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Abstract: The activated sludge in wastewater treatment plants (WWTP) designed for enhanced
biological phosphorus removal (EBPR) experiences periodically changing nutrient and oxygen
availability. Tetrasphaera is the most abundant genus in Danish WWTP and represents up to 20–30%
of the activated sludge community based on 16S rRNA amplicon sequencing and quantitative
fluorescence in situ hybridization analyses, although the genus is in low abundance in the influent
wastewater. Here we investigated how Tetrasphaera can successfully out-compete most other
microorganisms in such highly dynamic ecosystems. To achieve this, we analyzed the physiological
adaptations of the WWTP isolate T. elongata str. LP2 during an aerobic to anoxic shift by label-free
quantitative proteomics and NMR-metabolomics. Escherichia coli was used as reference organism as
it shares several metabolic capabilities and is regularly introduced to wastewater treatment plants
without succeeding there. When compared to E. coli, only minor changes in the proteome of T. elongata
were observed after the switch to anoxic conditions. This indicates that metabolic pathways for
anaerobic energy harvest were already expressed during the aerobic growth. This allows continuous
growth of Tetrasphaera immediately after the switch to anoxic conditions. Metabolomics furthermore
revealed that the substrates provided were exploited far more efficiently by Tetrasphaera than by E. coli.
These results suggest that T. elongata prospers in the dynamic WWTP environment due to adaptation
to the changing environmental conditions.
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1. Introduction

Engineered environments allow for the enrichment of beneficial microorganisms by applying
specific environmental conditions that benefit their function. In nature, the microorganisms may
encounter changes in temperature or substrate, for example, as well as electron acceptor availability,
and many of these changes follow irregular dynamic schedules. Microorganisms have developed
different physiological adaptations to cope with such changes in carbon and electron donor/acceptor
availability and they include the use of storage compounds such as polyhydroxyalkanoate (PHA),
lipids, glycogen, poly-phosphate (poly-P), elemental sulphur, and nitrate [1–3]. Very often adaptation
also involves the expression of specific sets of genes [4], for example, for acquisition and recycling
pathways in case of substrate limitations [5], chaperones and proteases in case of heat [6], catalase or
superoxide dismutase in case of oxidative stress [7], or expression of genes for alternative electron
acceptors and fermentation in the absence of oxygen [8].

The adaptation of the microbial community to cope with dynamic conditions is exploited in
modern wastewater treatment plants (WWTPs). By applying oxic/anoxic alternating phases and/or
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substrate rich and poor phases (feast–famine) as selective pressures, different microorganisms are
enriched that efficiently remove carbon (C), nitrogen (N), and phosphorus (P) from domestic and
industrial wastewater [2]. N is removed efficiently by nitrification/denitrification (oxic/anoxic) cycles
which convert surplus N to inert N2 or biomass [9]. P is removed by enhanced biological phosphorus
removal (EBPR) by including an anaerobic tank in addition to tanks for nitrification/denitrification
and these plants can reach a high effluent water quality in respect to P with no or minimal chemical
supplementation. In EBPR plants, poly-P accumulating organisms (PAOs) are enriched [10] and
they store excess amounts of intracellular poly-P [2]. The general model assumes that poly-P is
used for energy production during an anaerobic phase to take up carbon substrates. These are then
stored as PHAs which are later oxidized aerobically in carbon-limited oxic phases for growth and
poly-P regeneration. Over time P is depleted from the wastewater as the poly-P production is overall
net-positive, and additional P is also incorporated into the biomass. Both can be removed as excess
sludge and P can be recovered as raw material, for example, before [11] or after anaerobic digestion [12].

