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Abstract: Let C1 and C2 be algebraic plane curves in C2 such that the curves intersect in
d1 · d2 points where d1, d2 are the degrees of the curves respectively. Oka and Sakamoto
proved that π1(C2 \ C1 ∪ C2)) ∼= π1(C2 \ C1)× π1(C2 \ C2) [1]. In this paper we prove the
converse of Oka and Sakamoto’s result for line arrangements. Let A1 and A2 be non-empty
arrangements of lines in C2 such that π1(M(A1 ∪ A2)) ∼= π1(M(A1))× π1(M(A2)) Then,
the intersection of A1 and A2 consists of |A1| · |A2| points of multiplicity two.
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1. Introduction

Let V be a hypersurface in CPl. By the hyperplane section theorem of Hamm and Le [2], the
fundamental group π1(CPl \ V ) is isomorphic to the fundamental group π1(CP2 \ C) where CP2 is
a generic 2-dimensional projective subspace in CPl and C = V ∩CP2. Zariski began the first systematic
study of the fundamental group of the complement of the curve π1(CP2 \ C) in 1929 [3]. Since then,
many authors have studied the properties of the fundamental group of complements of hypersurfaces.

In this paper, we shall study the complements of hyperplane arrangements, i.e., hypersurfaces A that
are finite collections of codimension one affine subspaces in Cl (see the work of Orlik and Terao [4]
as a general reference for arrangements). The complement of an arrangement is denoted by M(A) =

Cl \ ∪H∈AH .
Another object associated to an arrangement A is the intersection lattice L(A), which is the set

of non-empty intersections of hyperplanes in the arrangement. The intersection lattice is a partially
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ordered set ordered by reverse inclusion. Any property of the arrangement or its complement that may
be determined from the intersection lattice is called combinatorial.

One of the major questions in the study of hyperplane arrangements is to what extent the
combinatorics of the arrangement determines the topology of the complement of the arrangement. A
result of Orlik and Solomon [5] shows that the intersection lattice determines the cohomology algebra of
the complement of an arrangement. However, Rybnikov [6] gave an example of a pair of arrangements
that had the same intersection lattice but whose complements have non-isomorphic fundamental groups.

While the fundamental group of the complement of an arrangement is not a combinatorial invariant,
it is interesting to ask what properties of the fundamental group are combinatorial and for what classes
of combinatorics the fundamental group is determined. In 1996, Fan [7] defined a combinatorially
determined graph associated to any projective arrangement in CP2. Fan went on to show that if the graph
is a forest of trees then the fundamental group of the arrangement is isomorphic to a direct product of free
groups. The converse to this theorem was later proven by Eliyahu, Liberman, Schaps and Teicher [8].
In fact, if the fundamental group of the complement of an arrangement in C2 is isomorphic to direct
product of free groups, then the fundamental group determines the homotopy type of the complement of
the arrangement [9].

The following is a combinatorial theorem proven by Oka and Sakamoto regarding the fundamental
groups of complements of plane algebraic curves.

Theorem 1.1 ([1]). Let C1 and C2 be plane algebraic curves in C2. Assume that the intersection C1∩C2

consists of distinct d1 · d2 points where di(i = 1, 2) are the respective degrees of C1 and C2. Then the
fundamental group π1(C2 \ C1 ∪ C2) is isomorphic to the product of π1(C2 \ C1) and π1(C2 \ C2) .

The converse of Theorem 1.1 is not true in general. Consider the curve C1 defined as the zero locus
of Q1(x, y) = x and the curve C2 defined as the zero locus of Q2(x, y) = y2− x2− x3. Then C1 and C2

intersect in a single point at the origin in a point of multiplicity three. However, the fundamental group
is a direct product of groups:

π1(C2 \ C1 ∪ C2) ∼= π1(C2 \ C1)× π1(C2 \ C2) ∼= Z× Z

The natural question is for what families of curves does the converse of Theorem 1.1 hold. In
this paper, we prove the following theorem, which is similar to the converse of Theorem 1.1 for
hyperplane arrangements. This theorem yields combinatorial information about the arrangement from a
non-combinatorial invariant.

Main Theorem 1. LetA∗ be an arrangement of projective lines in CP2 such that π1(M(A∗)) ∼= G1×G2,
where bothG1 andG2 are non-trivial groups. Then there exists a line L ∈ A∗ such that the decone dLA∗

in C2 has non-trivial subarrangements C1, C2 such that dLA∗ = C1 ∪ C2 and the curves defined by C1
and C2 intersect transversely.

