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Abstract: Non-invasive urinary peptide biomarkers are able to detect and predict chronic kidney
disease (CKD). Moreover, specific urinary peptides enable discrimination of different CKD etiologies
and offer an interesting alternative to invasive kidney biopsy, which cannot always be performed.
The aim of this study was to define a urinary peptide classifier using mass spectrometry technology to
predict the degree of renal interstitial fibrosis and tubular atrophy (IFTA) in CKD patients. The urinary
peptide profiles of 435 patients enrolled in this study were analyzed using capillary electrophoresis
coupled with mass spectrometry (CE-MS). Urine samples were collected on the day of the diagnostic
kidney biopsy. The proteomics data were divided into a training (n = 200) and a test (n = 235) cohort.
The fibrosis group was defined as IFTA≥ 15% and no fibrosis as IFTA < 10%. Statistical comparison of
the mass spectrometry data enabled identification of 29 urinary peptides with differential occurrence
in samples with and without fibrosis. Several collagen fragments and peptide fragments of fetuin-
A and others were combined into a peptidomic classifier. The classifier separated fibrosis from
non-fibrosis patients in an independent test set (n = 186) with area under the curve (AUC) of 0.84
(95% CI: 0.779 to 0.889). A significant correlation of IFTA and FPP_BH29 scores could be observed
Rho = 0.5, p < 0.0001. We identified a peptidomic classifier for renal fibrosis containing 29 peptide
fragments corresponding to 13 different proteins. Urinary proteomics analysis can serve as a non-
invasive tool to evaluate the degree of renal fibrosis, in contrast to kidney biopsy, which allows
repeated measurements during the disease course.

Keywords: fibrosis; urine; peptides; IFTA; biomarkers

1. Introduction

Proteomics-based techniques have been successfully used for the detection of specific
biomarkers, with the possibility to describe the health status of individuals. Many pro-
teomic studies have been performed in the context of different kidney diseases, providing
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valid and robust protein and peptide biomarkers for the diagnosis and prognosis of chronic
kidney disease (CKD). The most commonly applied technique in this context is capillary
electrophoresis coupled with mass spectrometry (CE-MS) with more than 800 manuscripts
published within the last 20 years [1]. The application of this technique to analyze urinary
peptide profiles in CKD patients was described in a review article in more detail [2]. Recent
studies have proposed urinary proteome analysis as non-invasive liquid biopsy, providing
the possibility to replace invasive kidney biopsy if it is not available or contraindicated [3].
Discriminating patients with CKD from healthy individuals, predicting progression of
CKD, and distinguishing between different CKD etiologies was shown to be feasible us-
ing urinary proteome analysis [4–6]. Moreover, in the work of Magalhães et al. [3], the
association of urinary peptides with renal interstitial fibrosis was described. Although
interstitial fibrosis and tubular atrophy (IFTA) undoubtedly has a high prognostic value
in all subtypes of CKD, its evaluation in routine diagnostic kidney biopsy currently lacks
standardization [7]. CKD is one of the major global health burdens with a worldwide
prevalence of 9–13% and an emerging risk factor for global morbidity and mortality, espe-
cially in countries with a low Socio-Demographic Index (SDI) [8,9]. The Kidney Disease:
Improving Global Outcomes (KDIGO) CKD Work Group has defined CKD as an abnormal
kidney structure or function present for more than 3 months with health implications [10].
The classification of CKD consists of three elements: cause, glomerular filtration rate (GFR)
category, and albuminuria category. Together with comorbidities, this classification has
been shown to allow risk stratification and prediction of CKD prognosis [11]. While GFR
and albuminuria are easy to determine and are routinely assessed when evaluating a CKD
patient, determining the cause of CKD can be more challenging. A thorough assessment of
medical history, routine, and extended serological laboratory testing of blood and urine and
functional diagnostics (i.e., ultrasound or computed tomography) are tools for evaluating
CKD etiologies. Despite these tests, to achieve a high level of certainty regarding CKD
etiology, histological analysis of kidney tissue is pivotal. Therefore, kidney biopsy remains
a gold standard in the diagnosis of CKD etiologies and allows more accurate prediction
of prognosis, therapy, and clinical outcome. One key feature assessed in most biopsies is
interstitial fibrosis and tubular atrophy (IFTA). IFTA is a common final pathway of extra-
cellular matrix (ECM) accumulation, which is a central pathogenetical mechanism with
high contribution to functional loss in many chronic kidney diseases. It involves a variety
of different cell types and numerous molecular pathways that lead to accumulation of
collagen and related molecules in the interstitium [12]. IFTA has been used as a prognostic
marker for CKD and is a hallmark for disease progression to end stage kidney disease
(ESKD) [13]. Because of its prognostic value, IFTA has been incorporated into several
scoring systems for CKD [14,15]. Unfortunately, due to its invasive nature, kidney biopsy
cannot be routinely used for diagnosis of CKD. Kidney biopsy has a relatively high cost,
due to hospitalization. In most cases, the need for a highly trained nephrologist who can
carry out the procedure and a list of contraindications (bleeding diathesis, presence of
a solitary native kidney, uncontrolled severe hypertension, anticoagulant or antiplatelet
drugs) limits the availability of a percutaneous kidney biopsy as a diagnostic tool.