The general EBPR model is primarily based on studies on the betaproteobacterial Candidatus
Accumulibacter and the uptake of volatile fatty acids (VFA), mainly acetate, during an anaerobic
phase, storage as PHA, and later oxidation in the aerobic phase [13,14]. Recently, another mechanism
was revealed in PAOs belonging to the actinobacterial genus Tetrasphaera. Its members carry out
aerobic heterotrophic growth and nitrate respiration, but they can also ferment. All these processes are
important for a well-working EBPR process. Surprisingly, Tetrasphaera are not able to produce and
store PHAs [15]. Instead, experiments using T. elongata str. Lp2 under dynamic anaerobic/aerobic
conditions showed that they could accumulate free amino acids such as glycine for later oxidation in
the aerobic phase [16]. The general model is undoubtedly appropriate for Ca. Accumulibacter and
may explain many lab-scale and full-scale observations. However, microbial community analyses by
fluorescence in situ hybridization (FISH) and 16S rRNA gene amplicon sequencing indicate that Ca.
Accumulibacter accounts for only a small fraction of the PAO population in many EBPR plants and
that Tetrasphaera is more abundant, occasionally reaching 20–30% of the biomass [17–19].

The aim of this study was to understand how Tetrasphaera can successfully compete in highly
dynamic EBPR plants. Therefore, the proteome and extracellular metabolome (exometabolome) of
aerobically grown T. elongata str. Lp2 cells before and after a 3 h anoxic phase were analyzed. E. coli str.
K-12 was treated in the same way to serve as reference. E. coli was chosen as it can grow anaerobically by
fermentation and nitrate reduction and it is being introduced in high amounts by incoming wastewater
without constituting any major fraction in WWTPs [18]. Also, E. coli is generally very versatile and
can survive under many different conditions. This specific strain is further one of the best described
microorganisms and good annotations as well as literature are available. For most bacteria, the
expression of the necessary genes for anaerobic energy harvest is strictly hierarchically controlled [8,20]
and adaptation needs some time. The acquired data indicates that this is not the case for T. elongata
and that it does indeed show a high level of metabolic robustness and readiness. This, together with
poly-P as energy storage compound and a metabolic diversity, could partly explain continuous growth
and successful competition in the dynamic WWTP environment.

2. Materials and Methods

2.1. Cultivation and Sampling

T. elongata str. Lp2 and E. coli str. K-12 were cultivated in a modified R2A (minimal) medium [16]
to be comparable with previous studies. Inoculation was performed from liquid overnight cultures to
an optical density (OD) at 600 nm of 0.01. Initial oxic cultivation was done in 50 mL medium within
250 mL conical flasks (25◦C, 150 rpm). For the 3 h of anoxic incubation, cultures were transferred to
serum flasks, and oxygen was removed by repeatedly replacing the headspace with >99.9% pure N2.
Cultivations were performed in quadruplicates, and whole cultures were sacrificed at the end of the
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aerobic or anaerobic phase. Growth was determined by measuring the change in OD at 600 nm of
1 mL culture broth in a cuvette and with total protein concentration (see below).

2.2. Metabolomics & Proteomics

All metabolomic and proteomic samples were obtained and measured as four biological replicates.
Extracellular metabolites were extracted and analyzed by 600 MHZ NMR as previously described [21].
In short, 15 mL of culture supernatant were lyophilized, rehydrated in 600µL D2O with TSP as standard,
adjusted to a pH of 7, and recorded as 1D-NOESY at 298.1 K on a BRUKER AVIII-600 MHz NMR
spectrometer (Bruker, Billeric, MA, USA) equipped with a 5 mm cryogenic inverse triple resonance
probe. NMR signals were identified and quantified using ChenomX and the known TSP concentration
as reference.

