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Abstract: A reference range is an essential part of clinical laboratory test interpretation and patient
care. The levels of total serum protein (TSP) are measured in sera to assess nutritional, liver, and kidney
disorders. This study determined the TSP reference range with respect to gender, age, and region
in Namibia. A retrospective cross-sectional study was conducted to determine the TSP reference
range among 78,477 healthy participants within the ages of less than one year to more than 65 years
in 14 regions of Namibia. The reference range of TSP was 51–91 g/L for females and 51–92 g/L for
males. A reduced TSP range of 48.00–85.55 g/L (2.5–97.5 percentiles) was established at <1–5 years
and increased towards adolescence. An uttermost range of 54–93 g/L was observed from 36–65 years
of age. At the age >65 years; a steady decline in the reference range (51.00–89 g/L) was recorded.
An upper TSP range of 53–92 g/L (2.5–97.5 percentiles) was detected in Erongo, Zambezi, Hardap,
Kavango East, and a comparable trend was also seen in Omusati with a 54–91 g/L range. Meanwhile;
a reduced TSP range of 50–89 g/L was identified in Ohangwena. This study showed that gender,
age, and geographical location can impact TSP levels with a significant clinical difference (p < 0.05)
between each category.
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1. Introduction

Total serum proteins (TSP) are measured in the body to diagnose nutritional challenges such as
protein energy wasting (PEW), which is the state of decreased body stores of protein and energy. This can
be caused by the reduced intake of protein and energy-rich food and occurs during malnutrition [1].
Albumin constitutes 65% of the TSP present in the blood and it is responsible for the transport of
substances such as unconjugated bilirubin and some hormones. It is responsible for the maintenance
of the 80% colloid osmotic pressure in the blood and is used as a long-term indicator for malnutrition;
hence, the diagnoses of nutrition-related chronic deficiencies [2]. TSP is used as a liver function test
to support the diagnosis of liver disorders. The disorders can stimulate the increase or inhibit the
production of the liver’s total plasma protein, meanwhile, the TSP levels are usually decreased in
conditions that are commonly associated with liver dysfunction. Some disorders that are associated
with high TSP levels include human immunodeficiency virus (HIV) and hepatitis [3]. TSP levels are
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also measured as part of the kidney function tests. Disorders such as glomerulonephritis are associated
with decreased levels of TSP as a result of damage to the glomeruli; therefore, affecting the filtration
that leads to excretion of protein into the urine. The loss of proteins in the urine then leads to decreased
levels of proteins in the blood. An example of a kidney disorder that is associated with high TSP levels
is kidney inflammation [4].

Protein levels in the human body have different ranges depending on age, ethnicity, and gender.
This was revealed in a study conducted in Hawaii among four different races, which indicated a wider
reference range variation among the different population groups [5]. Scientific reports have shown the
effects of dietary protein intake, gender, and age on TSP, and that it decreases as the person ages and
the rate of decrease is more rapid in women than men, with a suggestion that an appropriate range of
TSP based on age and gender differences should be used for clinical diagnostic applications [6,7].

Reference ranges are sets of values used by health professionals to interpret patient results
obtained from the laboratory. Reference ranges are considered as the authoritative tools for the
interpretation of data and decision making in laboratory science. It is established by collecting samples
from a population that is considered to be normal or healthy [8]. The collected samples are tested
for the concentration of the different analytes, e.g., sodium, glucose, proteins, enzymes, and many
other laboratory analytes. The results obtained are then used to determine a range that lies within
the 95% confidence interval on the Gaussian distribution curve. Proteins are important in the body
because they are responsible for the growth and repair of tissues. Proteins are also responsible for the
transport of substances into the body, can act as enzymes, and play a role in fighting against infections
(i.e., antibodies). Some proteins help in the development of structures in some organelles such as
microfilaments and microtubules [9]. The direct method used in the determination of reference range
of TSP is expensive, difficult to perform, often inaccurate, and non-reproducible. This makes it difficult
for most laboratories to have reference ranges of their own; hence, indirect methods have been used to
determine the reference ranges [3]. Reference intervals are established by selecting statistically and
sufficiently healthy subjects (a minimum of 120 subjects) [3,10]. Indirect methods increase the accuracy
of the reference range compared to the direct method, and to minimize the risk of inaccuracy and
costs, it is recommended that about 20 samples should be used by clinical laboratory to represent
the healthy population to verify the reference ranges that have been established [3,10]. However,
different indirect methods are available such as the parametric method and non-parametric method.
The non-parametric method is more accurate because it tends to use complex statistical algorithms to
derive the final intervals as well as Chauvenet criteria, which statistically detects and rejects outliers or
bad data especially when the probability of occurrence is less than 1/(2n), where n is the number of
measurements in the data pool [11,12]. Reference ranges are determined to differentiate healthy from
non-healthy persons and to detect the specific causes of illnesses. They are also used in the monitoring
of patients in disease progression or drug therapy after illnesses and prognostic factors of the correct
therapy for the patients [3].