It was our aim to provide a solution to the problem of obtaining vital histological data
to allow optimum clinical diagnosis. We investigated urinary peptide profiles and corre-
lated them with corresponding histopathological findings regarding IFTA, thus offering a
new non-invasive tool to quantify IFTA and facilitate prediction of progression of CKD into
ESKD. Such a tool might contribute to or even substitute for kidney biopsy diagnostics.

2. Materials and Methods
2.1. Patient Cohort

Patient samples were collected in the Department of Nephrology of the Hospital
Bayreuth GmbH (Germany) from 2008 to 2020. Samples were collected on the day of the di-
agnostic kidney biopsy. Clinical indication for biopsy was given beforehand independently
of the study. Written consent for anonymized data retrieval and storage was obtained
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at least 1 day prior to the biopsy. The local ethics committee of the Friedrich-Alexander-
Universität Erlangen-Nürnberg provided approval for the nephrological biobank of the
Klinikum Bayreuth (ethic approval code 264_20 B) and the urinary proteomics analy-
sis (ethic approval code 221_20 B). On the day of the kidney biopsy, venous blood was
drawn and immediately analyzed for creatinine concentration and estimation of eGFR
using Chronic Kidney Disease Epidemiology Collaboration (EPI) equation [16]. Multiple
urine samples were obtained for assessment of proteinuria and cryo-stored for capil-
lary electrophoresis and mass spectrometry. Biopsies were carried out and probes were
sent to the Department of Nephropathology of the Friedrich-Alexander University Erlan-
gen/Nürnberg for histopathological analysis.

A primary, and if applicable, a secondary histological diagnosis were extracted from
the written histological report. Degree of IFTA was determined visually after histopatho-
logical staining through the Department of Nephropathology of the University of Erlangen-
Nürnberg and given as percentage fibrotic vs. total interstitial area. The primary diagnosis
of the biopsy was used for definition of patient groups. Transplant biopsies were excluded
from further analysis.

The whole patient cohort consisting of 435 probe sets was divided in a low fibrosis
group (n = 140; % IFTA < 10%) and a high fibrosis group 1 (n = 246; % IFTA≥ 15%). Patients
with IFTA percentages between 10 and 15% were excluded from primary analysis. The
cut-off was chosen to also include early stages of fibrosis in the fibrosis group and exclude
only patients with no relevant fibrosis. The cut-off was also chosen because of a rapid
downfall of eGFR observed in our cohort around 10–20% IFTA, which indicates significant
loss of kidney function possibly linked to fibrosis.

2.2. CE-MS Analysis

Technical details of the CE-MS analysis, including details on sample preparation,
performance characteristics, reproducibility, etc. were described in detail in [17]. The
technology was chosen due to its proven performance in routine applications in multiple
studies, and also as a result of the availability of a large database for comparison [1] and
since it was applied in large prospective clinical trials in the context of CKD [18]. For
the CE-MS analysis, urine samples were thawed and 0.7 mL of urine were diluted with
0.7 mL of a solution containing 2M urea (VWR Chemicals, Leuven, Belgium), 10 mM
NH4OH (Merc KGaA, Darmstadt, Germany), and 0.02% SDS (Carl Roth GmbH, Karlsruhe,
Germany). The samples were ultrafiltered using a Centrisart ultracentrifugation filter
device (20 kDa molecular weight cut-off; Sartorius, Goettingen, Germany). Subsequently,
1.1 mL filtrate was obtained and applied onto a PD-10 desalting column (GE Healthcare
Bio Sciences, Uppsala, Sweden) equilibrated in 0.01% aqueous NH4OH. Finally, the eluate
was lyophilized and stored at 4 ◦C prior to resuspension in HPLC-grade water for CE-
MS analysis. CE-MS analysis of each individual sample was performed using a P/ACE
MDQ capillary electrophoresis system (Beckman Coulter, Fullerton, CA, USA) with a
90 cm, 50 µm ID fused-silica capillary (New Objective Littleton, MA, USA) online coupled
to a MicroTOF mass spectrometer (BrukerDaltonic, Bremen, Germany). A solution of
20% acetonitrile (Sigma-Aldrich, Taufkirchen, Germany) in HPLC-grade water (Merc,
Darmstadt, Germany) supplemented with 0.94% formic acid (Merc KGaA, Darmstadt,
Germany) was used as running buffer. The electrospray ionization interface (ESI) sprayer
(Agilent Technologies, Palo Alto, CA, USA) was grounded, and the ion spray interface
potential was set between −4 and −4.5 kV. Spectra were accumulated every 3 s over a
range of mass-to-charge from 350 to 3000. The sample acquisition time was 60 min.

The obtained CE-MS spectra were analyzed using MosaFinder software [1]. Only
signals observed in a minimum of three consecutive spectra with a signal-to-noise ratio >3
were considered. Internal standards as reference for mass and migration time by applying
global and local linear regression were used for data calibration. The obtained peak list of
each polypeptide is characterized by molecular mass, CE-migration time, and normalized
ion signal intensity. Signal intensities were used as a measure of relative abundance and



Proteomes 2021, 9, 32 4 of 15

normalized using 29 internal standard peptides [19]. All detected peptides were deposited,
matched, and annotated in a Microsoft SQL database, permitting further correlation and
statistical analysis.

Raw data from the CE-MS analysis from 435 urine samples of patients used in this study
are available at Zenodo (https://zenodo.org/record/4964524, accessed on 9 July 2021).