Finally, we prove the converse of Oka and Sakamoto’s theorem for line arrangements:

Main Theorem 2. Let A1 and A2 be non-empty arrangements in C2 such that

π1(M(A1 ∪ A2)) ∼= π1(M(A1))× π1(M(A2))

Then, the intersection of A1 and A2 consists of |A1| · |A2| points of multiplicity two.
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2. Preliminary Definitions and Lemmas

In this section we recall concepts about hyperplane arrangements, Fan’s graph, characteristic varieties
and resonance varieties. Each subsection concludes with several lemmas that are used to prove the main
theorems of this paper.

2.1. Arrangement Properties

We will use [4] as a general reference on hyperplane arrangements and recall here only the notation
that will be used. Let A = {Hi}ni=1 be an affine arrangement of n distinct hyperplanes in Cl and let cA
denote the cone over A.

The following proposition relates an arrangement and the cone over that arrangement.

Proposition 2.1 (Proposition 5.1, [4]). Let A be an affine arrangement and let cA be the cone of the
arrangement A. The Hopf bundle p : Cl+1 \ {0} → CPl is the map with fiber C∗ that identifies z ∈ Cl+1

with λz ∈ C∗. The restriction of the map p : M(cA)→M(A) is a trivial bundle, so

M(cA) ∼= M(A)× C∗

In this way, we may associate to every arrangement a projective arrangement defined byA∗ = p(cA).

2.2. Fundamental Group

From Proposition 2.1 and properties of fundamental groups of spaces, the next lemma follows easily.

Lemma 2.1. The fundamental group of the cone of an arrangementA and the fundamental group of the
arrangement are related by

π1(M(cA)) ∼= π1(M(A))× Z

In the proof of Proposition 2.1, Orlik and Terao show thatM(A∗) ∈ CPl is diffeomorphic toM(A) ∈
Cl. We then have the following Lemma.

Lemma 2.2. Let A be an arrangement, cA the cone of the arrangement A and A∗ the projective
arrangement associated to A. Then

π1(M(A∗)) ∼= π1(M(A))

and
π1(M(cA)) ∼= π1(M(A∗))× Z

2.3. Graphs of Fan Type

In this paper, we will use a graph defined by Fan in [7]. We recall the definition of the graph, and then
give lemmas that will be useful later.
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Definition 2.1. Let A∗ = {L1, L2, . . . , Ln} be an arrangement of n distinct projective lines in CP2. Let
M denote the set of points in CP2 where two or more lines from the arrangement A∗ intersect and let
M3 be the subset of M consisting of points with multiplicity greater than or equal to three.

Define a graph denoted by F (A) called a graph of Fan type of the arrangement A∗ as follows.

• Let the set of points M3 be the vertices of F (A).

• For each line Li ∈ A∗, let Si = M3 ∩ Li. If the set Si is not empty, then choose an ordering of
the points in Si given by Si = {p1, p2, · · · , pm}. For each j ∈ {1, . . . ,m − 1}, choose a simple
arc aj in Li that connects pj to pj+1, avoids all points in M , and avoids all arcs previously chosen.
Let Ai be the set of simple arcs chosen for the line Li. The edges of F (A) will consist of the set
of arcs A1 ∪ A2 ∪ · · · ∪ An.

The vertices of graphs of Fan type are uniquely defined. However, the edges are not uniquely defined
since any line containing more than two multiple points admits many orderings of those points that leads
to different sets of edges. This situation motivates the following definition.

Definition 2.2. Let F(A∗) denote the set of all possible graphs of Fan type for the arrangement A∗.

We introduce the following definition for the sake of brevity.

Definition 2.1. If an arrangement A in C2 is the union of two nontrivial subarrangements A1 and A2

that intersect in exactly |A1| · |A2| points of multiplicity two, then we say thatA = A1∪A2 is a general
position partition of the arrangement.

We use the phrase “general position” since two distinct lines in the complex plane intersect
transversely in a point of multiplicity two or have no point of intersection. We collect some useful
properties of graphs of Fan type of an arrangement A∗ that imply A∗ has a decone with a general
position partition.

Lemma 2.3. Let A∗ be a projective line arrangement in CP2. If a graph of Fan type F ∈ F(A∗) is
disconnected, then A∗ has a decone with a general position partition.

Proof. Let C be a connected component of the graph F and let C denote the set of all lines in A∗ that
contain a vertex in C. Let D = A∗ \ C. The set D is non-empty as otherwise the graph F would be
connected.

Let Hc ∈ C and HD ∈ D. Suppose that HC and HD intersect in a point of multiplicity greater
than two. (As the lines are in projective space, the multiplicity of their intersection is at least two.) As
HC ∈ C, then by definition the line HC contains a vertex in the connected component C of the graph F .
By definition of graphs of Fan type, this means either HC ∩HD is a vertex of the component C or there
is a path from another vertex in C contained in HC to HC ∩ HD. In either case, this implies that HD

contains a vertex in the connected component C; therefore, HD is in the set C, which contradicts the fact
that HD ∈ D. Therefore, HC and HD intersect in a point of multiplicity two.

