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Abstract: Rheumatoid arthritis (RA) is a systemic autoimmune and inflammatory disease. Plasma
biomarkers are critical for understanding disease mechanisms, treatment effects, and diagnosis.
Mass spectrometry-based proteomics is a powerful tool for unbiased biomarker discovery. However,
plasma proteomics is significantly hampered by signal interference from high-abundance proteins,
low overall protein coverage, and high levels of missing data from data-dependent acquisition
(DDA). To achieve quantitative proteomics analysis for plasma samples with a balance of through-
put, performance, and cost, we developed a workflow incorporating plate-based high abundance
protein depletion and sample preparation, comprehensive peptide spectral library building, and
data-independent acquisition (DIA) SWATH mass spectrometry-based methodology. In this study,
we analyzed plasma samples from both RA patients and healthy donors. The results showed that
the new workflow performance exceeded that of the current state-of-the-art depletion-based plasma
proteomic platforms in terms of both data quality and proteome coverage. Proteins from biological
processes related to the activation of systemic inflammation, suppression of platelet function, and
loss of muscle mass were enriched and differentially expressed in RA. Some plasma proteins, partic-
ularly acute-phase reactant proteins, showed great power to distinguish between RA patients and
healthy donors. Moreover, protein isoforms in the plasma were also analyzed, providing even deeper
proteome coverage. This workflow can serve as a basis for further application in discovering plasma
biomarkers of other diseases.
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1. Introduction

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease that can lead to
significant joint destruction (cartilage/bone erosion) and muscle wasting (cachexia) if left
untreated. Blood-borne factors associated with inflammation and tissue breakdown are
readily detectable in patients with severe RA [1]. This has led to the development of
valuable diagnostic tools, such as the C-reactive protein (CRP) test and 14-3-3 eta protein
assay, which enable clinicians to make a more accurate diagnosis of RA [2]. However,
with the advent of several effective, though limited, remittive therapies, the demand for
more sensitive biomarker tools to discriminate and predict patients’ responses has greatly
increased [3]. This demand has propelled investigations into identifying novel blood-
borne biomarkers using global proteomic profiling that analyzes samples in an untargeted
broad-scale approach. Among the available plasma biomarker discovery approaches,
including the Proximity Extension Assay (Olink), aptamer-based (SomaScan) [4,5], and
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mass spec-based proteomics, only the MS-based approach is reagent-independent and
truly unbiased.

Identifying biomarkers from plasma using mass spec proteomics analysis is exception-
ally challenging not only in biology but also from an analytical perspective. On one hand,
the concentrations of plasma proteins can span an extremely wide range of over 10 orders
of magnitude (from ~80 mg/mL to pg/mL), while on the other hand, a small number of
high-abundance proteins consist of over 90% plasma protein content [6]. Therefore, mass
spec signal suppression from the high-abundance proteins can prevent the efficient detec-
tion of a large population of low-abundance proteins using mass spectrometry (MS)-based
proteomics, which limits the proteome coverage of plasma compared to other matrixes [7].
To overcome these intrinsic issues of plasma proteomics, efforts have been made in this
field on improving sample preparation: (a) depletion of high-abundance proteins [6]; (b) ex-
tensive fractionation to make low-abundance proteins detectable and utilizing advanced
MS technologies, including [7]; (c) DIA (Data-Independent Acquisition) including SWATH
(Sequential Window Acquisition of all THeoretical mass spectra) with fast scanning [8]; and
(d) advanced PASEF (Parallel Accumulation–SErial Fragmentation technique) to further
increase proteome depth and throughput, which is critical for making the workflow practi-
cal for biomarker discovery studies [9,10]. One attractive approach for plasma proteomic
analysis to highlight is to integrate nanoparticle (NP) protein coronas with LC-MS [11,12].
The engineered NPs contain various physicochemical properties for nano-bio interactions,
and each NP can interrogate hundreds of proteins in an unbiased manner to execute
a highly parallel protein separation prior to MS. Using a 96-well automated workflow
(ProteographTM), a panel of five NPs detected >2000 proteins across 141 plasma samples
with DIA-MS (EKSPERT nano-LC425 -Triple TOF 6600+, Framingham, MA, USA) in a
non-small cell lung cancer classification study; in contrast, only >100 proteins were detected
from neat plasma without any depletion or fractionation [11]. This platform leverages a
rapid and deep profiling of the plasma proteome. However, it relies heavily on expensive
NP products (ProteographTM XT assay kit) and automation instruments (SP100 automation,
Seer, Redwood City, CA, USA), which increases the budget burden and makes it impractical
for large-scale studies, especially in startup laboratories. In addition, the required plasma
sample volume could be up to 250 µL, instead of the traditional <10 µL, which may not
be practical for sample procurement in animals (e.g., mice) and certain clinical studies.
Another recently developed platform utilizes selective plasma protein precipitation by
perchloric acid (perCA) [9], resulting in the detection of >1300 proteins per run and up
to 60 SPD (samples per day), with an Evosep LC connected to a timsTOF Pro, enabling
DIA-PASEF. This approach has shown the high-throughput ability to process >3000 samples
without an obvious batch effect and reduces the cost to ~$2.5 per sample. However, this
time and cost-effective platform still requires 50 µL of plasma and a higher-end LC/MS
system, such as timsTOF Pro or equivalent, which limits the sample procurements and
laboratories facilities.