2.3. Sequencing of Peptides

Urinary peptides were sequenced using CE- tandem mass spectrometry (MS/MS) or
liquid chromatography (LC)-MS/MS, as described in detail [20]. MS/MS experiments were
performed using an Ultimate 3000 nano-flow system (Dionex/LC Packings, Sigma-Aldrich,
Taufkirchen, Germany) or a P/ACE MDQ capillary electrophoresis system (Beckman
Coulter, Fullerton, CA, USA), both connected to an LTQ Orbitrap hybrid mass spectrometer
(Thermo Fisher Scientific Inc., Waltham, MA, USA) equipped with a nano-electrospray ion
source. The mass spectrometer is operated in data-dependent mode to automatically switch
between MS and MS/MS acquisition. Survey full-scan MS spectra (from m/z 300–2000)
were acquired in the Orbitrap. Ions were sequentially isolated for fragmentation. Data
files were searched against the UniProt human nonredundant database using Proteome
Discoverer 2.4 and the SEQUEST search engine without enzyme specificity (activation
type: HCD; precursor mass tolerance: 5 ppm; fragment mass tolerance: 0.05 Da). No fixed
modifications were selected, and oxidation of methionine and proline were selected as
variable modifications. The minimum precursor mass was set to 790 Da and maximum
precursor mass to 6000 Da with a minimum peak count of 10. For further validation of
obtained peptide identifications, the correlation between peptide charge at the working pH
of 2 and CE-migration time was utilized to minimize false-positive identification rates [21].
Here, the calculated CE-migration time of the sequence candidate, based on the number of
basic amino acids with the sequence, was compared to the experimental migration time.

2.4. Protease Prediction

The open-source tool for protease prediction Proteasix (www.proteasix.org, accessed
on 25 June 2021) was used in order to link urinary peptides to the proteases potentially
involved in their generation [22]. Proteasix uses information about naturally occurring
peptides, that is, the corresponding protein UniProt identifier and start/stop amino acid
position to predict potential cleaving proteases. Only proteases observed to match cleavage
site associations retrieved from the literature were considered (“observed mode”). A list of
predicted proteases was generated as a result of the analysis.

2.5. Statistical Methods

For the definition of biomarkers, the statistical analysis was performed using R-based
statistic software. Only peptides with available amino acid sequence (n = 4080) were used
in statistical analysis. In addition, a peptide frequency threshold of at least 30% in one of
the groups was considered. Wilcoxon rank sum test was used for the calculation of the
p-values. The p-values were adjusted for multiple testing assessed by the method described
by Benjamini and Hochberg [23]. Potential biomarkers were combined in a support vector
machine (SVM)-based classifier.

The non-parametric Spearman’s rank correlation analyses were performed using
MedCalc software (version 12.1.0.0; MedCalc Sofware, Mariakerke, Belgium).

Receiver-operating-characteristic (ROC) curves [24,25] were generated for the classifi-
cation of the patient samples with the classifier. The ROC curve was obtained by plotting all
sensitivity values (true positive fraction) on the y axis against their equivalent (1-specificity)
values (false positive fraction) on the x axis for all available thresholds. Each point on the
ROC plot represents a sensitivity/specificity pair corresponding to a particular decision
threshold. The area under the ROC curve (AUC) was evaluated as it provides a single
measure of overall accuracy independent of any threshold. Calculation of 95% confidence
intervals (Cl) was based on exact binomial calculations, and the optimal balance of sensitiv-

https://zenodo.org/record/4964524
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ity and specificity was determined based on the Youden index J. For the ROC analysis, the
MedCalc software was used as well.

Cohort matching for eGFR, proteinuria, age, and sex was performed using nearest
neighbor interpolation in R-based software.

3. Results
3.1. Patient Characteristics

Four-hundred-and-thirty-five patients with a renal biopsy and an assessment of IFTA
by a renal pathologist were enrolled in this study. The patients’ characteristics are given
in Table 1.

Table 1. Patient characteristics of study cohorts. * Values are given as mean ± SE. Training cohort
with two matched sub-cohorts (matching described in methods) with fibrosis and no fibrosis. p-values
between training and test cohort are given in right column (Student’s t-test).

Study Cohort (n = 435) Training Cohort Test Cohort p Test VS.
Training

Characteristics Fibrosis No Fibrosis

Number of subjects 100 100 235
Age (years) * 58.8 ± 14.9 56.9 ± 15.4 58.3 ± 17.5 0.793

Gender (men/women) 64/36 55/45 139/96 n/a
eGFR (mL/min/1.73 m2,

CKD-EPI) *
35.9 ± 21.8 41.6 ± 26 37.7 ± 35.3 0.714

Proteinuria (mg/24 h) * 4274 ± 4415 3809 ± 4395 3785 ± 4074 0.814
IFTA% * 29.1 ± 13.9 2.6 ± 2.8 25.7 ± 21.1 1.267 × 10−7