For protein extraction, cells were lysed (in 1% sodium deoxycholate, 50 mM triethylammonium
bicarbonate) using the FastPrep-96 Instrument (MP Biomedicals, Eschwege, Germany) for 1 min at
1600 rpm and the All FastDNA-96 (MP Biomedicals) lysis matrix. Protein concentrations were assessed
by BCA method in triplicates, and approximately 20 µg of protein was subjected to a polyvinylidene
fluoride membrane-based proteomic sample preparation [22]. The protocol was adjusted to 20 µg of
protein, and the membranes were washed twice with 66% acetonitrile before equilibration with an 8 M
urea solution. Tryptic peptides were measured by nLC-MS/MS (Ultimate 3000 coupled to a Q Exactive,
Thermo Fisher Scientific, Waltham, MA, USA) applying a 3 h method (~140 min elution window).
Details can be found elsewhere [21]. Mass spectra were analyzed by MaxQuant (v. 1.5.3.30) [23] as
previously described [21], but with up to four allowed missed cleavages. Organism-specific protein
databases in FASTA file format were obtained from UniProt [24]. Proteins were kept if they could be
quantified (at least two peptides) in at least three replicates in one condition (aerobic or anaerobic).
Label-free quantification (LFQ) values were used to compare the relative changes. The abundance data
was log2 transformed and missing values were replaced by imputation from the normal distribution
before statistical analysis. Significant changes in abundance were identified by t-test (two-tailed,
permutation-based correction, 250 randomizations, FDR < 5%) in Perseus [25]. Plots were created using
R [26] and the ggplot2 package [27]. The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium (http://www.proteomexchange.org/) via the PRIDE partner
repository [28] with the dataset identifier PXD005211.

3. Results and Discussion

The genus Tetrasphaera is repeatedly observed as the most abundant genus in many EBPR
plants [17–19]. Since dynamic conditions with oxic/anoxic changes of roughly 3–4 h duration are
fundamental to these plants, the reaction to oxygen deprivation under controlled conditions was
investigated using T. elongata str. Lp2. This species has been used as the model organism for this clade
of PAOs as it has a relatively high similarity on 16S rRNA gene level to in situ abundant phylotypes [17].

3.1. Efficient Growth under Anoxic Conditation

Pure cultures of E. coli and T. elongata were grown in modified R2A medium (without starch) and
they showed, as expected, different growth patterns. T. elongata grew considerably slower than E. coli
and required approximately three times as long time to reach a similar amount of biomass before the
start of the anaerobic phase (24 vs 7 hours). During the anoxic growth period, relative and absolute
growth were at least as high for T. elongata as for E. coli as determined by biomass differences, assessed
by the changes in OD and total protein concentration (Table 1).

http://www.proteomexchange.org/
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Table 1. Growth of E. coli and T. elongata after shift to anoxic conditions. Growth was determined
by optical density (OD) at 600 nm and protein concentration after cell lysis. The mean and standard
deviation of four measurement is presented.

OD600nm Protein Concentration

E. coli T. elongata E. coli T. elongata

Aerobic phase (t = 0 h) 0.183 ± 0.003 0.174 ± 0.026 107.8 ± 0.8 µg/mL 78.4 ± 3.1 µg/mL
Anoxic phase (t = 3 h) 0.214 ± 0.009 0.209 ± 0.032 114.0 ± 5.1 µg/mL 88.7 ± 1.8 µg/mL

Absolute increase 0.031 ± 0.009 0.036 ± 0.015 6.2 ± 5.3 µg/µL 10.3 ± 3.8 µg/µL
Relative increase 16.8 ± 4.8% 20.7 ± 9.2% 5.8 ± 5.0% 13.2 ± 5.3%

3.2. Cost-Effective Use of Substrates

To obtain detailed information of the substrate usage and the production of fermentation products,
the medium was analyzed by NMR at different growth stages (Figure 1). T. elongata was found to use
considerably less sugars and amino acids for growth compared to E. coli. Surprisingly, T. elongata first
depleted trehalose in the medium and subsequently exploited glucose and aspartate. Other amino
acids were not visibly used as substrates, although T. elongata can metabolize all the measured amino
acids in glucose-free medium. Previous genomic analyses suggested that T. elongata might produce
lactate as fermentation product [15]. This could not be observed in this study and emphasizes the need
for methods that provide direct information about phenotypic behaviour, such as metabolomics. Under
the conditions applied, the only fermentation product observed in significant amounts was succinate.
Both E. coli and T. elongata showed increased succinate production during anaerobic incubation.
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3.3. Minor Changes in the Proteomes Upon Shift to Anoxic Conditions 