To the best of our knowledge, the investigation into the reference ranges of TSP has never been
conducted before in Namibia. Thus, this study focused on the determination of TSP reference ranges
according to gender, age groups, and regions in Namibia. An automated dry chemistry analyzer was
used for the TSP analysis and the TSP reference range was established using the indirect non-parametric
percentile technique.

2. Materials and Methods

2.1. Study Design and Subjects

This study was a retrospective, descriptive cross-sectional examination, which involved the
analysis of pre-tested data for the period of one year; June 2017–June 2018. We evaluated 78,477 healthy
participants within the age group of < 1 – > 65 years and covering 14 regions in Namibia. It focused on
the analysis of the reference range of TSP data using indirect non-parametric method and in comparison
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to gender, age groups, and regions in Namibia. Permission to carry out the study was sought and
granted by the Department of Health Sciences, Namibia University of Science, and Technology (NUST),
Ministry of Health and Social Services (MoHSS), and by Namibia Institute of Pathology (NIP) with
ethical approval and protocol number JH-2018 being obtained.

2.2. Sampling and Data Collection Techniques

Convenient and stratified sampling methods were used, whereby subjects were selected because
of availability and the data was divided according to gender, age groups, and region. Data did
not contain the patient’s name for confidentiality. The laboratory clinic had a fully automated
dry chemistry analyzer (Abbott architect), which was used for the TSP analysis. The maintenance,
calibration, and quality control records of the equipment during the period of the study were confirmed.
The instrument uses the Biuret method to quantify the amount of TSP present in a sample. The Biuret
reagent contains copper ions that bind to peptide bonds present in the sample. The reaction gives-off a
chromogenic solution with the intensity being directly proportional to the concentration of the TSP
present in the blood. It further uses the molecular absorption spectrophotometry to measure the
absorbance of the samples, which was converted to concentration in g/L [13].

2.3. Data Analysis

Descriptive statistics were used to analyze the collected data and to establish the non-parametric
percentile limits. The 2.5th percentile was the lower limit and 97.5th percentile was the upper limit.
The data was analyzed using SPSS version 25 and Graph Pad Prism version 5. The frequency, mean,
standard deviation, and percentiles were generated. Box plots were visually inspected and the outliers
were removed using the boxplot function. Outliers are assumed to be false beyond the lower and
higher quartile. Meanwhile, the data were log-transformed because of the level of skewness. ANOVA
was also performed to compare the mean values of results between the gender, age groups, and regions.
A p-value of < 0.05 was considered to be statistically significant. The reliability and validity of the
findings were initially determined using Equation (1):

Fisher skewness coefficient = (Skewness/Standard (Std.) Error of Skewness), (1)

Because of the extreme sensitivity of Fisher measurement of skewness to outliers, Equation (2)
was mainly used:

Pearson skewness coefficient
(
Skp
)
= 3[(x − Md)/SD], (2)

where: x = mean value, Md = median and SD = standard deviation.