Compared to the platforms mentioned above, conventional MS-based proteomics is
more cost effective, requires less sample volume, and is more suitable for large-scale analy-
sis. In the plasma proteomics workflow used in this study, we combined the construction
of a comprehensive experiment-specific spectral library, plate-based sample preparation
including high-abundance protein depletion, plate-based mixed-mode solid-phase extrac-
tion sample cleanup, and SWATH-DIA mass spec data acquisition, followed by spectral
library data matching in DIA-NN. This workflow requires only 10 µL of plasma to achieve
good proteome coverage. We further optimized each step to enforce a balance between
proteome coverage and throughput. As it does not rely on high-end instruments or high
volumes of plasma samples, this workflow could be a practical option for large-scale plasma
proteomics, especially for plasma proteomics applications with limited sample volumes.

In this study, 80 plasma samples from RA patients (n = 60) and healthy donors (n = 20)
were analyzed using the optimized SWATH proteomic workflow, resulting in 663 proteins
being identified and quantified on average across subjects with low missing values (7.6%
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for all samples, 5.2% for healthy controls). Differentially expressed plasma proteins were
identified using statistical analysis, and associated pathways were determined using over-
representation analysis (ORA). The random forest algorithm was used to identify proteins
that could discriminate between RA and healthy plasma samples. To further evaluate the
performance of this workflow, we investigated the consistency between this study and
other proteomic studies with not only plasma but also synovial tissue and synovial fluid
samples from RA patients.

2. Materials and Methods
2.1. Human Plasma Samples

The subset of patients included in this study was randomly selected from patients en-
rolled in the SELECT-COMPARE study (NCT02629159) [13] who consented to exploratory
research. All patients had active RA despite treatment with methotrexate for at least
three months. Only baseline plasma samples (K2-EDTA blood collection) were selected
for this experiment. EDTA plasma samples from healthy volunteers were obtained from
Conversant Biologics, Inc., Huntsville, Alabama, USA.

2.2. Sample Fractionation and Spectral Library Generation
2.2.1. Sample Preparation

To prepare the experiment-specific plasma peptide spectrum library, plasma from RA
patients and healthy donors was pooled. Briefly, an equal volume (30 µL) of plasma from
each of the study cohorts, 60 RA patient samples and 20 healthy controls, was pooled,
resulting in a total of ~2.4 mL of pooled plasma at a 3:1 v/v ratio of RA to control ratio. The
rationale is to have a representation of disease vs. healthy subjects based on the distribution
of the study cohort.

2.2.2. Size Exclusion Chromatography (SEC) Fractionation

SEC chromatography was used as protein-level fractionation to reduce the complexity
of plasma proteins before building the peptide spectral library. Pooled human plasma
samples (1 mL) were filtered using a 0.2 µm membrane centrifuge device (CN# ODM02C34,
PALL, Marlborough, MA, USA), and fractionated using a Superdex-200 10/300L SEC
column (CN# 28990944, GE Health, Marlborough, MA, USA) on a Dionex Ultimate 3000 LC
system with an Analytics SFM Sample and Fraction Manager. The flow rate was 0.9 mL/min
with PBS buffer (pH7.4). Gel protein markers (CN#151-1901, Bio-Rad, Hercules, CA, USA)
were used to determine protein molecular weight (MW). Peak-based fraction collection was
detected using UV absorbance signals at 280 nm. Plasma samples were fractionated into
four fractions with a recovery rate of approximately 70%. After the fraction collection, each
fraction was concentrated using a 30 kDa molecular weight cut-off centrifugal filter (Amicon
Ultra, 15 mL, CN UFC903096, MilliporeSigma, Burlington, MA, USA), and the buffer was
exchanged into 25 mM Tris pH7.4 using the Amicon MWCO filter for downstream trypsin
digestion and SAX fractionation.

2.2.3. Strong Anion Exchange (SAX) Fractionation

Strong anion exchange cartridges were used for peptide-level fractionation. Five
aliquots of the plasma SEC fraction (~1 mL for each aliquot) were digested and used for
peptide-level SAX fractionation. Briefly, 10 µL 0.5 M dithiothreitol (in 25 mM Tris, pH7.4)
was added to the 1 mL of SEC fractionated plasma sample and incubated at 37 ◦C for
30 min to reduce the plasma proteins, followed by adding 40 µL 0.5 M iodoacetamide
(IAM, Sigma-Aldrich, St. Louis, MO, USA, in 25 mM Tris, pH7.4) and incubated at room
temperature in the dark for 30 min. Then, 70 µg of trypsin (Trypsin gold, MS grade,
Promega, Madison, WI, USA) was added to digest the plasma proteins at a final concentra-
tion of approximately 1:50 trypsin-to-protein ratio (w/w). Strong anion exchange (SAX)
fractionation was performed using a Pierce Strong Anion Exchange Spin Column (Thermo
Fisher Scientific, Waltham, MA, USA) following the manufacturer’s instructions. After
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conditioning the spin column with 20 mM Tris-HCl (pH8.0), tryptic peptide digests (3.5 mg)
were loaded and eluted through the column under a centrifugal force of 500× g. Flow
through and additional fractions were collected by washing stepwise with 20 mM Tris-HCl
(pH8.0) and increasing NaCl concentrations. A total of 5 SAX fractions were collected with
final concentrations of NaCl at 0.02 M, 0.1 M, 0.25 M, 0.5 M, and 1 M NaCl, respectively.

