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Abstract: Corynebacterium silvaticum is a newly described animal pathogen, closely related to the
emerging human pathogen Corynebacterium ulcerans and Corynebacterium pseudotuberculosis, a major
pathogen of small ruminants. In this study, proteins of a whole cell and a shaving fraction and the
exoproteome of C. silvaticum strain W25 were analyzed as a first proteome study of this species.
In total, 1305 proteins were identified out of 2013 proteins encoded by the W25 genome sequence
and number of putative virulence factors were detected already under standard growth conditions
including phospholipase D and sialidase. An up to now uncharacterized trypsin-like protease is by
far the most secreted protein in this species, indicating a putative role in pathogenicity. Furthermore,
the proteome analyses carried out in this study support the recently published taxonomical delineation
of C. silvaticum from the closely related zoonotic Corynebacterium species.

Keywords: exoproteome; LC-MS/MS; mass spectrometry; necrotizing lymphadenitis; secretome;
trypsin-like serine protease; zoonosis

1. Introduction

The genus Corynebacterium, first described in 1886 as a group of Gram-positive, club- (greek:
korune) or rod-shaped bacteria [1], comprises between 142 and 145 different species today [2,3].
These were often isolated from human or animal material and are frequently of medical or veterinary
importance [4,5]. Corynebacterium diphtheriae, the type strain of the genus, is the etiological agent of
diphtheria [6–8] and most likely the best investigated pathogenic Corynebacterium species due to its
life-threatening properties [9]. Already in 1884, Loeffler identified C. diphtheriae as etiological agent
of diphtheria and postulated that a toxin secreted by the pathogen is responsible for the often fatal
damage on different organs [10]. In fact, diphtheria toxin is the main virulence factor of C. diphtheriae
and responsible for the life-threatening symptoms of respiratory diphtheria [11,12].

Interestingly, also the closely related Corynebacterium ulcerans, which was first described in 1927 [13],
can evoke diphtheria-like symptoms. In fact, cases of diphtheria associated with C. ulcerans infections
have outnumbered cases attributed to C. diphtheriae in European countries [14] and consequently
C. ulcerans is recognized as an emerging pathogen today [15,16]. C. ulcerans infections of humans are
almost exclusively the result of zoonotic transmission. Animal hosts range from farm animals such as
cattle, goats and pigs to pets such as cats and dogs and wild animals, e.g., camels, hedgehogs, monkeys,
orcas, otters, and water rats [16,17].
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C. diphtheriae and C. ulcerans were clustered together with a third species, Corynebacterium
pseudotuberculosis, in the group of toxigenic corynebacterial [18], which are characterized by the fact
that they can be lysogenized by tox gene carrying corynephages and consequently express diphtheria
toxin [19]. C. pseudotuberculosis is an important pathogen of small ruminants such as sheep and goat
and causes severe economic losses [20]. Typically, C. pseudotuberculosis infections are characterized by
abscesses and caseous lymphadenitis.

Recently the genome sequence of the atypical C. ulcerans strain W25, isolated from a wild boar
with necrotizing lymphadenitis, was published [21]. Taxonomic analyses of the genome sequence data
revealed that this isolate is clustered with two different isolates previously annotated as C. ulcerans
KL1196 (identical to CVUAS6455 [17]) and C. pseudotuberculosis PO100/5 [22] and clearly delineated
from other published C. ulcerans strains [23]. In parallel to this study, based on biochemical properties
such as carbon metabolism, antibiotic resistance pattern and lipid profile in combination with 16SrRNA
gene and rpoB sequence analysis, a new species, Corynebacterium silvaticum, was described recently [3]
formed from former C. ulcerans strains isolated from forest-dwelling game animals, e.g., roe deer and
wild boar. Strain W25, a non-toxigenic tox gene bearing (NTTB) strain [23], is obviously a member of
this newly validated species.

Since we are interested in the analysis of pathogenicity determinants of corynebacteria [24–27]
and different aspects of bacterial proteomics [28–42], we started a characterization of the cellular and
extracellular proteome of C. silvaticum isolate W25, which is presented here. In total, 1305 proteins
were identified out of 2013 proteins encoded by the W25 genome sequence including a number of
putative virulence factors such as phospholipase D and sialidase.