Let L be an arbitrary line in the arrangement C. Then the decone dLA has two components dLC
and dLD, the images of C and D under the decone operation. As the arrangements C and D were in
general position in projective space, their images are in general position in affine space after the decone.
Therefore, A∗ has a decone with a general position partition.
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Lemma 2.4. Let A∗ be a projective arrangement of lines in CP2 containing at least three lines. If there
is a line H in A∗ such that all multiple points contained in H are points of multiplicity two, then A∗ has
a decone with a general position partition.

Proof. Let L denote any line in A∗ that is not H . Then the decone dLA may be written as two
subarrangements H = {dLH} and dLA \ H. As all lines in A∗ intersect H in double points, the image
of these lines will also intersect the image of H in double points in C2. Therefore, H and dLA \ H are
in general position. Whereby, we conclude that A∗ has a decone with a general position partition.

Lemma 2.5. Suppose that all graphs in F(A∗) are connected and every hyperplane in A∗ contains a
point of multiplicity at least three. If there is a graph F ∈ F(A∗) such that F has an edge that is not
part of a simple circuit, then A∗ has a decone with a general position partition.

Proof. Recall that a simple circuit is a path in a graph such that the first and last vertices of the path are
the same, no vertices are repeated (except for the first vertex as the last vertex) and no edges are repeated.

Let L be the line in A∗ containing the edge e that is not part of a simple circuit in F . Let v and w
denote the vertices of the edge e . The graph F \ {e} has two connected components. If not, then there
is a simple path P from v to w. Combining the path P with the edge e would create a simple circuit
containing e, which is a contradiction.

Denote the components of F \ {e} by Fv and Fw where Fv is the component containing v and Fw is
the component containing w. Let Bv denote the set of lines in A∗ containing vertices in Fv except for
L. Likewise let Bw denote the set of lines in A∗ containing vertices in Fw except for L. Since every line
in A∗ contains a higher order multiple point, each line besides L must be in either Bv or Bw. Therefore,
A∗ = Bw ∪̇ Bv ∪̇ {L}. The sets of lines Bv and Bw are disjoint. If they have a line, H , in common,
then H would contain a vertex that is connected to v in Fv and a vertex that is connected to w in Fw. By
definition of graphs of Fan type, there is a path between these two vertices, hence the vertices v and w
are connected, which is a contradiction.

Let Hv ∈ Bv and Hw ∈ Bw be chosen arbitrarily. Suppose that Hv and Hw intersect in a point of
multiplicity greater than two in A∗. (We know the lines intersect in a point of at least multiplicity two
as they are in CP2.) Then z = Hv ∩ Hw will be a vertex in all graphs of Fan type. As Hv ∈ Bv, by
definition there is a path from the point v to z in the graph F \{e}. Likewise, as Hw ∈ Bw there is a path
from the point z to the w in F \ {e}. Combining these paths creates a path from v to w. This yields a
contradiction as v and w are in distinct connected components. Therefore Hv and Hw intersect in a point
of multiplicity two. As these lines were chosen arbitrarily, we see that Bv and Bw intersect in general
position in CP2.

Therefore, the arrangement dLA has two subarrangements dBv and dBw the images of Bv and Bw

respectively. These arrangements intersect in general position, therefore A∗ has a decone with a general
position partition.

Corollary 2.1. IfA∗ does not have a decone with a general position partition, then for every F ∈ F(A∗)
it follows that F is connected, every edge in F is contained in a simple circuit and every hyperplane in
A∗ contains a vertex in F .
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Theorem 2.1. Let A∗ be an arrangement of projective lines. If there is an edge e on a line L such that
for all F ∈ F(A∗) with e ∈ F every simple circuit containing e has at least two edges contained in the
line L, then A∗ has a decone with a general position partition.

Proof. From Lemma 2.3, we know that if any choice of Fan’s graph is disconnected, then the conclusion
follows. Therefore, we assume that any choice of graph of Fan type from the collection F(A∗) is
connected. Let F ∈ F(A∗) be any choice of graph of Fan type that contains the edge e as described in
the statement of the theorem. Let v and w denote the vertices of the edge e.

Let E denote the set of edges in F that are contained in the line L. Then, F ∗ = F \ E is a subgraph
of F . If F ∗ is connected, then there is a simple path from v to w. However, combining this path with
the edge e would create a simple circuit in the graph F , but this contradicts the hypothesis that every
simple circuit containing the edge e in the graph F has at least two edges contained in the line L since
the path comes from F ∗. Therefore the graph F ∗ has at least two connected components and w and v are
in different components.