2.2.4. High-pH Reverse-Phase Fractionation

The SAX fractionated peptides were further fractionated using High-pH RPLC using
an XBridge C18 4.6 × 150 mm analytical column (Waters, Milford, MA, USA) at a flow rate
of 1 mL/min on an Agilent 1100 HPLC system (Agilent, Santa Clara, CA, USA)The mobile
phases were 10 mM ammonium formate (pH9.0) in LC-MS-grade water (phase A) and
10 mM ammonium formate (pH9.0) in 90% acetonitrile (phase B). In total, 96 fractions were
collected from each of the 5 SAX fractions through a 90 min gradient and then combined
into 12 fractions following a fraction concatenation strategy [14,15]. HPLC fractions were
completely dried using SpeedVac (Thermo Fisher Scientific, Waltham, MA, USA) and
reconstituted with 20 µL of HPLC-grade H2O, 2% acetonitrile, and 0.1% formic acid (FA)
for LC/MS analysis.

2.2.5. Top 14 High-Abundance Proteins Depleted for Peptide Spectral Library Building

A parallel fractionation strategy was performed using depleted plasma. Briefly, 1 mL
of pooled human plasma was depleted using the top 14 high-abundance protein depletion
protocol based on the procedure of Section 2.3.1. The depleted plasma samples were
reduced by Tris(2-carboxyethyl) phosphine (TCEP), alkylated by IAM, and digested by
trypsin based on the procedure in Section 2.3.1. The resulting digested peptides were
fractionated using the SAX and high-pH reverse-phase fractionation workflow, as described
in Sections 2.2.3 and 2.2.4.

2.2.6. Liquid Chromatography and Mass Spectrometry Analysis Using the DDA Method

An experiment-specific peptide spectral library was constructed using a data-dependent
(DDA) mass spectrometry method. The detailed procedure is based on a previous study [16]
with minor revisions. Briefly, digested human plasma peptide samples from the non-
depleted or depleted plasma fractionation strategies were analyzed using a capillary flow
LC/MS system containing a Dionex UltiMate 3000 RSLC system (Thermo Fisher Scientific,
Waltham, MA, USA) coupled online to a TripleTOF® 6600 hybrid tandem mass spectrometer
(SCIEX, Framingham, MA, USA) interfaced with the DuoSpray ESI source. Mobile phase A
was 0.1% formic acid in 2% dimethyl sulfoxide (DMSO) in deionized water, and mobile
phase B was 0.1% formic acid in 2% DMSO in acetonitrile. Then, 3–4 µg of digested
peptide samples after high-pH reverse-phase fractionation was spiked with iRT peptide
(Biognosys, Zurich, Switzerland) samples at a ratio of iRT/sample at 1/10 (v/v). Samples
were injected into an autosampler and loaded onto a PepMAP100 C18 trap column (5 µm,
100 Å, 300 µm i.d. × 5 mm, Thermo Fisher Scientific, Waltham, MA, USA) and further
gradient eluted and separated on a nanoEase m/z Peptide CSH C18 column (1.7 µm, 130 Å,
300 µm × 150 mm, Waters, Milford, MA, USA) with a flow rate of 3.1 µL/min. The HPLC
gradient length was 180 min and the column temperature was 50 ◦C. MS1 was scanned from
m/z 360–1500. The top 50 precursors were selected for fragmentation in EPI mode. The
product ion mass spectrometry (MS) ranged from 100 to 1800 amu in the high sensitivity
mode. Precursors with charges of 2 to 5 were selected for fragmentation, with an exclusion
for 30 s after one occurrence. The accumulation times of DDA analysis were 0.25 s for
precursor ions and 0.15 s for production ions. The precursor ions were fragmented using
rolling collision energy. The total mass spec cycle time was 7.8 s. The TripleTOF instrument
was calibrated after each sample in both MS1 and MS2 modes through LC/MS injection of
beta-galactosidase trypsin-digested standards (Sciex, Framingham, MA, USA).
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2.2.7. Peptide Spectral Library Generation

In total, 222 (165 non-depleted plasma + 57 depleted plasma) DDA files were selected
from a total of 360 files to build the spectral library based on the richness of unique peptides
and the spectral quality of the DDA file. DDA MS raw files were used to perform a
protein database search using MaxQuant software (version 1.6.7.0, [17]) against the Uniprot-
Swissprot human protein database downloaded on 12 January 2021. The search results
were imported into Spectronaut version 12.0.20491.0.14754 (Biognosys) and combined into
a spectral library. Search results with no unique protein groups were excluded from library
generation, resulting in a final library consisting of 165 fractions from non-depleted plasma
(SEC-based protein fractionation plus SAX and high-pH reverse-phase fractionation), and
57 fractions from depleted plasma (only SAX and high-pH reverse-phase fractionation).
This final library, containing 21,670 precursors and 1352 protein groups, was used for
library matching of SWATH-DIA data from the study samples.