2. Materials and Methods

2.1. Strains and Growth Conditions

C. silvaticum W25 [21,23] was grown in Brain Heart Infusion (BHI) supplemented with 0.05 M
Tween 80 and 10% Fetal Calf Serum under constant shaking (125 rpm) at 37 ◦C. For preparation of
proteins, bacteria were harvested by centrifugation (4000× g, 5 min), washed with PBS and used to
inoculate 100 mL of BHI without supplements to an OD600 of 0.15. The bacteria were grown for 3 h
until the exponential phase (OD600 approximately 0.6) was reached.

2.2. Sample Preparation for Mass Spectrometric Analyses

Extracellular proteins were prepared as described [31]. Cells were removed by centrifugation
(10 min, 4 ◦C, 4000× g) and the supernatant was subsequently filtered using a 0.2 µm pore size filter
(Minisart, Sartorius, Göttingen, Germany). After TCA precipitation the proteins were resuspended
in protein buffer (10 mM DTT, 2% sodium deoxycholate, 50 mM Tris, pH 8.0). Protein concentration
was determined using PierceTM 660 nm Protein Assay (Thermo Fisher Scientific, Bremen, Germany).
Tryptic digest of 25 µg of the protein samples was carried out on 10 kDa vivacon 500 membrane filters as
previously described following a modified Filter Aided Sample preparation (FASP) protocol [32,43,44].

For isolation of cell surface proteins by tryptic shaving [31,45] independent batches of cells were
harvested and treated with 1.5 µg sequencing grade trypsin (Promega, Madison, WI, USA) for 1.5 h
at 37 ◦C.

For analysis of the whole proteome the cells were resuspended in PBS buffer with protease
inhibitor (Roche, Basel, Switzerland) and lysed with a homogenizer (MP Biomedical, Fisher Scientific,
Schwerte, Germany) using glass beads (5.5 m s−1, 30 s, 5 cycles, 4 ◦C). To remove the cell debris the
samples were centrifuged at 13,000× g for 30 min at 4 ◦C and the supernatant were retained. Protein
buffer was added to a final concentration of 10 mM DTT, 2% sodium deoxycholate and 50 mM Tris
(pH 8.0) and 40 µg of these proteins were transferred into a new low-binding tube. An incubation
at 55 ◦C for 30 min was applied for protein denaturation followed by an alkylation of sulfhydryl
groups (40 mM CAA final concentration). Proteins were precipitated overnight at 4 ◦C with 80%



Proteomes 2020, 8, 19 3 of 14

acetone, washed three times with 80% ice-cold acetone and dried under N2 atmosphere to avoid
oxidation [44]. The resulting protein pellet was resuspended in 100 mM TEAB buffer with 2 µg of
trypsin and digested overnight at 37 ◦C under constant shaking. A clean-up with C18 stage tips
was performed to desalt 25 µg of all samples (three biological replicates of secreted proteins, whole
proteome and surface proteins). Peptides were vacuum-dried and resuspended in 0.1% trifluoroacetic
acid (TFA) for LC-MS/MS analysis [31].

2.3. Mass Spectrometric Analyses

Mass spectrometric analyses were carried out following a previously published protocol [31,44].
Ten µg of peptides were loaded onto a nanoflow Ultimate 3000 HPLC (Dionex, Sunnyvale, CA, USA).
For separation of peptides an EASY-Spray column (Thermo Fisher Scientific; C18 with 2 µm particle size,
50 cm × 75 µm) was used (flow rate: 200 nL min−1; increasing acetonitrile concentrations over 120 min).
Total method duration (including equilibration and column wash) was 160 min. Analyses of all samples
were carried out using an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific, Bremen,
Germany). Settings were adjusted according to a recently published protocol [32]: spray voltage 2000
V, transfer tube temperature 275 ◦C, scan range for the MS 1 detection in the Orbitrap 300–2000 (m/z),
50 ms maximum injection time, automatic gain control (AGC) target of 400,000 and Orbitrap resolution
of 120.000. The most intense ions were selected for collision-induced dissociation with collision energy
of 35%. For ion trap detection a maximum injection time of 250 ms and an AGC target of 100 were
set [31,44]. Resulting raw data files were analyzed using the Proteome Discoverer 1.4 program package
(Thermo Fisher Scientific, Bremen, Germany) and the W25 database (Proteome Id: UP000311124)
in UniProt (www.uniprot/proteomes). The theoretical masses of peptides were generated with a
maximum of two missed cleavages, as described in [46]. Carbamidomethyl modification on cysteine
was set as fixed modification, oxidation of methionine as dynamic modification. Mass tolerance for
survey scans was set to 10 ppm and 0.6 Da for fragment mass measurements, to compare the measured
spectra of product ions. False discovery rate (FDR) was set on 1% for protein identification.