Let Bv denote the set of lines in A∗ \ {L} that contain vertices with paths to v in F ∗. Let Bw =

(A∗ \ {L}) \ Bv. Both of these arrangements are non-empty as v and w represent points of multiplicity
greater than three. Let Hv ∈ Bv and Hw ∈ Bw be chosen arbitrarily. Suppose Hv ∩ Hw is a point of
multiplicity greater than two. Then by definition of Hv ∈ Bv there is a path from the vertex Hv ∩ Hw

to v. Therefore, by definition of the set Bv, we have Hw ∈ Bv. However, this is a contradiction as
Hw ∈ Bw. Therefore, the lines Hv and Hw intersect in a point of multiplicity two in the arrangement
A∗. As these lines were chosen arbitrarily, the arrangements Bv and Bv are in general position. Using L
as the line at infinity will result in the arrangement dLA∗ that has a general position partition given by
dLBv ∪ dLBw.

2.4. Characteristic Varieties

The characteristic varieties can be defined for any space that is homotopy equivalent to CW-complex
with finitely many cells in each dimension [10]. In this paper, we restrict out attention to spaces that are
complements of hyperplane arrangements.

LetA = {H1, . . . , Hn} be an arrangement of hyperplanes in Cl. As the fundamental group π1(M(A))

has torsion-free abelianization with rank n, the character variety Hom(π1(M(A)),C∗) is identified with
(C∗)n. A generating set for a presentation of the fundamental group π1(M(A)) is given by {γ1, . . . , γn}
where each γi is a meridional loop around Hi whose orientation is given by the complex structure.

Definition 2.3 ([10]). The characteristic varieties of the arrangement A are the cohomology jumping
loci of M(A) with coefficients in the rank 1 local systems over C∗:

V i
d (A) := {t ∈ (C∗)n| dimCH

i(M(A),Ct) ≥ d}

where t = {t1, . . . , tn} determines a representation π1(M(A)) → C∗, γi 7→ ti that induces a rank one
local system Ct.

In this paper, we shall only be concerned with the varieties where i = 1 and d = 1. The characteristic
varieties V 1

1 (A) depend (up to a monomial automorphism of the algebraic torus (C∗)n) only on the
fundamental groupG = π1(M(A)) (Subsection 2.5, [10]), therefore we will also use the notation V 1

1 (G).
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2.4.1. Direct Products of Groups

LetA denote an arrangement n of hyperplanes and let G = π1(M(A)) denote the fundamental group
of the complement of the arrangement. Further suppose that G ∼= G1 × G2 where G1 and G2 have
ranks n1 ≥ 1 and n2 ≥ 1 respectively. As G may be finitely presented with rank equal to the number of
hyperplanes in the arrangement, it follows thatG1 andG2 may also be finitely presented and n = n1+n2.
The characteristic variety V 1

1 (Gi) is a subset of the algebraic torus (C∗)ni .

Theorem 2.2. If G ∼= G1 × G2 is the fundamental group of an arrangement A of n hyperplanes, then
the characteristic varieties V 1

1 (A) are isomorphic to

(V 1
1 (G1)× 1n2) ∪ (1n1 × V 1

1 (G2))

Proof. Let M1 and M2 be the canonical CW complexes generated by finite presentations for G1 and G2

respectively. By Theorem 3.2 in [11],

V 1
1 (M1 ×M2) = (V 1

1 (M1)× 1n2) ∪ (1n1 × V 1
1 (M2)) ⊆ (C∗)n1 × (C∗)n2

As the characteristic varieties depend only on the group, there are monomial automorphisms of the
algebraic torus (C∗)n such that

V 1
1 (A) ∼= V 1

1 (M1 ×M2)

∼= (V 1
1 (M1)× 1n2) ∪ (1n1 × V 1

1 (M2))

∼= (V 1
1 (G1)× 1n2) ∪ (1n1 × V 1

1 (G2))

Thus, the varieties are isomorphic as desired.

Corollary 2.1. Let A∗ be a projective arrangement of lines in CP2. If π1(M(A∗)) ∼= G1 × G2 then
V 1

1 (M(cA)) is isomorphic to

(V 1
1 (G1)× 1n2 × 1) ∪ (1n1 × V 1

1 (G2)× 1) ∪ (1n1+n2 × 1)

Proof. From Lemma 2.2, we conclude that π1(M(cA)) ∼= π1(M(A∗)) × Z ∼= G1 × G2 × Z. Also,
V 1

1 (Z) = {1}. Therefore, using Theorem 2.2 twice, the conclusion follows.