2.2.8. In Silico Spectral Library Generation for Protein Isoform Analysis

To obtain a comprehensive spectral library for protein isoform analyses, we performed
in silico digestion of human protein libraries from UniProt (SWISS-Prot protein isoform
sequences downloaded on 12 January 2021) using DIA-NN version 1.8.1.

2.3. Proteomics Analysis with SWATH-DIA Workflow
2.3.1. Sample Preparation

The high-abundance proteins in human plasma were depleted with Top 14 Abundant
Protein Depletion Resin (Cat# A36372, Thermo Scientific, Waltham, MA, USA) in a 96-well
plate to improve the throughput of plasma processing. Resin (400 µL ) was added to a
3M Empore 96-Well High-Performance Extraction Disk Filter Plate (#6065), which was
fitted on top of a 1 mL deep-well plate. To reduce the sample-to-sample variant during
sample preparation and control the batch effect, samples from RA patients and healthy
controls were randomized before plate-based sample preparation. Plasma (10 µL ) was
added to the wells, which were then incubated with depletion resins for 30 min. After
centrifugation (3000 rpm, 4 ◦C, 5 min), 100 µL lysis buffer (2.5% sodium deoxycholate
(SDC), 25 mM Tris(2-carboxyethyl) phosphine (TCEP) in 250 mM Tris pH8.5) was added
to the flowthrough in the 1 mL-deep well plate at the bottom of the setup and incubated
at 37 ◦C for 45 min. Free cysteines were alkylated with 10 mM iodoacetamide (IAM) for
30 min at room temperature in the dark. Then, 2.5 µg trypsin was added for protein
digestion at 37 ◦C overnight. To quench the digestion, 50 µL of 10% formic acid was added
to the digested samples. After centrifugation at 2000× g for 5 min, the supernatant was
further cleaned using a strong cation exchange Oasis MCX 96-Well µElution Plate (Cat #
186001830BA, Waters, Milford, MA, USA). Briefly, the plate was equilibrated with methanol
(MeOH) followed by 0.1% FA in deionized water, the samples were loaded, and the flow
through was collected using a positive pressure plate manifold. The plate was washed with
a solvent mixture of 32% acetonitrile, 32% MeOH, and 0.1% FA in water, followed by 5%
acetonitrile/0.1% FA in water. Peptides were eluted from the plate cartridge by applying
freshly prepared 2% NH4OH (pH11) in 55% acetonitrile twice and collected in a 1 mL-deep
well plate. The eluted peptides were dried and reconstituted in 20 µL of 2% MeOH with
0.1% trifluoroacetic acid (TFA) for peptide concentration UV measurement (DropQuant,
PerkinElmer, Waltham, MA, USA). The injection quantity for the SWATH-MS analysis was
normalized to ~3.5 µg based on the peptide concentration measurement.

2.3.2. Liquid Chromatography and Mass Spectrometry Analysis for SWATH-DIA

The LC/MS instrument hardware setup was the same as that described in Section 2.2.6,
with a modification to shorten the LC gradient length to enable higher throughput sample
analysis. The resulting method could support a throughput of up to 16 samples/day. Briefly,
a nanoEase m/z Peptide CSH C18 Column (130 Å, 1.7 µm, 300 µm × 150 mm, Waters,
Milford, MA, USA) was used on a Dionex UltiMate 3000 RSLCnano System (Thermo Fisher
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Scientific, Waltham, MA, USA). Mobile phase A consisted of 0.1% formic acid and 2%
DMSO in deionized water, and mobile phase B consisted of 0.1% formic acid and 2% DMSO
in acetonitrile. A 73 min gradient method was used to separate the peptide samples from
1% to 7% of mobile phase B in the first 5 min at a flow rate of 3.1 µL/min, 7–32.5% of
mobile phase B from 5 to 62 min at 3.1 µL/min, 32.5–57% B in 0.2 min at 3.1 µL/min,
57–95% B in 3.8 min at 4.0 µL/min. The column was washed with 95% B for 3 min and
equilibrated with 1% B for 4 min before the next injection. For SWATH-MS acquisition,
a 3.5 µg digested peptide, containing iRT retention time reference peptides (Biognosys)
at an iRT/sample ratio of 1/10 (v/v), was injected and analyzed in the data-independent
acquisition (DIA) mode using the SWATH method [16]. MS1 scan was performed in the
range of 360–1500 m/z in the positive ion mode. A SWATH method with 200 variable
precursor isolation windows was used in this study. The MS2 window was determined
by MS1 data points extracted from a DDA LC/MS run of a pooled human plasma digest
sample and analyzed using the “SWATH Variable Window Calculator” Excel tool provided
by SCIEX (Supplemental Material). The consecutive precursor isolation windows had a
1 amu overlap. The maximum accumulation times were 33 ms for MS1 scans and 34 ms for
MS2 scans, resulting in an MS cycle time of 6.6 s. The rolling collision energy was used to
determine the collision energy for each window. The mass spectrometer was calibrated
using LC-MS injection of beta-galactosidase trypsin digest (SCIEX) after every two sample
injections to maintain mass accuracy and resolution. To reduce run-to-run variability and
potential batch effects, the injection sequence of samples from RA patients and healthy
controls was randomized. Instrument QC samples (HeLa digest, 0.5 µg on column) were
injected during the LC/MS batch to monitor the instrument performance. (Pierce HeLa
Protein Digest Standard, 88328, Thermo Fisher Scientific, Waltham, MA, USA).