2.4. Bioinformatic Analyses

Information on localizations of proteins was extracted from Uniprot [47]. Proteins with unknown
localization were analysed using the psortb server [48]. Quantification of proteins within the samples
were carried using the total protein approach (TPA) method [49]. For unknown proteins, BLASTp was
used to search for homologous proteins. For pathway analysis, UniProt IDs of identified proteins were
used for a BlastKOALA search [50]. Proteome comparison was carried out using the PATRIC 3.6.5
database [51].

2.5. Reverse CAMP Test

For detection of PLD secretion a reverse CAMP test was carried out [31] using Staphylococcus
aureus strain ATCC 29,213 as hemolytic pathogen and C. ulcerans strains 809 and BR-AD22, C. silvaticum
W25 and C. pseudotuberculosis FRC41 to test PLD activity. Incubation was carried out at different
temperatures (room temperature, 30 ◦C, 37 ◦C, and 40 ◦C) for two days. Plates were stored overnight
at 4 ◦C for better visibility of the halo resulting from hemolysis by S. aureus.

2.6. Data Availability Statement

Mass spectrometry results have been deposited to the ProteomeXchange Consortium (http:
//proteomecentral.proteomexchange.org) via the PRIDE partner repository [52]. Data are available via
ProteomeXchange with PXD020400.

www.uniprot/proteomes
http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org
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3. Results

3.1. Analysis of Cellular Proteins

The theoretical proteome of C. silvaticum strain W25 comprises 2013 different proteins. In this
study, we were able to detect 1305 proteins or 64.8% of the total theoretical proteome when cells were
grown in complex medium. When protein fractions prepared in this study were analyzed, the whole
cell fraction of 1108 proteins showed an overlap of 94 proteins (8.5%) with the secreted proteins.
Seven proteins (0.5% of all proteins identified) were only found in the medium fraction. The trypsin
shaving fraction comprised 1137 proteins with an overlap of 947 proteins with the whole cell fractions,
indicating a massive cell lysis of strain W25 due to protease treatment. A similar effect was observed
for C. ulcerans strain BR-AD22 before [31]. Nevertheless, 190 proteins (9.4% of all proteins identified)
were additionally observed after trypsin shaving of the bacterial cells. The secreted protein fraction
comprised 103 proteins (5.1% of all proteins) with an overlap of 94 proteins with the shaving fraction
(91.3%) and 82 proteins (79.6%) with the whole cell fraction (Figure 1).
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Figure 1. Distribution of identified proteins in whole cell, secreted and shaving fraction.

3.2. Characterization of Whole Cell and Shaving Fraction

When the proteins of the whole cell fraction were analyzed in respect to their localization, more than
two thirds (765 proteins, 69%) were cytoplasmic proteins, 158 proteins (14.3%) were attributed to the
cytoplasmic membrane, 10 (0.9%) were cell wall-located and 13 (1.2%) were annotated as secreted,
while for 162 proteins (14.6%) the putative localization was unknown (Figure 2a). When analyzed in
respect to protein abundance, cytoplasmic proteins corresponded to 87.5% of the total proteins in the
whole cell fraction, cytoplasmic membrane proteins to 3.3%, extracellular proteins to 1.5%, cell wall
proteins to 0.4% and proteins with unknown localization to 7.3% (Figure 2b).
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Figure 2. Whole cell proteome of C. silvaticum strain W25. Percentage of different proteins in cytoplasmic
(blue), cytoplasmic membrane (orange), cell wall (yellow), extracellular (grey) and unknown (green)
fraction. (a) The percentages in respect to the number of proteins and (b) in respect to their abundance
are shown (see also Supplementary Material Table S1).