The following primary histological diagnoses were included as singular patient
groups: acute tubular necrosis (ATN, n = 18, including one Crush nephropathy), myeloma
cast nephropathy (CAST, n = 12), diabetic nephropathy with nodular nephrosclerosis (DNP,
n = 23), primary focal segmental glomerulosclerosis (FSGSp, n = 19), hypertensive ischemic
nephropathy (HINP, n = 86), IgA nephropathy (IGANP, n = 84), Henoch-Schönlein purpura
(IGAPSH, n = 12), interstitial nephritis (INTN, n = 24), lupus nephritis (LN, n = 15), minimal
change glomerulopathy (MCGN, n = 14), membranous nephropathy (MEMGN, n = 25),
and vasculitis (VASCulitis, n = 41). The following primary diagnoses were grouped accord-
ing to similar pathogenetical mechanisms: paraprotein-associated diseases (AMYLOID,
including amyloidosis, fibrillary glomerulonephritis and light chain deposit disease, n = 9),
membranoproliferative GN-like diseases (C3MPPI_GP, including membranoproliferative
glomerulopathy, C3 glomerulopathy and post-infectious glomerulonephritis, n = 18), colla-
gen IV-associated diseases (COLIVAD, including Alport′s syndrome and thin basement
membrane disease, n = 13), and pathologies associated with vascular occlusion (VASCu-
lar, including thrombotic microangiopathy, renal cholesterol atheroemboli, and ischemic
glomerulopathy, n = 12). We also included five cases of secondary FSGS without clear
primary cause and five CKD probe sets without clear histopathological diagnosis.

3.2. Relationship between IFTA and Clinical Parameters

IFTA assessed in percentage of fibrosis of interstitial area was correlated to eGFR,
proteinuria, and age. In fact, the percentage of IFTA showed moderate, but statistically
significant correlation with patient eGFR, proteinuria levels, and patient age as shown
in Figure 1a–c.
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3.3. Definition of Urinary Peptides Associated with IFTA

For the definition of peptides associated with IFTA, we generated a training cohort
based on two patient groups matched for eGFR, proteinuria, age, and sex. The two groups
were separated according to the percentage of IFTA seen in the kidney biopsy. Patients
with IFTA ≥10% and <15% were not used for biomarker definition (n = 49). The final
training cohort included 100 non-fibrosis and 100 fibrosis patients.

After matching of the two groups of the training cohort, no statistically significant
differences (Figure 1d–f)) between these groups regarding eGFR (p = 0.1252), proteinuria
(p = 0.1551), age (p = 0.5816), and sex (p = 0.2491, no graph shown) were observed.

For the definition of IFTA-associated biomarker, the CE-MS data of the training
cohort was used. Only peptides with a frequency >30% in at least one of the groups were
considered in the statistical comparison between the IFTA <10% and IFTA≥15% group. We
determined a total of 243 peptides with significant differences between the fibrosis and non-
fibrosis groups (Wilcoxon rank sum test test, p < 0.05). Following adjustment by Benjamini
and Hochberg, we obtained 29 still significant urinary peptides. These were combined
using the SVM algorithm to a classifier called fibrosis peptide profile FPP_29BH. These
29 peptides corresponded to a total of 13 different proteins. Nineteen of the 29 peptide
fragments corresponded to seven different collagen chains.

The classifier peptides and their properties are listed in Table 2.
Furthermore, the 100/100 training cohorts matched for eGFR, proteinuria, sex, and

age were subsequently matched for CKD etiology. This matching resulted in a smaller
cohort of 55 fibrosis and 55 no-fibrosis patients. The number of patients for each CKD
etiology and each fibrosis group was (for abbreviations see methods): AMYLOID 2, ATN 1,
C3MPPI_GP 3, CAST 2; COLIVAD 3, DNP 2, FSGSp 4, HINP 6; IGANP 12; IGAPSH 1;
INTN 4; LN 2; MEMGN 3; VASCular 1; VASCulitis 9.
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Table 2. Twenty-nine defined biomarkers for fibrosis: In the first column, gene symbols are given followed by amino acid sequences. Also listed are the adjusted p-values; mean peptide
intensities (normalized using internal standards) in fibrosis (IFTA ≥ 15%) and no fibrosis (IFTA < 10%) groups are given with fold change (fibrosis/no fibrosis) for the training cohort
100/100. In addition, the unadjusted Wilcoxon p-values, mean intensities, and fold change for the etiology-matched cohort are given (55/55). * This peptide could not be validated in the
etiology-matched cohort (significant regulation in opposite direction).

Urinary Peptides Training Cohort 100/100 Etiology Matched Cohort 55/55

Gene Symbol Sequence adj. p-Value
(BH)

Mean Intensity
Fibrosis

Mean Intensity
No Fibrosis Fold Change Unaj.Wilcox-

p-Value
Mean Intensity

Fibrosis
Mean No
Fibrosis Fold Change

COL10A1 GHPGPSGPPGKpGYGSpGLQGEpGLPGPPGPS 2.42 × 10−4 782.77 380.77 2.056 1.34 × 10−2 755.71 443.15 1.705
COL1A2 GPQGVQGGKGEQGPPGPPGFQGLPGPSGpAGEVGKpGERG 2.42 × 10−4 1151.22 272.13 4.230 3.21 × 10−3 1108.09 328.9 3.369
COL1A2 DQGPVGRTGEVGAVGpPGFAGEKGPSGEAGTAGPpGTpGP 8.56 × 10−4 196.08 75.14 2.610 1.22 × 10−2 168.37 83.85 2.008
AHSG SLGSPSGEVSHPRKT 8.72 × 10−4 2282.82 975.54 2.340 4.44 × 10−4 2515.71 1480.13 1.7
AHSG VVSLGSPSGEVSHPRKT 9.37 × 10−3 11,404.37 7829.98 1.457 3.12 × 10−2 13,131.49 12,697.43 1.034
PIGR LFAEEKAVADTRDQADGSRASVDSGSSEEQGGSSRA 1.22 × 10−2 774.23 654.63 1.183 2.49 × 10−3 624.32 360.05 1.734