2.3.3. Protein Identification and Relative Quantification

Protein identification and quantification of SWATH data were performed using DIA-
NN version 1.8.1 [18] with an experiment-specific spectral library from deep fractionation.
Default DIA-NN settings were adopted, except match-between-runs (MBR) was enabled
and protein inference was set to “Protein names (from FASTA)”. Protein abundances
were extracted from the report.pg_matrix.tsv file from the output folder of the DIA-NN.
Protein IDs with more than 50% missing values were removed from further analysis.
Protein abundances were then log2-transformed and normalized based on sample medians
using the “medianNormalization” function from the “NormalyzerDE” R package [19],
and missing values were imputed using the “missForest” R package [20], which has been
demonstrated as the most robust approach [21].

The same MS raw data files were analyzed with the in-silico library built based on
the human isoform protein database in DIA-NN (v1.8.1) using “Isoform IDs” for pro-
tein inference, and data analysis followed the same procedure as the above-mentioned
experiment-specific spectral library. An identified protein isoform should contain at least
one unique peptide mapped to its unique region compared to its canonical sequence and
other isoforms belong to the same gene. Therefore, a protein group containing only one
protein ID was considered a protein isoform. Furthermore, non-canonical protein isoforms
were determined if the corresponding UniProt accession ID contained a hyphen and a
numerical suffix indicating the isoform number. The 25 identified non-canonical isoforms
were manually confirmed in the UniProt database.

2.3.4. Data Analysis

To determine the differentially expressed proteins (DEPs) between RA patients and
healthy donors, we used a linear model-based framework implemented in the “limma”
R package [22]. Proteins with nominal p-values less than 0.05 and a greater than 1.5-fold
change in abundance were considered differentially expressed with statistical significance
and dysregulated in RA. The enriched pathways in up- and down-regulated proteins were
determined by over-representation analysis (ORA) using the “WebGestaltR” R package [23]
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against the non-redundant Gene Ontology (GO) terms of biological processes. A random
forest model was implemented using the “caret” R package [24], and ROC analysis was
conducted with the “pROC” R package [25].

3. Results
3.1. Development of a SWATH Proteomics Workflow for Large-Scale Plasma Sample Analysis

The quality of the spectral library is a major factor that determines the sensitivity
and depth of proteome coverage in SWATH DIA. Experiment-specific libraries gener-
ated locally have been reported to achieve better matching and quantitative performance
than generic ones [26,27]. The overall proteome coverage of study samples depends on
the depth of the experimental peptide spectral library. In order to maximize the cover-
age of the spectral library, we designed a multidimensional fractionation strategy using
pooled plasma samples for library building (Figure 1). This includes a strategy of size
exclusion chromatography-based (SEC) protein-level fractionation, followed by strong
anion exchange (SAX) cartridge-based peptide level fractionation and high pH reverse-
phase peptide-level HPLC fractionation. We also employed a parallel strategy using top
14 high-abundance protein depletion at the protein level, followed by SAX and high-pH
reverse-phase peptide-level fractionation. First, five plasma protein fractions were obtained
from 1 mL of pooled plasma using size exclusion chromatography (SEC) fractionation.
Each fraction was trypsin digested and subjected to stepwise strong anion exchange (SAX)
column elution to obtain 5 peptide fractions, each of which was further separated by
high-pH reverse-phase liquid chromatography (RPLC) and fractionated into 12 concate-
nated fractions, resulting in 300 fractions (5 SEC × 5 SAX × 12 high-pH) in total. A second
library-building set was generated by removing potential interference from high-abundance
plasma proteins in LC/MS analysis through depletion of the top 14 high-abundance pro-
teins from 1 mL of the pooled plasma sample. The depleted plasma was digested and
fractionated with SAX, followed by high-pH RPLC fractionation using the same procedure
as the peptide-level fractionation strategy for non-depleted plasma samples, resulting in
60 fractions. A total of 360 fractions were individually analyzed by LC/MS in DDA mode.
Leveraging a database search using MaxQuant, we examined the peptides identified in
each fraction and removed fractions containing no unique peptides. The search results
for 165 fractions from non-depleted plasma and 57 fractions from depleted plasma were
merged using Spectronaut and combined to create a peptide spectral library. This library
contained 1352 protein groups, which covered a broad spectrum of plasma proteins and
was used in SWATH data analysis for protein identification and quantification through
library matching (Figure 1).