Figure 1. NMR-quantified exometabolites. (a) Carbohydrates, (b) fermentative products, and (c) amino
acids in the initial medium as well as for the end of the aerobic and anoxic cultivations of E. coli and
T. elongata. Error bars represent standard deviation of quantified metabolite levels (n = 4).

Substrates were not a limiting factor in the experiments (Figure 1), although provided in low
concentrations as they are in WWTPs, and thus the oxic/anoxic switch can be seen as the primary
environmental variable.
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3.3. Minor Changes in the Proteomes Upon Shift to Anoxic Conditions

It was possible to quantify 1318 and 1224 proteins, or 42.7% and 28.5%, of the theoretical proteome
for T. elongata and E. coli, respectively (up to 1703 identified proteins, see Supplementary Material).
Out of these, 228 and 171 were significantly altered in abundance (FDR 5%), but with higher maximum
fold changes in E. coli (Figure 2a). Classification of the differentially expressed proteins based on
COG (Clusters of Orthologous Groups) class IDs [29] revealed considerable larger changes in the
abundance of proteins related to energy production and conversion, amino acid metabolism and
transport, carbohydrate metabolism and transport, and inorganic ion transport and metabolism for
E. coli compared to T. elongata (Figure 2b).
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Figure 2. Overview of differentially expressed proteins for the end of the aerobic and anoxic cultivations
of E. coli and T. elongata. (a) Volcano plot for quantified (after imputation) proteins from T. elongata and
E. coli. Significance testing was corrected for multiple hypotheses testing at an FDR of 5%. Vertical
red lines indicate a twofold change in abundance. The horizontal line reflects a p-value threshold of
0.05. (b) Classification of differentially expressed proteins based on COG functional classes. One-letter
abbreviations for the functional categories: C, energy production and conversion; D, cell division and
chromosome partitioning; E, amino acid metabolism and transport; F, nucleotide metabolism and
transport; G, carbohydrate metabolism and transport; H, coenzyme metabolism; I, lipid metabolism; J,
translation, including ribosome structure and biogenesis; K, transcription; L, replication, recombination
and repair; M, cell wall structure and biogenesis and outer membrane; N, secretion, motility and
chemotaxis; O, molecular chaperones and related functions; P, inorganic ion transport and metabolism;
R, general functional prediction only; T, signal transduction; S and “-“, no functional prediction.

