=2

(1 + |B|)
[
(1− λ) + λ[k]q

]
[k]nq |ak| ≤ (A− B) (19)

then f (z) ∈ S∗λ,q(n, A, B).

Proof. Since ∣∣∣∣ e−iθ + B
A− B

∣∣∣∣ ≤
∣∣e−iθ

∣∣+ |B|
|A− B| =

1 + |B|
A− B
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then, ∣∣∣∣∣1− ∞

∑
k=2

[k]nq

(
e−iθ + B

A− B

)[
(1− λ) + λ[k]q

]
akzk−1

∣∣∣∣∣
≥ 1−

∞

∑
k=2

[k]nq

∣∣∣∣ e−iθ + B
A− B

∣∣∣∣[(1− λ) + λ[k]q
]
|ak||z|k−1

≥ 1−
∞

∑
k=2

[k]nq

(
1 + |B|
A− B

)[
(1− λ) + λ[k]q

]
|ak| > 0. (z ∈ E)

Thus, from Theorem 2, we have f (z) ∈ S∗λ,q(n, A, B), which ends the proof.

Theorem 4. S∗λ,q (n + 1, A, B) ⊂ S∗λ,q (n, A, B).

Proof. Since f (z) ∈ S∗λ,q(n + 1, A, B), we see from Theorem 2 that

1−
∞

∑
k=2

[k]n+1
q

(
e−iθ + B

A− B

)[
(1− λ) + λ[k]q

]
akzk−1 6= 0. (20)

we can write (20) as[
1 +

∞

∑
k=2

[k]qzk−1

]
∗
[

1−
∞

∑
k=2

[k]nq

(
e−iθ + B

A− B

)[
(1− λ) + λ[k]q

]
akzk−1

]
6= 0. (21)

Since, [
1 +

∞

∑
k=2

[k]qzk−1

]
∗
[

1 +
∞

∑
k=2

1
[k]q

zk−1

]

= 1 +
∞

∑
k=2

zk−1 =
1

1− z
. (22)

By utilizing the property, if f 6= 0 and g ∗ h 6= 0, then f ∗ (g ∗ h) 6= 0, (21) can be
written as

1−
∞

∑
k=2

[k]nq

(
e−iθ + B

A− B

)[
(1− λ) + λ[k]q

]
akzk−1 6= 0 (23)

which means that f (z) ∈ S∗λ,q(n, A, B). This finishes the proof of Theorem 4.

Theorem 5. Let the function f be of the form (1). Then f ∈ Cλ,q(A, B) if and only if

1
z

[
f (z) ∗

{
Cz + (1− λ)

z(1− C)
(1− z)(1− qz)

+ λ
z(1− C)(1 + qz)

(1− z)(1− qz)(1− q2z)

}]
6= 0 (24)

where z ∈ E, C = Cθ = e−iθ+A
A−B and 0 ≤ θ < 2π.

Proof. Note that
f ∈ Cλ,q(A, B) ⇔ zDq f (z) ∈ S∗λ,q(A, B).

Theorem 1 gives

1
z

[
zDq f (z) ∗

{
(1− λ)

{
Cz +

z(1− C)
(1− z)

}
+ λ

{
Cz +

z(1− C)
(1− z)(1− qz)

}}]
6= 0, (25)

where z ∈ E, C = Cθ = e−iθ+A
A−B and 0 ≤ θ < 2π. Since



Mathematics 2022, 10, 105 7 of 8

zDq( f ∗ g) = f (z) ∗ zDqg(z),

then, (25) can be written as

1
z

[
f (z) ∗

{
(1− λ)

(
z(1− C)

(1− z)(1− qz)
+ Cz

)
+ λ

(
z(1− C)(1 + qz)

(1− z)(1− qz)(1− q2z)
+ Cz

)}]
6= 0.

This finishes the proof of Theorem 5.

Taking λ = 1 in Theorem 5, we get the following corollary.

Corollary 3. Let the function f be of the form (1). Then

Dq f (z) + qzDq
(

Dq f (z)
)
≺ 1 + Az

1 + Bz
(0 < q < 1,−1 ≤ B < A ≤ 1),

if and only if

1
z

[
f (z) ∗

(
z(1− C)(1 + qz)

(1− z)(1− qz)(1− q2z)
+ Cz

)]
6= 0 (z ∈ E)

where C = Cθ = e−iθ+A
A−B and 0 ≤ θ < 2π.

Letting q→ 1− in Corollary( 3), we acquire the following corollary.

Corollary 4. Let the function f be of the form in (1). Then

f
′
(z) + z f

′′
(z) ≺ 1 + Az

1 + Bz
(−1 ≤ B < A ≤ 1),

if and only if
1
z

[
f (z) ∗

(
z(1− C)(1 + z)

(1− z)3 + Cz

)]
6= 0 (z ∈ E)

where C = Cθ = e−iθ+A
A−B and 0 ≤ θ < 2π.

3. Conclusions

In this paper, we introduced and studied two new subclasses of analytic functions
in the open unit disc using the Jackson q-derivative. A similar technique to that given
by Silverman et al. [1] was used to obtain certain convolution properties for these two
classes. In addition, the coefficient conditions and inclusion properties of these classes are
established. Several special cases have been examined as applications of our main results.
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