3.2. SWATH Proteomic Analysis Identified Differentially Expressed Proteins and Associated
Biological Pathways in RA

To identify protein biomarkers for RA, we performed proteomic analysis of plasma
samples from 20 healthy donors and 60 RA patients using the optimized SWATH platform
and an experiment-specific spectral library from deep fractionation. There are 663 proteins
identified and quantified after removing proteins with excessive missing data across sub-
jects. A principal component analysis (PCA) demonstrated that the major variances of this
dataset came from intra-group sample variations, as indicated by the first principal com-
ponent, and patient samples had larger variations than healthy samples (Figure 2A). The
second principal component was discriminative between most RA and healthy samples,
whereas the clusters were not separated explicitly (Figure 2A). A differential expression
(DE) analysis was performed to identify differentially expressed proteins (DEPs) in plasma
samples from RA patients. In total, 58 proteins with p-values less than 0.05 and greater
than 1.5-fold changes were considered to have statistically significant differences between
RA and healthy samples, including 15 proteins increasing and 43 proteins decreasing in
abundance in RA (Figure 2B, Supplementary Data S1). One of the most commonly used
inflammatory biomarkers, C-reactive protein (CRP), showed the highest increase in DEP
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in the RA plasma. Other active inflammation-related proteins, such as serum amyloid A
proteins (SAA1 and SAA2) and calprotectin (S100A8 and S100A9), also showed remarkable
increases in the RA plasma (Figure 2B). Interestingly, more proteins were found to decrease
in abundance in the RA plasma (Figure 2B).
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Figure 1. Schematic of the optimized SWATH proteomics workflow. (A) DDA spectral library
construction procedure from pooled plasma samples. (B) plasma sample preparation and DIA
proteomics procedure using DDA spectral library from (A).

To further investigate the biological mechanisms related to the DEPs in RA plasma,
we analyzed the enriched biological processes in terms of Gene Ontology (GO) using an
over-representation analysis (ORA). The plasma DEPs increasing in abundance in RA
primarily represented signals from active inflammation and immune response, such as
acute inflammatory response and humoral immune response (Figure 3A, Supplementary
Data S2). Particularly, neutrophil-mediated immunity was enriched in these DEPs. A
diagnostic tool that has recently been investigated for RA evaluates the neutrophil-to-
lymphocyte cell count in the blood of patients. Several studies using this diagnostic tool
have demonstrated that the ratio is much higher in patients with RA as compared to
healthy individuals [28,29]. Upon assessment of those DEPs up-regulated in RA samples
from our studies, we found that many are known to be produced by neutrophils (S100A9,
S100A8, RAB7A, DEFA1, HP, LRG1, FGB, CTSG, MPO, LTF, PGLYRP1, SAA2, ORM1,
ORM2, MMP9, SERPINA1, TNC, TIMP1, and PSMA6), and several have been classified
as neutrophil activation markers, including calprotectin (S100A8 and S100A9 [30] HP [31],
LRG1 [32], CTSG [33], LTF [34], PGLYRP1 [35], MPO [36], and MMP9 [37]). Investigations
into the direct correlations between these neutrophil activation markers in blood and the
circulating frequency of neutrophils are needed to corroborate these findings. On the
other hand, biological processes related to platelet functions, coagulation, and the muscle
system were found to be enriched in DEPs, decreasing in abundance in RA plasma samples
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(Figure 3B, Supplementary Data S3). Platelets have important immune effector functions in
RA, and related signaling pathways are dysregulated in the presence of pro-inflammatory
molecules, such as collagen, thrombin, fibrinogen, and cytokines [38]. Down-regulation
of the muscle system could be related to the loss of muscle mass, which was commonly
observed in the joints of RA patients [39].
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Protein isoforms in the plasma have been reported as potential biomarkers for certain
diseases [40,41], but such studies are rarely found in RA. Therefore, we examined the
same raw DIA MS files using an in-silico-digested human protein database containing
isoform sequences and focused on protein isoform detection. Twenty-five non-canonical
protein isoforms were identified, with at least one unique peptide differentiating them from
other isoforms. Specifically, the protein isoforms from FN1 (P02751-11), TPM3 (P06753-2),
TPM1 (P09493-5), and NME2 (P22392-2) displayed a significant decrease in abundance
in RA (p < 0.05) and a >1.5-fold decrease (Supplementary Data S4). A previous study
demonstrated that the splicing machinery is impaired in RA leukocytes from peripheral
blood and synovial fluid [42]; thus, the alteration of protein isoform abundance may reflect
the dysfunction of alternative splicing. Interestingly, anti-TNF treatment could restore
the function of the splicing machinery [42], suggesting that the protein isoforms could be
good biomarker candidates to indicate the efficacy of anti-TNF treatment. Nonetheless,
further investigations are needed to elucidate the biological relevance of these differentially
expressed plasma protein isoforms in RA pathogenesis.