COL1A2 VGRTGEVGAVGPpGFAGEKGPSGEAGTAGPpGTpGP 1.82 × 10−2 109.41 46.41 2.357 2.91 × 10−1 92.33 59.3 1.557
COL3A1 ARGLpGppGSNGNPGPPGPSGSPGKDGPPGPAGNTGAPG 2.34 × 10−2 902.6 594.85 1.517 1.01 × 10−1 889.74 771.39 1.153

SERPINC1 FSPEKSKLPGIVAEGRDDLYVSDAFHKAF 2.34 × 10−2 9438.98 5838.02 1.617 1.80 × 10−3 11,768.37 8101.28 1.453
COL2A1 GETGAAGpPGpAGPAGERGEQGAPGP 2.34 × 10−2 43.02 135 0.319 1.03 × 10−2 58.08 160.81 0.361
COL4A1 pGIPGFPGSKGEMGVMGTPGQPGSPGPVGAPGLPGEKGDH 2.34 × 10−2 3045.2 1456.47 2.091 4.89 × 10−2 2563.4 1629 1.574
COL1A1 ANGApGNDGAKGDAGApGApGSQGApGLQGMpGERGAAGLPGp 2.69 × 10−2 1210.38 814.9 1.485 1.94 × 10−1 1267.81 1012.08 1.253
COL3A1 ApGPAGSRGApGPQGpRGDKGETGERG 2.69 × 10−2 1103.52 618.43 1.784 1.27 × 10−1 857.9 692.61 1.239
COL1A1 GADGQPGAKGEpGDAGAKGDAGPpGPAGP 2.69 × 10−2 108.1 388.09 0.279 7.21 × 10−3 106.07 519.75 0.204
COL1A1 ANGApGNDGAKGDAGApGApGSQGApGLQGMpGERGAAGLpGp 2.74 × 10−2 447.16 170.81 2.618 2.04 × 10−1 470.53 214.82 2.19

HBA1 AAHLPAEFTPAVHASLDKFL 2.81 × 10−2 610.19 14,067.56 0.043 9.65 × 10−3 903.23 19,261.46 0.047
COL1A1 ADGQpGAKGEpGDAGAKGDAGPPGPAGP 2.81 × 10−2 212.86 365.65 0.582 1.01 × 10−1 217.32 302.79 0.718
COL3A1 EGGKGAAGpPGPpGAAGTpGLQG 2.81 × 10−2 689.84 500.7 1.378 7.94 × 10−2 705.78 551.83 1.279

COL22A1 GTEGKKGEAGPPGLPGPpGIAGpQGSQGERGADGEVGQKGDQG
HPGVPGFMGPPGNPGP 2.81 × 10−2 192.19 159.22 1.207 4.74 × 10−2 171.5 166.83 1.028

AHSG GVVSLGSPSGEVSHPRKT 2.81 × 10−2 2476.64 1429.55 1.732 2.24 × 10−2 2876.18 2229.17 1.29
PIGR FAEEKAVADTRDQADGSRASVDSGSSEEQGGSSRALVSTLVPL 3.06 × 10−2 891.67 377.71 2.361 3.43 × 10−2 861.08 320.08 2.69

COL2A1 ppGSNGNpGPPGPPGPSGKDGPKGARGDSGPPGRAGEPG 3.50 × 10−2 412.14 184.53 2.233 2.54 × 10−1 396.08 243.4 1.627
COL18A1 DDILASPPRLPEPQPYPGAPHHSS 3.77 × 10−2 611.67 433.29 1.412 5.12 × 10−1 560.24 524.1 1.069
COL3A1 EpGRDGVpGGPGm 3.77 × 10−2 2254.17 1608.12 1.402 1.08 × 10−2 2160.1 1392.93 1.551

HBA1 AAHLPAEFTPAVHASLDKFLAS 4.15 × 10−2 847.52 30,583.66 0.028 3.06 × 10−2 1046.13 30,595.91 0.034
FGA DEAGSEADHEGTHSTKRGHAKSRPV 4.15 × 10−2 31,926.35 22,421.31 1.424 5.01 × 10−1 29,485.54 34,133.85 0.864

AHSG VSLGSPSGEVSHPRKT 4.15 × 10−2 3680.2 2187.3 1.683 2.25 × 10−2 * 2326.63 3525.8 0.66 *
COL3A1 GpGSDGKPGPpG 4.86 × 10−2 145.26 347.21 0.418 2.28 × 10−2 192.46 399.37 0.482
COL1A1 GSpGSpGPDGKTGPPGPAG 4.86 × 10−2 74.29 178.76 0.416 4.19 × 10−2 68.72 157.74 0.436
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Similar to the 100/100 matched cohorts, in the 55/55 CKD etiology-matched cohorts
there was no difference between the two groups regarding eGFR, proteinuria, age, and sex
(data not shown).

Using the aforementioned statistical analysis, 106 IFTA peptides were identified using
Wilcoxon rank sum testing. Though, after adjustment by Benjamini and Hochberg for
multiple testing, no significant peptide remained. Nevertheless, only one of the 29 peptides
used in the classifier showed significant opposite regulation in the etiology-matched smaller
cohorts (Table 2).

3.4. Validation of the FPP_29BH Classifier

The FPP_29BH classifier containing 29 specific fibrosis biomarkers was first vali-
dated using the cross-validated training data by application of the take one out procedure
(100/100 cohort matched for eGFR, proteinuria, age, and sex). The FPP_BH29 resulted in
an AUC of 0.851 and 95% CI in the range of 0.800 to 0.902 (p < 0.0001) on the no fibrosis
(IFTA < 10%) and fibrosis (IFTA ≥ 15%) patients in ROC. The ROC curve is presented
in Figure 3.