2.5. Resonance Varieties

Let A be an arrangement in Cl. Then, the cone of the arrangement cA is an arrangement in Cl+1.
We denote the projectivization of the arrangement in CPl by A∗. The intersection poset is the set of
non-empty intersections of hyperplanes in the arrangement and is denoted by

L(A) := {∩H∈BH|B ⊆ A}

The rank of an elementX ∈ L(A) is equal to the codimension of the spaceX in Cl. The rank n elements
are denoted by Ln(A).
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Falk introduced the resonance varieties associated to an arrangement in [12]. We recall the basic
notation and ideas here and direct the interested reader to Falk’s original work for more information. Let
A = A(A) be the graded Orlik–Solomon algebra associated to an arrangement generated by {a1, . . . , an}
where ai is associated to Hi ∈ A. If we fix an element ω ∈ A1, then the map dω : Ap → Ap+1 defined

by left multiplication creates a complex (A, dω) as dω ◦ dω = 0. Notice that ω =
n∑

i=1

λiai where λi ∈ C.

Therefore, we associate each ω with a vector λ ∈ Cn.
As (A, dω) is a complex, we denote the cohomology of the complex by Hp(A, ω) = Hp(A, λ).

Finally, we define the resonance varieties associated to the arrangement by

Rp(A) = {λ ∈ Cn|Hp(A(A), λ) 6= 0}

The following definition follows from Lemma 3.14 in [12]:

Definition 2.4. Let A = {Hi}ni=1 ∈ Cd be a central arrangement of hyperplanes. For each X ∈ L2(A)

with X contained in at least three hyperplanes in A, the local component of X in R1(A) is given by

R1(A, X) =

{
λ ∈ Cn

∣∣∣ n∑
i=1

λi = 0 and λi = 0 if X * Hi

}
We will denote this component by the simpler notation Rloc

1 (X) when there is no confusion about the
arrangement.

The next lemma follows easily from the definition as each vertex corresponds to a point in A∗ of
multiplicity at least three, hence a rank two component of L(cA).

Lemma 2.6. Let A∗ be a projective arrangement of lines in CP2. Each vertex in a graph of Fan type of
A∗ induces a non-trivial local component of the resonance varieties in R1(cA).

Example 2.1. Consider the arrangementA in C3 defined by the polynomialQ(x, y, z) = xyz(x+y)(y+

z)(x + z). This is the rank 3 braid arrangement with associated matroid M(K4). We may depict the
real part of the projectivization of this arrangement in Figure 1. Using the labeling of the lines as in
the figure, we have four local components in R1(A). Let {i, j, k} denote the point in A∗where the lines
labelled by i, j, k intersect. The four local components are

R1(A, {1, 2, 6}) =
{
λ ∈ C6|λ1 + λ2 + λ6 = 0, λ3 = λ4 = λ5 = 0

}
R1(A, {1, 3, 5}) =

{
λ ∈ C6

∣∣∣λ1 + λ3 + λ5 = 0, λ2 = λ4 = λ6 = 0
}

R1(A, {2, 3, 4}) =
{
λ ∈ C6

∣∣∣λ2 + λ3 + λ4 = 0, λ1 = λ5 = λ6 = 0
}

R1(A, {4, 5, 6}) =
{
λ ∈ C6

∣∣∣λ4 + λ5 + λ6 = 0, λ1 = λ2 = λ3 = 0
}

Let {f1, . . . , f6} be the canonical set of basis vectors for C6. Associate each hyperplane Hi with the
vector fi. Then we may write R1(A, {1, 2, 6}) as the span of the vectors f1 − f2 and f2 − f6.

Notation 2.1. Let V ⊆ Cn be any variety that is the union of linear subspaces. Then, each point v ∈ V
may be regarded as a vector v ∈ Cn. Denote by Span {V } the linear subspace of Cn spanned by the
vectors v ∈ V.
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Theorem 2.3. Let A be a central arrangement of n hyperplanes such that

V 1
1 (A) ∼= (V 1

1 (M1)× 1n2) ∪ (1n1 × V 1
1 (M2))

where n = n1 + n2. Then, the resonance variety R1(A) decomposes into a union of varieties R1(A) =

R1(M1)∪R1(M2) such that the intersection of Span {R1(M1)} and Span {R1(M2)} is the trivial vector.

Proof. By Theorem 5.2 in [11], the tangent cone V1(A) of the characteristic variety V 1
1 (A) at the point

1 coincides with the resonance variety R1(A). More explicitly, there is a linear isomorphism φ from the
tangent space of Cn at 1 to Cn such that φ(Vk(A)) = R1(A).