3.3. Meta-Analysis to Compare This Study with Other RA Omics Studies

To evaluate the findings from this study and the potential of differentially expressed
proteins as RA biomarkers, a literature survey was performed using MS-based proteomic
studies of serum/plasma, synovial fluid, and synovial tissue from RA patients. RNA
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sequencing data from the synovial tissues were also included. High-confidence biomarkers
are preferred to have an alignment between systemic circulation and the disease site
of action, instead of from circulation alone. The inclusion of synovial tissue and fluid
proteomics could infer whether the differential expression of plasma proteins reflects the
changes in RA patients’ disease tissue. Only reports within the last decade were considered,
and two additional criteria were applied to filter the studies: first, comparisons between
RA and control were available; second, the full lists of differentially expressed proteins were
accessible, as re-analyzing previous works using raw data was not the primary intention of this
work. There were limited numbers of proteomic studies of synovial tissue or fluid, including
RA and healthy samples; thus, it was also acceptable if osteoarthritis (OA) was considered
as the control in the selected studies. OA is a degenerative disease of local joints with a
much lower inflammation level than RA and is usually used as a control in RA studies [43].
In total, we included nine reference proteomics datasets: four from serum/plasma [44–47],
two from synovial tissue [48,49], and three from synovial fluid [50–52]. We also included
another two transcriptomics datasets from synovial tissue [53,54]. Table 1 summarizes the
number of reference datasets with the same common DEP increase in abundance in our
dataset. The results showed that DEPs with the most significant increase in abundance,
such as CRP, S100A9, S100A8, SAA1, and SAA2, were consistent with previous reports.
Specifically, FGL1 was proposed as a novel and specific biomarker that could be clinically
useful for predicting the progression of RA [46], which is also present in the DEP list from
this study. In multi-omics studies using matching tissues, the mRNA level and protein
expression normally have moderate correlations, with even lower correlations for the
circulating protein expression level. Not surprisingly, there was a limited overlap in DEPs
between this plasma proteomic study and previous synovial tissue transcriptomic datasets,
indicating the distal nature of circulating protein biomarkers in the plasma of RA patients.
Nonetheless, activated neutrophils have been detected in high numbers in the synovial
joints and tissues of RA patients [55,56], and upon comparison with the transcriptomic
profile of RA synovial fluid neutrophils [57], several of the proteins identified in the plasma
of RA donors as potentially attributable to activated neutrophils were found to be expressed
in this pro-inflammatory neutrophil population, including MMP9, ORM1, ORM2, S100A8,
S100A9, and TKT (Supplementary Data S1).

Table 1. List of common DEPs increasing in abundance between the current proteomics dataset and
other previous proteomics and transcriptomics datasets.

Gene
Symbol

Serum/Plasma
Proteomics (4)

Synovial Tissue
Proteomics * (2)

Synovial Fluid
Proteomics # (3)

Synovial Tissue
Transcriptomics (2)

CRP 3 1 0 0
S100A9 0 2 1 1
S100A8 0 2 2 1
SAA1 4 0 0 0
SAA2 2 0 0 0

RAB7A 1 0 0 0
DEFA1 0 2 1 0
IGHA1 0 0 1 0
ORM1 1 1 0 0
FGL1 1 0 0 0
APCS 3 0 0 0
MMP9 0 1 1 1
ORM2 1 0 0 0

Number in the paratheses is the number of selected papers in the corresponding category, and numbers in the
table indicate the number of studies that show consistent results compared with the present study. * Comparisons
between synovial tissue from RA and OA patients. # Comparisons between synovial fluid from RA and OA
patients or RA and SpA patients.
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3.4. Biomarker Identification Using Random Forest to Discriminate between RA and Healthy Plasma

In recent years, machine learning algorithms have been widely used in biomarker
discovery for sample classification and feature selection. In this study, 70% of the samples
were randomly selected to train a random forest (RF) model with a 5-fold cross-validation
to distinguish RA from healthy samples. The model was validated by predicting the
remaining 30% of the samples and achieved a classification accuracy of 82%. The proteins
that accounted for the highest importance of model accuracy were CRP, SAA2, S100A9,
IGLV1-47, APOA2, S100A8, TNC, F12, APOA1, and FHX8, which could be considered
potential biomarkers (Figure 4A). The area under the curve (AUC) was also calculated
for the receiver operating characteristic (ROC) analysis to evaluate the discrimination
performance of these proteins. Six proteins achieved AUC greater than 0.8, including CRP,
SAA2, S100A9, APOA2, S100A8, and F12 (Figure 4B), indicating that these proteins could
have great power to discriminate between RA and healthy samples based on plasma protein
expression. However, these proteins have been reported to be associated with inflammation
and used as biomarkers for other inflammatory diseases such as inflammatory bowel
disease (IBD) [58]. Therefore, these proteins may not be specific enough to the disease,
which limits their application as RA-specific plasma biomarkers.
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Figure 4. Biomarker discovery by random forest. (A) top 10 proteins with highest feature importance
in determining model accuracy. (B) ROC plots of proteins with AUC greater than 0.8 in distinguishing
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4. Discussion