Looking at specific changes for proteins involved in energy production and stress response,
the proteomic similarities between the two organisms were primarily restricted to an aspartate
ammonia-lyase (AspA) and, interestingly, to an ATP-dependent RNA helicase, which was the most
significantly down-regulated protein in both proteomes: DeaD and HelY in E. coli and T. elongata,
respectively. These RNA helicases are required to adapt to different environmental situations [30].
AspA provides fumarate, presumably for reduction to succinate, from aspartate. For E. coli, it has
been shown that AspA is part of the NarL regulon [20]. These proteomic adaptations fit the observed
depletion of aspartate in the medium. The aspartate–succinate conversion has been reported for several
bacteria [31–33] and yeast [34] and might be a general anaerobic adaptation and be preferred to the
phosphoenolpyruvate to oxaloacetate conversion (slight, but significant up-regulation in T. elongata
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of PckG). Although succinate was undoubtedly the dominant fermentative product for T. elongata,
no fumarate reductase for fermentation is annotated in its genome [35]. For Bacillus subtilis it was
shown that the ‘aerobic’ succinate dehydrogenase could fulfil this role [36] and T. elongata might do
likewise. No other fermentation products were of importance to T. elongata. Although it depleted
lactate under aerobic conditions, it did not produce any during anaerobic incubation. However, the
lactate dehydrogenase (Ldh) could be identified in both conditions. E. coli did produce high amounts
of lactate in the absence of oxygen (and other terminal electron acceptors), and the necessary lactate
dehydrogenase (LdhA) was significantly more abundant. This assumingly led to additional acidic
stress which was compensated by the expression of a lysine decarboxylase (CadA), which is regarded as
a major acid stress enzyme [37]. Apart from the increased abundance of AspA, the hierarchical control
of anaerobic gene expression [20,38] was evident only for E. coli (Figure 3). Enzymes for fermentation
or nitrate reduction were identified already under aerobic conditions for T. elongata and did not change
significantly in their relative abundance during anaerobic incubation. In contrast to this, enzymes for
nitrate reduction or fermentation were not identified before or showed clear up-regulation during
anaerobic incubation for E. coli (Figure 3). The presence of the anaerobic metabolic machinery for
energy production in T. elongata explains their ability to ignore the anaerobic shock and keep a steady
growth. Under relatively stable conditions like in the human gut this would probably be a costly
disadvantage, but in dynamic systems like wastewater treatment plants with regular environmental
changes, this might be a major cost-saving advantage.
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Figure 3. Normalized abundance of selected proteins for the end of the aerobic and anoxic cultivations
of E. coli and T. elongata. The estimated abundance of each protein in each organism is based on
label-free quantification (LFQ) values, normalized based on the average abundance of that protein
across samples. Error bars represent standard deviation of protein abundance levels (n = 4).

3.4. PAO-Metabolism in T. elongata

As a PAO, poly-P accumulation and degradation in T. elongata are of special interest. One
central protein, which might be indicative of a PAO physiology, is the low-affinity Pit phosphate
transporter [39]. In the well-described PAO Ca. Accumulibacter, Pit seems to drive VFA uptake in the
anaerobic phase [40]. In accordance with previously described observations, the abundance of Pit did
not show any significant change between oxic and anaerobic conditions for T. elongata. Neither did
the high-affinity Pst system. A small (~1.3 fold), but significant, up-regulation in the anaerobic phase
was observed for the polyphosphate kinase Ppk2. In contrast to Ppk1, which is widely conserved in
bacteria [41] and did not show any significant change, Ppk2 regenerates GTP [42] as well as ATP [43]
by utilizing poly-P, potentially providing additional energy during anaerobic conditions. Another
poly-P utilizing enzyme which was slightly, but significantly, more abundant was the polyphosphate
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glucokinase PpgK. PpgK serves as an alternative hexokinase, which can phosphorylate glucose to
glucose-6-phosphate by exploiting poly-P instead of ATP [44], thus, providing glucose-6-phosphate for
glycolysis while preserving ATP. Apart from poly-P, glycogen is supposed to be the major element
in Tetrasphaera’s PAO metabolism. Based on genomic and biochemical analyses, free amino acids
and glycogen are the major C storage under anaerobic conditions [15,45]. A recent comprehensive
in situ study using Raman microspectroscopy could not verify the accumulation of glycogen in
Tetrasphaera [46]. In this study, several putative glycogen related enzymes for synthesis (GlgB, GlgC,
N0E1Q7, N0E176) and degradation (GlgX, GlgP) were identified. Only N0E1Q7, a 1,4-alpha-glucan
branching enzyme, showed a statistically significant, but very small (~1.2 fold) change in abundance
under aerobic conditions. This change was contrary to the assumption that glycogen synthesis is
required during anaerobic conditions and carbon storage in Tetrasphaera remains a question of interest.