The FPP_BH29 classifier was then validated using independent samples that had
not previously been used in the 100/100 matched cohort for biomarker identification
and classifier generation (test set, n = 235). The patients with IFTA between 10 and 15%
were excluded (n = 49) and 40 patients were defined as non-fibrotic (IFTA < 10%) and
146 as fibrotic (IFTA ≥ 15%). The application of the FPP_BH29 on this test set resulted
in AUC of 0.840 (95% CI: 0.779 to 0.889, Figure 2). Applying the optimal classification
threshold based on the Youden index at 0.025, classification of this independent test
cohort resulted in a sensitivity of 74.0% (95% CI: 66.1–80.9) and a specificity of 90.0%
(95% CI: 76.3–97.2).
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Figure 2. ROC-analysis of FPP_BH29 classifier applied to total cross-validated training data (left) and to an independent
test set composed of patients with IFTA < 10% and IFTA ≥ 15 (right). In the bottom right corner of the graph area under the
ROC curve (AUC), 95% confidence intervals and significance levels (p < 0.001) are given.

Furthermore, the classifier was applied to all test set data (n = 235) with inclusion
of patients with an IFTA percentage between 10 and 15%. Figure 3 shows a highly sig-
nificant correlation between IFTA and the FPP_BH29 classifier with a Rho value of 0.496
(p < 0.0001).
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Figure 3. Correlation of IFTA with fibrosis classifier FPP_ BH29. The fibrosis classifier shows a
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3.5. Prediction of Proteases

The prediction of protease involved in the generation of the 29 significant peptides
resulted in 12 proteases that had at least one protease/cleavage site association reported
in the literature. All proteases are listed in Table 3. Proteases with more than one pro-
tease/cleavage site association are cathepsin D (CTSD), 72 kDa type IV collagenase (MMP2),
collagenase 3 (MMP13), and Matrix metalloproteinase-14 (MMP14).

Table 3. List of predicted proteases involved in the generation of the 29 fibrosis-associated peptides. Cleavage proteins,
predicted involved proteases, and number of associated cleavage events (↓ down and ↑ regulated) are indicated. Given is
also the fold change (average fibrosis/average no fibrosis based on training data) and the p-value (Mann-Whitney). Bold
marked are proteases with number of cleavage events >1.

Cleaved
Proteins

Protease (Gene)
n of Cleaving Sites Fold

Change
Average
Fibrosis

Average No
Fibrosis

p
↓ ↑

HBA1 (5) Cathepsin D (CTSD) 5 0 0.03 752.59 23977.22 0.0006

COL2A1 (1)
Macrophage metalloelastase

(MMP12),
Neutrophil collagenase (MMP8)

1 0 0.32 43.02 135.00 0.0002

COL1A1 (1),
COL1A2 (2)

72 kDa type IV collagenase
(MMP2) 1 2 1.26 126.59 100.10 0.1580

COL2A1 (1),
COL18A1 (2),
COL1A2 (2)

Collagenase 3 (MMP13) 1 4 1.40 314.37 224.63 0.0002

COL18A1 (1)

Cathepsin B (CTSB),
Cathepsin K (CTSK),

Procathepsin L (CTSL),
Matrix metalloproteinase-20

(MMP20),
Matrilysin (MMP7)

0 1 1.41 611.67 433.29 0.0006

COL18A1 (1),
COL1A2 (2)

Matrix metalloproteinase-14
(MMP14) 0 3 1.65 305.72 184.95 0.0001

COL2A1 (1) Interstitial collagenase (MMP1) 0 1 2.23 412.14 184.53 0.0006
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4. Discussion

Renal fibrosis is a dynamic process that occurs in almost all progressive CKD and
indicates the path towards ESKD [26]. At present, the amount of IFTA can only be as-
sessed by an invasive kidney biopsy with limitations due to histological scoring standards
and clinical applicability. Due to its invasive character, its contraindications and possible
complications, percutaneous kidney biopsy is usually only performed once for diagnostic
purposes and repeat follow-up biopsies are rarely done. In this study, we aimed to sup-
plement kidney biopsy for determination of the degree of IFTA in CKD patients using
urinary peptidomics based on CE-MS, allowing even repeated assessments during the
disease course.

Peptides and low molecular weight proteins were chosen as targets for investigation
for a multitude of reasons: (1) it is not possible to routinely, reproducibly, and compre-
hensively analyze full proteins (including PTMs). Such analysis requires tryptic digests,
inevitably resulting in the introduction of additional variability and loss of information.
(2) Peptides and low molecular weight proteins are present as a result of glomerular filtra-
tion also in the urine of healthy individuals. As such, a “normal healthy” urine peptidome
can be established and used as reference. In contrast to larger proteins, peptides and low
molecular weight proteins are not, or only to a minor degree affected by proteinuria, which,
in the case of larger proteins, is a very powerful confounder. (3) We hypothesized that
kidney, but also any systemic disease, would be initiated and mandate significant and
distinct changes in specific peptides and proteins. While the changes in proteins may be
very challenging to assess reproducibly, changes in peptides should be detectable, due to
the ability to analyze the whole peptide without any manipulation/derivatization, like
tryptic digest or specific labelling.