3. Results

3.1. Analysis of the Subjects

Out of 81,509 recruited in this study, 78,477 participants were further analyzed after 3.72% outliers
were detected and removed. There were 44,845 (57.1%) females and 33,632 (42.9%) males subjects
with a male to female ratio of 1:1.3. The number and percentage of the subjects stratified according
to age group were as follows: <1 year, 3.3% (N = 2549); 1–5 years, 5.4% (N = 4257); 6−12 years,
3.5% (N = 2709); 13−18 years, 4.0% (N = 3152); 19−25 years, 10.2% (N = 8027); 26−35 years, 22.9%
(N = 18003); 36−45 years, 16.9% (N = 13243); 46−55 years, 12.6% (N = 9867); 56−65 years, 9.5%
(N = 7420); and >65 years, 11.8% (N = 9250). Data collected were representing 14 geopolitical region
of Namibia with the percentage of subjects recorded for Otjozondjupa, 3.7% (N = 2925); Khomas,
33.2% (N = 26014); Oshikoto, 7.7% (N = 6021); Oshana, 15.2% (N = 11887); Erongo, 3.8% (N = 2952);
Ohangwena, 5.2% (N = 4114); Kavango West, 1.3% (N = 979); Zambezi, 3.2% (N = 2523); Karas, 2.4%
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(N = 1862); Kunene, 2.1% (N = 1681); Kavango East, 15.7% (N = 12353); Omusati, 3.8% (N = 2986);
Omaheke, 0.8% (N = 648); and Hardap, 2.0% (N = 1532).

3.2. Reference Range for Total Serum Protein

The overall reference range for TSP from the 2.5th–97.5th percentile observed in this study was
51–91 g/L, as shown in Table 1. The results were presented in parametrics such as mean ± standard
deviation (SD) and the overall distributions were statistically significant (p-value < 0.05) as regards
to the mean of their clinical values. Meanwhile, the reference ranges were obtained based on the
non-parametric method of 2.5th–97.5th percentile interval, which is convenient for a Gaussian and
non-Gaussian distribution. The skewness was observed at −0.229 with a standard error of 0.009 as
represented in Table 1. Moreover, the distribution was asymmetric and negatively skewed with a long
left tail and Fisher skewness coefficient (Skewness/Std. Error of Skewness) of −25.44, compared with
−1.96 to +1.96 considered to be of insignificant difference from a normal distribution, which is supposed
to be 0. However, the Pearson skewness coefficient (Skp) of −0.13 was observed (Skp = 3[(x −Md)/SD]),
which was within −0.5 to +0.5, a suggested and generally acceptable skewness.

Table 1. Total serum protein range and symmetrical statistic of the data.

Measurable Parameters Values

Percentiles (g/L)
2.5 51.00
5 54.00

95 88.00
97.5 91.00

Central tendency and dispersion
N* 78,477

Mean 72.58
Median 73.00

Std. Deviation 9.925
Asymmetry and existence of outliers

Skewness −0.229
Std. Error of Skewness 0.009

Kurtosis −0.159
Std. Error of Kurtosis 0.017

*N, number of samples or participants.

This discrepancy was due to the extreme sensitivity of the Fisher measure of skewness to outliers.
Meanwhile, these negative coefficients indicated a negative level of skewness, whereby the mean (72.58)
is smaller than the median (73.00), which is directly opposite for the Pearson skewness coefficient.
Skp with 0 value indicated an equal mean and median, thus symmetric in its distribution. Skp of −0.13
fell within the acceptable values (±0.5); therefore, showed that the distribution was asymmetric and not
unduly skewed with the high level of reliability or validation of the reference range for TSP recorded;
hence, the analysis of kurtosis, which uses the same formula and principle as skewness. Kurtosis was
used to measure the extent to which observations cluster around a central point. The kurtosis was
observed at −0.159 with a standard error of 0.017 (Table 1). Fisher kurtosis coefficient (Kurtosis/Std.
Error of Kurtosis) of −9.35 was noted. This also falls outside the acceptable limit of ±1.96; thus,
indicating that the distribution was platykurtic with data values flattered and more dispersed along
the X-axis (negative kurtosis) than a normal distribution.