Let C[t1, . . . , tn1 , tn1+1, . . . , tn1+n2 ] be a coordinate ring for V = (V 1
1 (M1)× 1n2)∪ (1n1 × V 1

1 (M2))

and let C[z1, . . . , zn1 , zn1+1, . . . , zn1+n2 ] be a coordinate ring for the tangent space of 1 in Cn. Then the
variety V 1

1 (M1)×1n2 is defined by an ideal I1 ∈ C[t1, . . . , tn1 , tn1+1, . . . , tn1+n2 ] generated by the union
of an ideal I ′1 ∈ C[t1, . . . , tn1 ] and the set {tn1+1−1, . . . , tn1+n2−1}. Therefore, the tangent cone V(M1)

of the variety V 1
1 (M1) × 1n2 at 1 is defined by the ideal generated by an ideal J1 ∈ C[z1, . . . , zn1 ] and

the set {zn1+1, . . . , zn1+n2}. In a similar manner, the tangent cone of 1n1 × V 1
1 (M2) at 1 denoted by

V(M2) is defined by the ideal generated by an ideal J2 ∈ C[zn1+1, . . . , zn1+n2 ] and the set {z1, . . . , zn1}.
Therefore, the tangent cone of V at 1 is given by V(M1) ∪ V(M2). From the definition of the ideals
generating V(M1) and V(M2), the varieties are orthogonal. Therefore, the subspaces Span {V(M1)}
and Span {V(M2)} intersect only at the origin.

As V 1
1 (A) ∼= V , there is a monomial automorphism g of Cn inducing a linear isomorphism g∗ of

tangent cones such that g∗(V(M1) ∪ V(M2)) = V1(A). Combined with the map φ, we have R1(A) =

φ(g∗(V(M1)∪V(M2))). DefineR1(Mi) = φ(g∗(V(Mi))). Then, as linear isomorphisms preserve unions
and intersections of linear subspaces, the conclusion of the theorem follows.

Theorem 2.4. Let A∗ be an arrangement of projective lines in CP2 such that

V 1
1 (cA) ∼= (V 1

1 (M1)× 1n2) ∪ (1n1 × V 1
1 (M2)) ∪ (1n1 × V 1

1 (Z))

where the varieties V 1
1 (Mi) are not trivial. Let R1(A) = R1(M1)∪R1(M2) be the decomposition of the

resonance variety from Theorem 2.3. If either R1(M1) or R1(M2) does not have local components, then
A∗ has a decone with a general position partition.

Proof. Suppose that bothR1(M1) andR1(M2) do not have local components. Then there are no multiple
points in the arrangementA∗. DeconingA∗ with respect to any line will result in an arrangement of lines
in general position. Thus an arrangement that has a general position partition.

Without loss of generality, assume R1(M1) has local components and R1(M2) does not have local
components. Let B1 be the set of lines in A∗ containing points that induce local components in R1(M1)

and letB2 = A∗\B1. IfB1 = A∗, then every line in the arrangement induces a local component contained

in R1(M1). Then Span {R1(M1)} = 4 =

{
λ ∈ Cn

∣∣∣ n∑
i=1

λi = 0

}
. However, as R1(cA) ⊆ 4 [12],

R1(M2) must be the trivial subspace. By hypothesis, V 1
1 (M2) is not trivial, therefore its tangent cone

and the variety R1(M2) are not trivial subspaces. Therefore we have a contradiction and may conclude
that B1 and B2 are not empty. In fact, |B1| ≥ 3 as it contains at least one local component.
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Any line L1 ∈ B1 and L2 ∈ B2 must intersect in a point of multiplicity two. If they intersect in a
higher order point, the intersection induces a local component, but the lines in B2 do not induce local
components. Therefore, B1 and B2 intersect in general position in CP2.

Pick any line L ∈ B1 and consider dLA∗. The images of B1 and B2 intersect transversely in C2, thus
A∗ has a decone with a general position partition.

3. Main Theorems

We now prove Main Theorem 1 from the introduction, rephrased to make use of our terminology:

Theorem 3.1. Let A∗ be a projective arrangement of lines in CP2 such that π1(M(A∗)) is isomorphic
to a direct product of two non-trivial groups. Then A∗ has a decone with a general position partition.

Proof. We proceed by contradiction. Suppose that A∗ does not have a decone with a general position
partition.

As π1(M(A∗)) ∼= B × C where B and C are not isomorphic to the trivial group. By Theorem 2.2
and Theorem 2.3, we have that R1(cA) = R1(M1) ∪ R1(M2) where the intersection of the subspaces
Span {R1(M1)} and Span {R1(M2)} consists only of the trivial vector.