Overall, the data suggest that T. elongata, in contrast to E. coli, is pre-adapted to anaerobic conditions
with the pathways necessary for energy production at the ready. If oxygen as a terminal electron
acceptor is unavailable, E. coli reacts by first using alternative electron acceptors like nitrate or fumarate
and ultimately relies on fermentation. For most bacteria, the expression of the necessary genes is
strictly hierarchically controlled [8,20] and adaptation needs time. The acquired data indicated that
this is not the case for T. elongata and that it does indeed show a high level of metabolic robustness
and readiness [47]. The theoretical advantage of being able to keep growing without major metabolic
adaptations is enhanced under in situ conditions as T. elongata can store excessive amounts of poly-P for
rapid supplementation of energy or accumulation of carbon substrates under anaerobic conditions [16].
The proteomic and metabolomic data helps to complement the existing metabolic model [15] (Figure 4),
and gives an explanation for the abundance of Tetrasphaera. Although Ca. Accumulibacter and
Tetrasphaera differ in central aspects of their metabolism and substrate preferences, they might follow a
similar strategy. In that sense, no marked effects on relative protein abundances were observed across
an EBPR cycle for Ca. Accumulibacter [48,49]. On the other hand, clear indications of regulation could
be found on transcriptome level for Ca. Accumulibacter [50] which might not have been recognizable
due to sample complexity and technical challenges. Unfortunately, transcription and translation do
not always correlate [51] or are at least time-delayed [52] and conclusions can be challenging. Here,
it was possible to observe the small but significant effects on a proteome level which might not be
observable in complex in situ experiments. A question that arises is if the observations are entirely
correct on the single-cell level, or if community level adaptations are responsible. T. elongata has a
more pronounced tendency to aggregate compared to E. coli. This is an advantage in WWTPs, but
a disadvantage for cultivation in the laboratory. This study was performed at low cell-densities,
vigorous shaking in large flasks with little culture volume to reduce aggregation and its impact on
physiology. Nevertheless, aggregates cannot be excluded which would lead to pre-adaptation of some
T. elongata cells which enable constant growth in regularly changing environments. In favor of the
results reflecting single-cell adaptations is that the nitrate reductase (alpha and beta subunits) did not
change in abundance, which might be expected if all cells were challenged with oxygen limitation
(instead of a minor fraction that was already expressing the enzyme) as was observed for E. coli.
T. elongata’s behaviour is somewhat paradoxical. T. elongata preventively expresses unnecessary genes
(e.g., nitrate reduction) while showing an economical metabolism with relatively low growth rates and
without strong reactions to environmental stimuli (at least oxygen limitation). Of course, predicting
in situ responses from in vitro data must be done carefully, but the observations and the concluded
hypothesis fit in situ observations and will guide future enrichment reactor and in situ studies.
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activity under anaerobic conditions.

4. Concluding Remarks

As expected, E. coli grew initially faster than T. elongata, but T. elongata grew consistently during
the 3 h anaerobic switch. T. elongata behaved more economically to produce similar amounts of
biomass. Furthermore, T. elongata mainly used succinate fermentation as an electron sink, whereas
E. coli produced succinate, acetate, formate/CO2, and high amounts of lactate. The proteomic
data led to the identification of roughly 200 statistically significantly regulated proteins for both
organisms, but the regulation in T. elongata resembled more a fine-tuning of already present pathways
whereas E. coli underwent major rearrangements. Analyses of enriched pathways in E. coli showed
a clear down-regulation of pathways necessary for translation and aerobic respiration as well as
an up-regulation of anaerobic respiration, fermentation, and severe stress (probably due to lactic
acid production) when challenged with oxygen limitation. At the same time, T. elongata already
expressed necessary pathways under aerobic conditions, ignoring the classic hierarchical control of
anaerobic gene expression and just fine-tuned its metabolism. While this strategy might not be suitable
for many natural environments, it seems well suited for engineered habitats like WWTPs and their
scheduled dynamics.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7382/7/2/16/s1,
Dataset S1: Proteomic results and analysis data.
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