3.3. Gender-Based Reference Range and Data Distribution

The reference range for female and male were 51–91 g/L and 51–92 g/L, respectively (Table 2),
with a significant clinical difference (p < 0.05). The gender distribution skewness was observed
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at −0.215 and −0.253 with a standard error of 0.012 and 0.013 for females and males, respectively
(Table 2). Negatively skewed and asymmetric values were obtained as the Fisher skewness coefficient
(Skewness/Std. Error of Skewness) of −17.92 (female) and −19.46 (male) were not within the standard
range (±1.96). However, the Skp coefficient of −0.22 and −0.30 was observed for females and males
respectively, in this study, which fell within ±0.5 acceptable skewness. Meanwhile, the kurtosis for
females was observed at −0.129 (standard error 0.023), while for males it was at −0.191 with a standard
error of 0.027 (Table 2). Fisher kurtosis coefficient (Kurtosis/Std. Error of Kurtosis) of −5.61 and −7.07
were observed for females and males, respectively. These fell outside the acceptable limit and normal
distribution of ±1.96 and 0, respectively; which signified that the distribution was platykurtic with
data values being flattered and more dispersed along the X-axis.

Table 2. Gender-based total serum protein range and its symmetrical distribution.

Measurable Parameters Female Male

Percentiles (g/L) (g/L)
2.5 51.00 51.00
5 54.00 55.00
95 88.00 89.00

97.5 91.00 92.00
Central tendency and dispersion

N* 44,845 33,632
Mean 72.27 72.99

Median 73.00 74.00
Std. Deviation 9.796 10.080

Asymmetry and existence of outliers
Skewness −0.215 −0.253

Std. Error of Skewness 0.012 0.013
Kurtosis −0.129 −0.191

Std. Error of Kurtosis 0.023 0.027

*N, number of samples or participants.

3.4. Reference Range and Data Distribution According to Age Group

A lower TSP range of 48–85.55 g/L (2.5–97.5 percentiles) was observed at <1–5 years of early age
and increased towards adolescence as shown in Table 3. A peak range of 54–93 g/L was noted from
36–65 years of age (Table 3) when compared to the overall range of 51–91 g/L (Table 1). At the age
>65 years, a steady-state of decline in reference range (51–89 g/L) was recorded. The mean values
followed a similar pattern. Negative skewness and kurtosis values were predominant except for age
<1 year with 0.688 and 0.141 for skewness and kurtosis, respectively. The same was noticed for kurtosis
with 0.219 and 0.176 values for 46–55 and 56–65 years age groups (Table 3). Furthermore, the Skp

coefficient was between −0.37 – 0.20 for age group range of 1–5 to >65 years, which fell between the
acceptable skewness of the symmetrical distribution of ±0.5, except for <1 age group value that was
highly skewed with Skp coefficient of 1.13, which fell out of an acceptable value of skewness. However,
all values were asymmetrical, except for age groups 1–5, 46–55, and 56–65 years that were closer to the
symmetrical distribution of zero (0) with Skp coefficient values of 0.20, −0.12, and −0.12. Meanwhile
there was a significant clinical difference between the values (p < 0.05), as shown in Figure 1.
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Table 3. Age group and symmetrical distribution of total serum protein range.

Age Group N* Mean Median Standard Deviation Skewness Kurtosis Percentiles (g/L)
2.5 5 95 97.5

<1 2549 61.59 58.00 9.503 0.688 0.141 48.00 48.00 79.00 83.25
1–5 4257 67.62 67.00 9.155 −0.062 −0.100 49.00 51.00 82.00 85.55

6–12 2709 71.93 73.00 8.747 −0.299 0.379 52.00 55.00 85.00 88.00
13–18 3152 72.35 73.00 9.769 −0.238 −0.185 51.83 54.00 88.00 91.00
19–25 8027 72.82 74.00 9.927 −0.251 −0.182 52.00 55.00 88.00 91.00
26–35 18,003 73.23 74.00 10.033 −0.251 −0.190 52.00 55.00 89.00 92.00
36–45 13,243 74.40 75.00 9.599 −0.227 −0.031 54.00 57.00 90.00 93.00
46–55 9867 74.62 75.00 9.322 −0.336 0.219 53.00 57.00 89.00 92.00
56–65 7420 73.64 74.00 9.052 −0.281 0.176 54.00 57.00 88.00 91.00
>65 9250 71.06 72.00 9.361 −0.151 −0.152 51.00 54.00 86.00 89.00

*N, number of samples or participants.
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significant difference.