AsA∗ does not have a decone with a general position partition, by Lemma 2.3 all choices of graphs of
Fan-type F ∈ F(A∗) are connected. By Theorem 2.4, both components R1(M1) and R1(M2) must have
local components. Therefore, there exists an edge e ∈ F with vertices v, w such that Rloc

1 (v) ⊆ R1(M1)

and Rloc
1 (w) ⊆ R1(M2).

Since A∗ does not have a decone with a general position partition, by the contrapositive of Theorem
2.1 there is a choice of graph of Fan type F ∈ F(A∗) such that for every simple circuit containing
the edge e, the circuit does not contain another edge that lies in the same line as e. Let C =

{v, e, w, e2, z3, e3, z4, . . . , zm, em, v} be such a circuit.
Let H denote the line containing the edge e and let Hi denote the line containing ei for 2 ≤ i ≤ m.

(Note that Hi may be the same line as some Hj for i 6= j; however, H 6= Hi for all 2 ≤ i ≤ m.) Let
{fi}ni=1 denote the canonical set of basis vectors in Cn.

Let H be associated with the vector f1. Let Hj be associated with a vector gj such that gj ∈ {fi}ni=2.
Then we have the following vectors in the local resonance components induced by the vertices of the
circuit C.

f1 − gm ∈ Rloc
1 (v)

g2 − f1 ∈ Rloc
1 (w)

gj − gj−1 ∈ Rloc
1 (zj), for 3 ≤ j ≤ m

One can see that

(f1 − gm) + (g2 − f1) +
m∑

j=3

(gj − gj−1) = 0

Let
I = {i : 3 ≤ i ≤ m,Rloc

1 (zi) ⊆ R1(M1)}

J = {j : 3 ≤ j ≤ m,Rloc
1 (zj) ⊆ R1(M2)}



Mathematics 2013, 1 41

Rearranging the sum so that all vectors in local components contained in R1(M1) are on the left side of
the equal sign and all vectors in local components contained in R1(M2) are on the right side of the equal
sign yields

(f1 − gm) +
∑
i∈I

(gi − gi−1) = −(g2 − f1)−
∑
j∈J

(gj − gj−1)

As gj ∈ {fi}ni=2, the vector f1 only appears once on each side of the equality. Therefore, both sides of
the equality are non-trivial vectors. Further,

(f1 − gm) +
∑
i∈I

(gi − gi−1) ∈ Span {R1(M1)}

and
−(g2 − f1)−

∑
j∈J

(gj − gj−1) ∈ Span {R1(M2)}

Therefore, Span {R1(M1)} ∩ Span {R1(M2)} 6= {0}, which contradicts Theorem 2.3.
Hence, A∗ does have a decone with a general position partition.

We may now prove Main Theorem 2 from the introduction:

Theorem 3.2. Let A1 and A2 be non-empty arrangements in C2 such that

π1(M(A1 ∪ A2)) ∼= π1(M(A1))× π1(M(A2))

Then, the intersection of A1 and A2 consists of |A1| · |A2| points of multiplicity two.

Proof. Let ni be the number of lines in the arrangement Ai. By Theorem 2.2, we know that

π1(M(c(A1 ∪ A2))) ∼= π1(M(A1))× π1(M(A2))× Z

Using Theorem 2.2, the direct product structure of the fundamental group allows us to decompose the
characteristic variety as

V 1
1 (M(c(A1 ∪ A2))) ∼= (V 1

1 (π1(M(A1)))× 1n2+1)

∪ (1n1+1 × V 1
1 (π1(M(A1)))× 1)

∪ (1n1+n2+1)

As π1(M(cAi)) ∼= π1(M(Ai))×Z, we may identify the characteristic varieties associated to each group,
i.e.,

V 1
1 (π1(M(cAi))) = V 1

1 (π1(M(Ai))× Z) = V 1
1 (π1(M(Ai)))× {1}

Therefore, by Theorem 5.2 in [11], we may identify the resonance varietyR1(cAi) with the tangent cone
of the variety V 1

1 (π1(M(Ai)))×{1} at 1. We may also identify cAi as subarrangements of c(A1 ∪A2),
where cA1 and cA2 have the hyperplaneH∞ that was added to the cone overA1∪A2 in common. Using
Theorem 2.3 and the identifications given above, we see that