We identified a fibrosis classifier containing 29 peptide fragments of 13 different
proteins. The fibrosis classifier was generated using two patient cohorts with IFTA < 10% or
≥15%, matched for sex, age, proteinuria, and eGFR, and was also applied to independent
test samples. The fibrosis classifier was highly significantly associated with IFTA and able
to distinguish high from low renal fibrosis in an independent test set.

As expected, we found significant correlation between IFTA and several other pa-
tient parameters including age, proteinuria, and most significantly eGFR. This finding
was not previously observed in a smaller cohort when correlating these parameters with
histologically determined levels of fibrosis [3]. We speculate that this difference might
be due to different disease etiologies. Our cohort had a high number of patients with
diabetic nephropathy, IgA nephropathy, and hypertensive ischemic nephropathy. In con-
trast, the small cohort of Magalhães et al. [3] consisted of 9/42 cases of IgA nephropathy,
1/42 chronic hypertensive nephropathy, and 0/42 diabetic nephropathy. Despite the draw-
back of a small patient cohort, Magalhães et al. defined seven biomarkers associated with
fibrosis. In our training cohort, six of these fibrosis biomarkers showed the same regulation.
Moreover, four of them were significant in unadjusted statistic (data not shown).

Our peptide-based classifier was generated by statistical analysis of mass spectrometry
training data of 200 patients with and without IFTA. As shown in Table 2, peptides with
differential peptide intensities between fibrosis and non-fibrosis with statistical significance
led to the inclusion of 29 independent peptides with equal statistical significance for our
statistical model. In our model, all 29 peptides are of equal importance for classification
of IFTA. In the following, we aim to discuss single differentially regulated peptides and
possible underlying pathophysiological mechanisms for differences between the fibrosis
and non-fibrosis group.

Alpha-2-HS-glycoprotein (AHSG), also known as fetuin-A, is a plasma binding pro-
tein. In our study, four different peptide fragments of fetuin-A were implemented in the
fibrosis classifier containing 29 urinary peptides. As seen in Table 2, urinary samples of
individuals with high percentage of IFTA showed an increased amount of urinary fetuin-A.
In accordance with our data, Schanstra et al. also described a negative correlation between
AHSG and baseline eGFR in a large cohort of over 500 patients [5].
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Furthermore, peptide fragments of AHSG also form part of the CKD273 classifier
for CKD, which has been integrated in numerous studies so far and is now commercially
available after a letter of approval from the FDA [27–30]. Urinary AHSG levels have also
recently been associated with CKD and negatively correlated with eGFR slope and baseline
eGFR [31].

In this study, we did not correlate peptide changes with eGFR of patients. We saw,
however, a negative correlation between eGFR and IFTA, which was highly significant.
Our findings of a positive correlation between increased AHSG levels in the urine with
higher percentages of IFTA seem to be in accord with these previous studies. Fetuin-A is
an inflammation-regulated protein involved in regulation of extraosseous calcification via
regulation of calcium and an inhibitor of calcification. Intravascular calcification strongly
affects cardiovascular mortality, especially in CKD patients [32]. Serum AHSG levels
have shown to be significantly lower in patients receiving hemodialysis than in healthy
individuals. The sera showed impaired inhibition of CaxPO4 precipitation, which is
believed to be one of the reasons for increased cardiovascular calcification [33].

In a meta-analysis among 5169 CKD patients, low serum levels of fetuin-A were
associated with increased mortality independent of diabetes and inflammation in dialysis
patients [34].

To our knowledge, no clear mechanism that leads to decreased AHSG levels in serum
of CKD patients and especially hemodialysis patients has been discovered. Explanations
remain speculative and include possible renal post-translational modifications, which are
impaired in CKD or increased urinary loss of AHSG. The findings of increased urinary
AHSG in patients with fibrotic kidneys in our study could support this hypothesis, even
though further investigation of molecular mechanisms is needed.

In our study, 19 different collagen peptide fragments of eight different collagen chains
were found with differential intensities between patients with high and low degree of
IFTA (for detail see Table 2). For 13 of these fragments, a positive correlation with degree
of IFTA was noticed. Six peptides were inversely correlated with IFTA, three of which
corresponded to Collagen alpha-1 (I) chain (COL1A1).

Collagens are a key part of the extracellular matrix of the kidney that confer structural
integrity, cell adhesion, and serve in various signaling pathways [35]. Renal fibrosis is
characterized by an imbalance between formation and degradation of extracellular matrix
proteins such as collagens [36].

In previous studies, controversial findings were published regarding urinary collagen
loss in CKD and more specifically in renal fibrosis. In a recent study, Magalhães et al.
found a negative correlation of urinary collagen fragments and interstitial fibrosis [3].
Regarding the CKD273 classifier, collagen fragments generally are reduced in CKD because
of inflammation-driven inhibition of matrix metalloproteinases, which mediate collagen
cleavage and thus shift the balance towards collagen formation and away from degradation,
apparently resulting in decreased urinary collagen peptides [30]. Our findings of decreased
urinary collagen fragments corresponding to COL1A1 are in accord with this hypothesis.
As collagens play a central role in the mechanism of disease development of renal interstitial
fibrosis in the context of chronic kidney disease, it is not surprising that they are highly
present within our peptide-based classifier [12].