3.5. Reference Range Based on Geographical Location and Symmetric Data Analysis

A higher TSP range of 53.00–92.00 g/L (2.5–97.5 percentiles) was observed in Erongo, Zambezi,
Hardap, Kavango East, and a similar trend in Omusati with 54.00–91.00 g/L range (Table 4). Meanwhile,
a lower TSP of 50.00–89.00 g/L was detected in Ohangwena when compared to the overall range of
51–91 g/L (Table 1). The mean values followed similar patterns. Negative skewness of −0.011–−0.342
was recorded for all the regions which are similar to kurtosis values (−0.099–−0.266) except for Erongo,
Kunene, and Omusati with kurtosis value of 0.021, 0.028, and 0.051, respectively (Table 4). Moreover,
the Skp coefficient was noted between −0.35–0.11, which falls between the acceptable skewness of
the symmetrical distribution of ±0.5, except for the Omaheke value that is highly skewed with Skp
coefficient of 0.60, which falls out of the acceptable value of skewness. Nevertheless, all values were
asymmetrical, but Erongo, Omusati, Oshikoto, and Kunene regions were closer to the symmetrical
distribution of zero (0) with Skp coefficient values of −0.08, −0.07, −0.02, and 0.11, respectively.
Meanwhile there was a significant clinical difference between the values (p < 0.05) as shown in Figure 2.
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Table 4. Regional reference range distribution of total serum protein.

Region N* Mean Median Standard Deviation Skewness Kurtosis
Percentiles

2.5 5 95 97.5

Otjozondjupa 2925 71.96 73.00 9.858 −0.123 −0.214 51.00 55.00 88.00 91.00
Khomas 26,014 72.80 74.00 10.227 −0.342 −0.169 51.00 53.00 88.00 91.00
Oshikoto 6021 71.95 72.00 9.952 −0.137 −0.249 51.00 54.00 88.00 91.00
Oshana 11,887 72.07 73.00 9.710 −0.279 −0.099 51.00 54.00 87.00 90.00
Erongo 2952 73.76 74.00 9.428 −0.235 0.021 53.83 57.00 89.00 92.00

Ohangwena 4114 69.78 69.00 9.728 −0.013 −0.204 50.00 53.00 85.00 89.00
Kavango West 979 71.56 71.00 9.979 −0.054 −0.266 51.50 54.00 89.00 91.00

Karas 1862 72.25 73.00 9.756 −0.089 −0.162 52.00 56.00 88.00 91.00
Zambezi 2523 72.86 72.00 9.868 −0.082 −0.241 53.00 56.00 89.00 92.00
Hardap 1532 74.45 75.00 10.060 −0.314 −0.223 53.00 56.00 89.35 92.67
Kunene 1681 72.34 72.00 9.684 −0.011 0.028 52.00 55.00 89.00 92.00

Kavango East 12,353 73.41 74.00 9.641 −0.146 −0.132 53.00 57.00 89.00 92.00
Omusati 2986 73.79 74.00 9.064 −0.215 0.051 54.00 58.00 88.00 91.00
Omaheke 648 70.51 68.50 9.981 −0.024 −0.251 51.00 53.00 87.55 91.00

*N, number of samples or participants.
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4. Discussion