Bacterial surface proteins may be shaved from the cells using trypsin [45]. In case of C. silvaticum
W25, an unusual high number of 1137 proteins were observed, even exceeding the whole cell proteome
(see also Supplementary Material Table S2). Obviously, protease treatment destabilizes the C. silvaticum
cell wall structure leading to cell lysis as observed for a C. ulcerans strain before [31]. Nevertheless,
in addition to the whole cell fraction, cell wall-anchored proteins were released by trypsin treatment
and became accessible for mass spectrometry analysis. In the shaving fraction, 744 cytoplasmic proteins
were annotated, corresponding to 65.4% of the total fraction, and 196 proteins were attributed to the
cytoplasmic membrane including solute binding components of bacterial ABC transporters, which are
known to be accessible from the outside in corynebacteria [53]. Sixteen proteins with extracellular
localization, 11 located to the bacterial cell wall and 170 proteins without known localization (Figure 3a).
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Figure 3. Proteins exclusively found in the shaving fraction. Percentage of different proteins in
cytoplasmic (blue), cytoplasmic membrane (orange), cell wall (yellow), extracellular (grey) and
unknown (green) fraction. (a) The percentages in respect to the number of proteins and (b) in respect to
their abundance are shown.

When the abundance of proteins exclusively found in the shaving fraction was analyzed in more
detail, 5 proteins contributed to about 45.5% of the protein content, while the remaining 180 proteins sum
up to 54.5% (see also Supplementary Material Table S3). With 15.5% the main protein observed was an
uncharacterized protein, followed by an esterase family protein (10.0%), a DUF2505 domain-containing
protein (9.4%) a cell wall channel (6.4%), and a DUF4185 domain-containing protein (4.2%).
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3.3. Analysis of Extracellular Proteins

When the proteins secreted into the growth medium were harvested and analyzed, 103 proteins
were identified. In this fraction, 30 proteins had a cytoplasmic localization, 16 proteins were membrane
bound, 14 proteins were extracellular, 4 proteins are located to the cell wall, and 39 with unknown
annotation (Figure 4).
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Quantification of the proteins annotated as extracellular revealed that five proteins sum up to
95.7% of the total protein content, 88.1% were attributed to a single uncharacterized protein with
the identifier A0A5C5F2T7, 2.2% to a hydrolase with the identifier A0A5C5F0I9 and A0A5C5F4U0,
respectively, 1.9% to an M23 family metallopeptidase (A0A5C5F5R9) and 1.3% to another hydrolase
(A0A5F0A739) (see also Supplementary Material Table S5).

Bioinformatic analyses of the major secreted protein showed that the uncharacterized and putative
secreted protein A0A5C5F2T7 contains a signal peptide (aa 1–24), three disorder domains (aa 23–32,
aa 164–189 and 347–357) two globular domains (aa 72–163 and aa 190–346), two low-complexity regions
(aa2 59–275 and aa 352–363) and coiled-coil region (aa 282–349). A function prediction using the
online tool Phyre2 showed homologous proteins annotated as proteases, trypsin-like serine proteases
or hydrolases. A blastp search revealed a homologous protein in C. diphtheriae DIP2069 with 52.2%
identity and identical predicted function.

3.4. Metabolic Pathway Analysis

For a first analysis of identified proteins from C. silvaticum W25 grown under full medium
conditions a BlastKOALA search was carried out. Proteins of the main metabolic pathways
(carbohydrate, fatty acid, nucleotide, amino acid, energy metabolism, and metabolism of cofactors and
vitamins) were found (Figure 5).