Most of the other collagen fragments in our study, however, were upregulated in
fibrotic kidney disease. Several studies have shown increased urinary collagen fragments
in CKD and could associate this with renal fibrosis [37,38]. Specifically, increased collagen
3 fragments have been well described in animal CKD models and renal fibrosis [38,39].
The consensus is that collagen, as the predominant extracellular matrix (ECM) molecule,
plays an important role in renal fibrosis. How single urinary collagen fragments reflect the
degree of fibrosis is yet to be understood. Moreover, the turnover of renal collagen seems
to be central in fibrosis [36]. Therefore, urinary peptide analysis remains observational and
underlying molecular mechanisms like proteolytic events must be studied in order to fully
interpret changes in urinary collagen peptides.
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Another generally prevalent peptide was the alpha chain of fibrinogen (Table 2).
Peptide intensities were elevated in the fibrosis group when compared to no fibrosis.
Urinary fibrinogen was recently shown to be an independent risk factor and predictor
for CKD [40]. Serum levels of fibrinogen were identified as an independent predictor
of mortality in stage 3 and 4 CKD patients [41]. In an animal model, pharmacological
and genetic intervention were successfully used to protect kidneys from fibrosis [42]. So,
the abundance of fibrinogen in our general cohort as well as the increased abundance
in the fibrosis group seems to be in accord with those findings. Similarly, we found
increased levels of antithrombin III in urine samples of fibrotic kidneys. Several groups
independently reported amelioration of renal ischemia-reperfusion injuries in rats by
treatment with antithrombin III [43,44]. These findings, together with our findings, fit very
well into the general assumption that procoagulatory processes play an essential role in
development and progression of CKD through renal fibrosis [45].

In addition, we saw two peptide fragments of the polymeric immunoglobulin receptor
upregulated in the fibrosis group. The polymeric immunoglobulin receptor is a transmem-
brane protein of mucosal epithelia and has recently been localized in the proximal tubules
and parietal epithelial cells of glomeruli in the human kidney [46]. Krawczyk et al. [46] also
linked this protein to increased levels of secretory IgA in kidney disease and among others
correlated it to the degree of interstitial fibrosis. We and others have also linked urinary
polymeric immunoglobulin receptor fragments to severity of kidney injury in patients with
CKD in the context of cardio-renal syndrome and IgA nephropathy [47,48].

The finding that two hemoglobin subunits fragments are present in a much larger
abundance in non-fibrotic urine samples is not surprising in our view. We suggest that
most of CKD patients in advanced stages with higher degrees of renal fibrosis do not
normally suffer from hematuria. In contrast, hematuria is more likely seen as a sign of
acute inflammation and low degrees of renal fibrosis are to be expected. Nevertheless,
there has been a call for hematuria to be integrated as a prognostic factor for CKD [49]. Our
data does not currently support this theory. However, we suggest looking at hematuria
or urinary hemoglobin peptide fragments as a risk factor in selected pathologies where
they might have prognostic value for CKD. For example, Coppo et al. showed a prognostic
value of persistent microhematuria for IgA progression [50]. Probably due to our very
heterogenous cohort, we see a negative correlation of hemoglobin fragments with IFTA.

Based on the defined 29 fibrosis-associated peptides, we were able to predict pro-
teases probably involved in the generation of these peptides. In general, proteases are
regulated on a posttranslational level, and in some cases (e.g., MMPs) also by specific
inhibitors (e.g., TIMPs). Consequently, transcriptome data can generally not be used to
predict protease activity. Assessment of protease activity is consequently quite challenging,
and very little information on this topic is available. We found only one manuscript that
investigated the activity of one of the proteases predicted to be deregulated based on our
results: CTSD [51]. The authors showed that inhibition of CTSD with pepstatin A in an
animal model reduced fibrosis, which is in contrast to the prediction based on urinary
peptides. However, it is important to keep in mind that animal models may not well reflect
human disease: In a previous publication, we demonstrated that a widely used animal
model for human diabetic kidney disease, the ZDF rat, generally shows regulation of
urinary collagen fragments opposite to human. The fact that potential efficacy of pepstatin
A in human was never reported even though the report in animals was published 7 years
ago may indicate the animal data reported by Fox et al. does not reflect human disease.

One of the most striking findings of this study is the highly significant correla-
tion of IFTA and eGFR (Figure 1a). When applying ROC-analysis to independent sam-
ples not used in classifier generation, an AUC of 0.987 is obtained. Our data show
that around IFTA values of 10–15%, eGFR of our patient cohort drops dramatically,
which gives eGFR a strong predictive value when differentiating between the two groups
(IFTA ≥ 15% and IFTA ≤ 10%). We see, however, almost no incremental correlation of
eGFR at IFTA values > 20%. In contrast, the proteomics classifier FPP_BH29 shows sig-
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nificant correlation throughout IFTA percentages. Therefore, we believe that the fibrosis
classifier can add significant value to diagnostical assessment of IFTA and it would be coun-
terintuitive as well as fatal to rely on eGFR as a singular diagnostic tool to assess fibrosis.

5. Conclusions

In conclusion, our study could identify a novel proteomics classifier containing
29 urinary peptide fragments reflecting the degree of interstitial fibrosis and tubular atro-
phy in CKD patients. This gives us a tool to assess the degree of fibrosis during the course
of the disease by repeated measurements and thus enables us to better predict prognosis.
We also observed highly significant correlation of IFTA with eGFR, proteinuria, and age.
We therefore suggest combining routinely assessed markers like eGFR, age, and proteinuria
with the newly discovered urinary peptide-based fibrosis classifier FPP_BH29 to evaluate
renal fibrosis in addition to kidney biopsy.
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