R1(c(A1 ∪ A2)) ∼= R1(cA1) ∪R1(cA2)
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and the intersection of R1(cA1) and R1(cA2) is the origin. As such, the varieties R1(cA1) and R1(cA2)

do not have any non-trivial components in common.
Suppose, by way of contradiction, that the arrangements A1 and A2 do not intersect in |A1| · |A2|

points of multiplicity two. Then there exist lines in the arrangements, H1 ∈ A1 and H2 ∈ A2, such that
the lines intersect in a point of multiplicity greater than two in the arrangementA1∪A2 or are parallel. If
the lines are parallel, then the hyperplanes in c(A1 ∪A2) corresponding to H1 and H2 intersect with the
hyperplaneH∞ added to the arrangement c(A1∪A2) in a codimension two subspaceX of C3. Likewise,
if the lines intersect in a higher order point, then the point corresponds to a codimension two subspace X
in the cone c(A1 ∪ A2). By abuse of notation, let H∞ denote a line different from H1 and H2 such that
X ⊆ H∞. In either case, the subspace X induce a non-trivial local component Rloc

1 (X) of the resonance
variety R1(c(A1 ∪ A2)).

Let {eH}H∈c(A1∪A2) be a basis for the vector space Cn1+n2+1 containing the resonance variety
R1(c(A1 ∪A2)). Then the vectors eH1 − eH∞ and eH2 − eH∞ are both contained in the local component
Rloc

1 (X). However, eH2 − eH∞ /∈ R1(cA1) and eH1 − eH∞ /∈ R1(cA2) as H2 /∈ A1 and H1 /∈ A2.
Therefore, the connected component Rloc

1 (X) is not contained in either R1(cA1) or R1(cA2). But this
is a contradiction as R1(c(A1 ∪ A2)) = R1(cA1) ∪R1(cA2) and R1(cA1) ∩R1(cA2) = {0}.

Therefore, the intersection of A1 and A2 consists of |A1| · |A2| points of multiplicity two and the
theorem is proven.

We are left with the following question:
Question: For what classes of algebraic curves does the converse of the theorem of Oka and

Sakamoto hold?

4. Applications and Examples

Figure 1. The real part of the projective arrangement defined by Q(A∗) = xyz(x− y)(x−
z)(y − z).

H1

H2

H3

H4 H5 H6

Example 4.1. Let A∗3 be the projective arrangement defined by Q(A∗3) = xyz(x − y)(x − z)(y − z).
The real part of the arrangement is depicted in Figure 1, where the line labelled with H6 is the “line
at infinity.” One should also recall that the parallel lines meet at infinity. The local components of the
resonance variety of the cone over A∗ are shown in Example 2.1. Let {f1, . . . , f6} denote the canonical
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basis for C6 as a vector space. Then each local resonance variety may be regarded as a span of vectors
as follows:

R1(cA∗, {1, 2, 6}) = Span {f1 − f6, f2 − f6} R1(cA∗, {1, 3, 5}) = Span {f1 − f5, f3 − f5}
R1(cA∗, {2, 3, 4}) = Span {f2 − f4, f3 − f4} R1(cA∗, {4, 5, 6}) = Span {f4 − f6, f5 − f6}

By a simple exercise in linear algebra, one can see that there does not exist a decomposition of R1(cA∗)
into varieties A and B such that Span {A} ∩ Span {B} = {0}. Therefore by combining the converse of
Theorem 2.3 and Corollary 2.1, we have that π1(M(A∗)) is not isomorphic to a non-trivial direct product
of groups.

Figure 2. The real part of the projectivization of a generic two-dimensional section of the
arrangement defined by Q(x, y, z) = xyz(x− y)(x− z)(y − z).

H1

H2

H3

H4 H5 H6

H7

Figure 3. The real part of the projectivization of a generic two-dimensional section of the
arrangement defined by Q(A) = xyz(x− y)(x− z)(y − z), with the line H6 as the “line at
infinity.”

H1

H2

H3

H4 H5

H6

H7

Example 4.2. Let A be the arrangement defined by intersecting a generic hyperplane with the
arrangement defined by Q(A3) = xyz(x − y)(x − z)(y − z) in C3. Figure 2 depicts the real part the
arrangementA. We note that the fundamental group π1(M(A)) is isomorphic to the pure braid group on
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four strands P4. It is well known that P4
∼= (F3 o F2) × Z. Therefore, by Theorem 3.1 the projective

completion of A has a line we may decone the arrangement with respect to so that the decone has a
general position partition. In this case, we may see in Figure 3 that if we use the line H6 as the “line
at infinity” then we may partition the decone into the sets {H7} and {H1, H2, H3, H4, H5} to obtain a
general position partition.

Acknowledgements

The author wishes to thank the reviewers for a careful reading of the article.

References

1. Oka, M.; Sakamoto, K. Product theorem of the fundamental group of a reducible curve. J. Math.
Soc. Japan 1978, 30, 599–602.
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