Indirect method and non-parametric percentile analysis were used to determine the reference
range of 78,477 individuals (44,846 females and 33,631 males) representing the Namibian population.
Overall, the reference range for the entire subjects was 51–91 g/L, as shown in Table 1. The established
reference range recorded in this study is different from the reference ranges currently in use across
Namibia’s clinical and pathological institutes, such as NIP, Nampath, and Clinical Laboratory Services
(CLS), with the TSP reference range of 61–79 g/L, 60–80 g/L, and 57–80 g/L, respectively. The differences
between the reference ranges could be due to the difference in the population race and methods used.
In a study conducted in Cameroon to determine the reference ranges of clinical analytes of which TSP
was one of them, the TSP reference range of 45–107 g/L was recorded [14]. Meanwhile, this range
was broad, which is similar to the range established in this study (51–91 g/L) when compared with
the narrow range recommended by the Center for Disease Control and Prevention (CDC) (60–80 g/L).
This study used the indirect method while others used the direct method to determine the reference
range. The difference in the sample size and the age distribution among the samples can also be a
contributing factor to the differences in the reference ranges [3,7].

Reference intervals were also determined according to gender (female and male) and there was
clinical significance in the difference between the mean values (p < 0.05) of the two genders considered.
Despite the clinically significant difference in the mean values, the reference interval for males was
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51–92 g/L while a close margin of 51–91 g/L was recorded for females; thus, showing that the male
gender had a wider range than the female gender as shown in Table 2. This is in line with a study
conducted in Pakistan by Ibrahim et al. [15], which determined the TSP reference ranges for males
and females in the Karachi region. The reference range for males was 64–80 g/L, while the range for
females was 65–78 g/L. However, it was in contrast to a study reported in Rwanda by Gahutu and
Wane [16] with the reference range for males recorded as 63–84 g/L and 65–85 g/L for females, using the
direct and non-parametric testing (percentile) methods. These studies, therefore, corroborate the fact
that gender difference can also affect the TSP levels in the body as females and males have different
metabolic mechanisms that the body uses for the production and the processing of the proteins in
the body. Also, different proteins are produced in the bodies according to the gender and they are
produced at different levels in both males and females [2]. The difference of the reference ranges could
also be due to the difference in methods, geographical factors, or the normal physiological factors that
take place in the body at specified times, e.g., hormonal regulation (puberty and ovulation) [17].

The data was divided into different age groups and their mean, standard deviation, skewness,
kurtosis, and the percentile values are shown in Table 3. ANOVA between the mean of various
age groups revealed a significant difference between the mean values (p < 0.05). The <1 year age
group has a smaller mean (reference range = 48–83.25 g/L) compared to the rest of the age groups,
meanwhile at 1–5 years of age, the TSP mean started to increase with a reference range of 48–85.55 g/L
(2.5–97.5 percentiles) and a peak at 36–45 years of age (reference range = 54–93 g/L) until the 56–65 years
age group (reference range = 54–91 g/L). Subsequently, a noticeable decrease was observed from
>65 years age group (51–89 g/L). This is in support of a study conducted in the United Kingdom by
Weaving et al. [18] on the evaluation of age and gender variations for albumin; the major constituent
of TSP, using the indirect and non-parametric testing methods to determine the reference ranges.
The age group of 1–5 years had an albumin level of 43 g/L and there was an increase in the albumin
values until the 36–40 years age group. The albumin values started to decrease from the age group of
41–45 years (42 g/L). The current study was also in agreement with the study performed in Pakistan
with the age group of <1 year having the minimum TSP reference range of 58–68 g/L and an increase
from the age group of 1–3 years (54–76 g/L) to the age group of 40–49 years (66–87 g/L) and >50 years
(66–89 g/L) [15]. All these studies generated results with similar outcomes or trends and therefore
pointing to the fact that the liver is the major producer of proteins and in infancy and early childhood,
the liver is not fully developed; hence there is a reduction in the normal functions of the liver and the
protein produced. As the person grows, the liver also develops and can perform its normal production
of proteins. However, as individual ages (old age), there is atrophy of the liver and because of the
reduced function of the liver, the production of protein in the liver declines [19]. Children also tend to
have low total plasma because of the type of diet intake while the adolescents have elevated protein
levels because of the excessive production of hormones during puberty. Hormones are made up of
proteins and contribute to the TSP in the body [2].