Since C. silvaticum strain W25 was grown in Brain Heart Infusion, which contains not only glucose
but also a high variety of different peptides and amino acids, we analyzed sugar and amino acid
degradation pathways. Proteins for the complete glycolysis and pentose phosphate pathways were
found (see Supplementary Material Table S6) and enzymes for the degradation of alanine, aspartate,
asparagine glutamate glutamine, and serine were found (see Supplementary Material Table S7).
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In addition, we analyzed the biosynthesis pathway of heme as a co-factor, which is characteristic
for corynebacteria. Besides the common protoporphyrin-dependent pathway, an alternative
coproporphyrinogen-dependent pathway was predicted recently [54]. The key protein of this pathway,
coproheme decarboxylase (ChdC), was identified due to its similarity to DIP1394 among the observed
proteins in this study, annotated as chlorite dismutase family protein A0A5C5F778. Heme biosynthesis
pathways in C. silvaticum are shown in Figure 6.
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Figure 6. Heme biosynthesis in Corynebacterium silvaticum W25. Schematic overview shows
intermediates, enzymes and the corresponding UniProt IDs (in brackets) according to the
protoporphyrin-dependent (adapted from Kegg) and coproporphyrinogen-dependent pathway
(adapted from [54]). Enzymes in green were identified in the whole cell fraction of W25.
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3.5. Analysis of Virulence Factors

From the genome sequence of C. silvaticum W25, a number of putative virulence factors was
annotated [23]. In this study 12 of these were detected, while 3 were not found (Table 1).

Table 1. Virulence factors of C. silvaticum W25. Protein and gene designations are indicated together
with the fraction in which the proteins were found (+: present, −: absent). Absence of the corresponding
protein in all fractions analyzed is indicated in bold.

Protein Gene Whole Cell Secreted Shaving

Phospholipase D pld − − +

Neuraminidase (sialidase) nanH + + +

Trypsin-like serine protease vsp1 − − −

Peptidoglycan endopeptidase ripA + + +

Hydrolase (cell wall peptidase) cwlH + + +

Protease vsp2 + + −

Protease (endo-beta-N-acetylglucosaminidase F2) cpp − − −

Type VII secretion-associated serine protease mycosin cpfrc_00397 + − −

AccD5-3 acyl-CoA carboxylase beta dtsR2 + − +

AccD5-2 propionyl-CoA carboxylase beta chain 2 dtsR1 + − +

AccD5-1 acyl-CoA carboxylase subunit beta accD3 + − +

Hydrolase cpfrc_00536 + − +

Non-ribosomal peptide synthetase nrpS1 − − −

Resuscitation-promoting factor rpfA + + +
Resuscitation-promoting factor rpfB + + +

Phospholipase D (PLD) is the major virulence factor of C. pseudotuberculosis [20,55,56] and also
found in C. ulcerans [16]. Since phospholipase D was observed exclusively in the shaving fraction in
this study, we analyzed the activity of the enzyme in a reverse CAMP test (Figure 7). Interestingly,
a temperature-dependent secretion of the enzyme was observed, which was negligible at room
temperature and highest at 40 ◦C. Activity of the enzyme was estimated by the effect on hemolysis
activity of S. aureus (halo formation) and not strictly dependent on growth.
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4. Discussion

The study presented here provides the first and basic characterization of the cellular and
extracellular proteome of the animal pathogen C. silvaticum. Besides proteins with annotated
function, a number of unknown and functionally not annotated or hypothetical proteins were
found, which emphasizes that proteome analyses may be helpful to characterize the expression and
localization of proteins even when only a very basic genome annotation is available. This was especially
exemplified by the characterization of A0A5C5F2T7, annotated as putative secreted protein. In this
study, we showed that A0A5C5F2T7 is not only expressed, but is by far the major secreted protein
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of C. silvaticum. Although further experimental data are missing, bioinformatic analyses hint to a
protease function. Two other virulence factors Vsp1 and Vsp2 contain a similar trypsin-like serine
protease domain as A0A5C5F2T7, which may indicate a prominent role in pathogenicity. Another
protein (A0A5F0A739) of the five most abundant proteins of the extracellular proteome may also be
associated with pathogenicity. The annotated hydrolase A0A5F0A739 contains a NlpC/P60 domain.
Proteins of this superfamily are highly conserved among corynebacteria [26]. A study by Hansmeier
and co-workers identified an invasion-associated protein DIP1281 a NlpC/P60 protein member in
the secretome of C. diphtheriae [57]. It is assumed that proteins of this family play a fundamental
role in corynebacterial cell surface organization, cell separation, adhesion, and internalization in host
cells [26,58]. C. silvaticum strain W25 produced almost all identified virulence factors [23] already
under standard growth conditions except Vsp1, Cpp and NrpS1. The presence of two proteins in the
extracellular environment with putative virulence potential (A0A5C5F2T7 and A0A5F0A739) needs to
be further investigated.