This study also focused on determining the TSP reference ranges according to the 14 regions
in Namibia. Ethnicity and geographical location of subjects contribute to the total protein levels in
the blood. The statistical values (mean, standard deviation, skewness, kurtosis, and percentile) are
shown in Table 4. A comparison of the mean of the different regions was assessed and a significance
statistical difference (p < 0.05) was observed between the regions. The mean was different from region
to region with Ohangwena region observed to be the lowest with a reference range of 50–89 g/L while
the Hardap region had the highest with a reference range of 53–92.7 g/L. Alemnji et al. [14] determined
TSP reference range of Cameroonians per residential area (urban and rural). The reference range
established for urban residents was 45.3–107.8 g/L while that of rural residents was 58.4–103.8 g/L.
Eunjung et al. [5] also determined the albumin reference ranges for four races and the European,
African, Hispanics, and Asians had a reference range of 39–51 g/L, 38–49 g/L, 39–51 g/L, and 40–51 g/L,
respectively. Not only does geographical location play a role, ethnicity and diet can also contribute to
the differences in the reference ranges. De Waal-Miller [20] determined reference ranges for Namibians
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using seven laboratory tests which were hemoglobin, urea, creatinine, glucose, cholesterol, triglyceride,
and uric acid, the reference ranges showed a significant difference from the ranges used in NIP. It also
showed that there were differences in the levels of fasting and random glucose, cholesterol, triglyceride,
and uric acid in the different age groups and regions in Namibia [20].

One of the factors that are affecting the establishment of reference ranges is the difference in
operating conditions. Different laboratories use different methods and equipment in the running of
tests. Sample collection and subject preparation can also affect the reference range because it affects the
levels of the protein that will be measured in the blood sample. Sample storage is also a contributing
factor to protein level measurement [21,22]. Although the direct method is convenient, it is affected
by the criteria of selection of the population subjects. Numerous factors matter when selecting the
population to be used such as age, gender, body mass, and height. It is also very difficult to determine
whether the person recruited to participate in the study is healthy and there are several variations in
specific laboratory parameters that can affect the reference intervals in certain populations such as
hematologic (e.g., red blood cell and white blood cell components) and clinical chemistry parameters
(e.g., alanine aminotransferase and aspartate aminotransferase) [23]. The indirect method may also
affect the determination of reference range in that the population being used may as well contain some
unhealthy subjects. However, there are computer programs designed to eliminate the outliers [24] and
the detailed analyses of the TSP range therefore obtained in this study are essential as they offer a basis
of diagnostic or prognostic biomarkers in addition to an understanding into the mechanisms of disease
progression [25].

5. Conclusions

This study reports on the TSP reference interval that was established according to gender,
age groups, and different regions in Namibia. The overall TSP reference interval determined was
51–91 g/L, which is different from the reference ranges used in Namibia. The study also focused on
determining the significance of gender, age, and ethnicity which was generally represented by region.
The reference range for female and male were 51–91 g/L and 51–92 g/L, respectively. Meanwhile a TSP
range of 48–85.55 g/L (<1–5 years), 52–91 g/L (19–25 years), 54–93 g/L (36–45 years), and 51–89 g/L
(>65 years) were recorded within the different age groups. A TSP range of 53.00–92.00 g/L was noted
in Erongo, Zambezi, Hardap, Kavango East, while 50.00–89.00 g/L and 54.00–91.00 g/L were recorded
in Ohangwena and Omusati respectively. There was a significant statistical difference (p < 0.05) in
reference ranges for each category (gender, age groups, and regions). Meanwhile, with a high number
(78,477) of samples or participants and the successful removal of outliers with most skewness coefficient
falling within the acceptable values of ±0.5 and some getting closer to symmetrical distribution (0);
hence, a credible reference range recorded. To reduce the risk of inaccuracy, we therefore recommend
based on our findings that about 20 samples from the healthy individuals should be used by clinical
laboratory to verify the TSP reference ranges that have been determined and currently in use.
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