C. silvaticum is considered as a pathogen of forest-dwelling animal. In respect to host-pathogen
interaction, not only the number of putative virulence factors detected in this study, but also the high
abundant surface and secreted proteins may be of interest for further studies. Growth tests at different
temperatures and analysis of PLD activity indicate that C. silvaticum growth and virulence is strictly
dependent on temperatures around 37 ◦C, which fits with its isolation from abscesses in wild boar and
roe deer. Furthermore, from this temperature profile, it may be expected that C. silvaticum will not
cause skin infections as found for C. ulcerans and C. diphtheriae [15]. Furthermore, C. ulcerans 809 seem
to have a temperature-regulated PLD expression, which solves the question as to why no PLD protein
and activity was found in a previous study [31].

In addition to the experimental work described above, bioinformatics analyses of the predicted
W25 proteome were carried out, which support the recently published taxonomical delineation of
C. silvaticum from the closely related zoonotic Corynebacterium species C. ulcerans and C. pseudotuberculosis.
When the proteome of strain W25 was compared with those of C. silvaticum strains KL1196 and PO100/5,
a high identity throughout the proteins was found. Interestingly, the PO100/5 isolate originating from
Portugal seems to be less conserved compared to the C. silvaticum isolates from Germany, W25 and
KL1196. Within this analysis, C. ulcerans strains BR-AD22 and 809 [59] were easily distinguishable from
this cluster and are more related to C. pseudotuberculosis FRC41 [60] (Figure 8). One major difference
between PO100/5 and strains W25 and KL1196 is the presence of a prophage region, also detectable in
the C. ulcerans and C. pseudotuberculosis strains used in this study (indicated in red and by an arrow
in Figure 8).

In addition, proteome comparisons revealed 320 proteins exclusively found in C. silvaticum
species, 208 proteins being annotated as hypothetical proteins and 19 proteins being phage-associated.
Within the remaining 93 proteins, 10 proteins are involved in peptide binding and protein transport
(see Supplementary Material, Table S8), an observation, which may indicate a high importance of
amino acids and peptides as nutrient source for C. silvaticum.
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5. Conclusions

In this study, a first proteome analysis of C. silvaticum strain W25 was carried out and almost
two-thirds of the proteins encoded in the genome sequence were detected including a number of
virulence factors. Analysis of the extracellular proteome indicated a putative role of an up to now
uncharacterized trypsin-like protease in pathogenicity. Furthermore, the proteome analyses carried
out support the recently published taxonomical delineation of C. silvaticum from the closely related
zoonotic Corynebacterium species.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7382/8/3/19/s1,
Table S1. Identified proteins in the whole cell fraction. The table shows the Uniprot ID, description, molecular
weight number of amino acids, the area and quantification of three biological replicates. Table S2. Identified
proteins of the shaving fraction. The table shows the Uniprot ID, description, molecular weight number of amino
acids, the area and quantification of three biological replicates. Table S3. Selected proteins of the shaving fraction
with predicted localization ot cell surface. The table shows the Uniprot ID, description, molecular weight number
of amino acids, the area and quantification of three biological replicates. Table S4. Identified proteins of the
extracellular proteome. The table shows the Uniprot ID, description, molecular weight number of amino acids, the
area and quantification of three biological replicates. Table S5. Selected proteins of the extracellular proteome with
predicted extracellular localization. The table shows the Uniprot ID, description, molecular weight number of
amino acids, the area and quantification of three biological replicates. Table S6. Glycolysis and pentose phosphate
pathway. The table gives the Kegg ID, corresponding UniProt ID and the protein name. Table S7. Enzymes
involved in alanine, aspertate, asparagine, glutamate, glutamine and serine metabolism. Table S8. Proteins
execlusively found in C. silvaticum spezies. Phage related proteins are highlited in red, hypothetical proteins
in yellow.
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