In this study, we analyzed 80 plasma samples from RA patients and healthy donors
using an optimized SWATH DIA proteomics strategy. The comprehensive experiment-
specific spectral library from deeply fractionated pooled samples, plate-based sample
preparation procedure, and robust LC-MS system enabled high-throughput deep proteome
coverage. Among the 663 proteins identified and quantified, 58 were found differentially
expressed in RA with statistical significance. The DEPs that were increased in RA were
mostly linked to active inflammation and immune response, and DEPs with decreased
abundance in RA presented platelet and coagulation dysfunction and a reduction in muscle
mass. Our results, particularly the increase in DEPs in RA, showed explicit agreement with
other recent plasma proteomics studies. Many of the DEPs that increased in abundance
in RA plasma were also found to be more abundant in RA synovial fluid and synovial
tissue, indicating that these plasma proteins could reflect the disease-related alterations in
protein expression in the joints of RA patients. A random forest model trained with this
dataset was able to discriminate RA samples from healthy samples with an accuracy of
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83%, and the proteins with the highest importance to the model accuracy also showed great
discriminative power according to the ROC analysis. This study provides a feasible option
for implementing high-throughput SWATH-DIA proteomics technology to analyze plasma
samples and generate high-quality quantitative data with good proteome coverage.

In this SWATH-DIA workflow, the proteome coverage was considerably higher than
that of traditional DDA analysis. Compared with the general average of 200–500 plasma
proteins identified [45,47,59,60], 663 proteins were identified in this study, indicating a
remarkable increase in the depth of proteome coverage. Several steps were taken to
improve proteomics analysis sensitivity and data quality: 1. DMSO as an additive to the
HPLC mobile phase [16,61], 2. Capillary flow HPLC method [62]. The flow rate range
of 3–5 µL/min is a sweet spot where the system can still fit a regular ESI source without
a true nano ESI source, while the system can still benefit from sensitivity improvement
at a lower flow rate. In contrast, at a high flow rate of 20–50 µL/min, the sensitivity
approaches a regular analytical flow LC/MS without the benefit of low flow rate sensitivity
improvement; 3. Variable window SWATH method. Because the peptide abundance across
the m/z range is not evenly distributed for trypsin-digested samples, an evenly distributed
SWATH window will result in overcrowding of peptides in certain ranges, leading to
complex chimeric spectra and lower library match data quality, while under-sampling in
other m/z ranges with fewer abundant peptides. To increase the specificity of the DIA
MS2 analysis and avoid the uneven distribution of MS2 resources, a variable SWATH
window strategy was used. Based on TripleTOF vendor specifications, 200 is the maximum
allowable window size. However, to accommodate all 200 windows without exceeding
the allowable MS cycle time, careful balancing of the window size, accumulation time,
and overall MS cycle time is needed. Attempts to increase the flow rate, sharpen the peak
shape, and maximize the number of data points per peak were made. The final method
has a total MS cycle time of 6.7 s which can support 7–8 data points per HPLC peak as
a balance of sensitivity, proteomics coverage, robustness, and quantitative performance
without sacrificing system stability and robustness.

Plasma is a complex biological matrix. There are multiple challenges in large-scale
plasma proteomics sample preparation: 1. high-abundance plasma proteins and large
dynamic range of plasma proteins concentrations (>12 orders of magnitude) [6]; 2. high
concentrations of lipids (~5 mg/mL) [63]; 3. sample cleanup is critical after reduction and
alkylation before LC/MS analysis. To achieve reproducible and robust plasma proteomics
analysis, we adopted a plate-based workflow to address these challenges, which include:
1. plate-based top 14 high-abundance protein depletion; 2. mixed mode solid-phase-
extraction plate-based desalting and sample clean-up. In the field of mass spec proteomics,
most of the studies were conducted using nanoflow HPLC to achieve maximum sensitivity.
However, there are multiple disadvantages to using nano-LC platforms, such as long LC
gradients, slower sample loading time, lower robustness, shorter column life, etc. The
capillary HPLC system was exceptionally suitable for the Sciex TripleTOF system [16]. The
column life can exceed 500 injections (internal data), which is highly desirable for complex
sample types such as human plasma with large cohort sizes.

More importantly, the run-to-run consistency of the current platform is worth consid-
ering. The proteome coverage of a cohort study typically consists of three metrics: 1. the
overall proteome coverage from all subjects in a study, which is the highest protein ID due
to the stochastic nature of the mass spec proteomics analysis; 2. the average protein ID for
each subject: 3. the overlapping protein ID across all subjects in the study, which is the
lowest because of missing values across the cohort. In a quantitative proteomics-based
biomarker discovery, the most valuable metric is the overlapping protein ID, which in-
dicates consistent detection and quantitation across samples and groups. Many plasma
proteomics studies have focused on the total coverage from the entire study but overlooked
the coverage variability across samples [44], with a dramatic difference observed between
total protein ID and overlapping protein ID. Therefore, the total protein ID is often mis-
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leading. The current platform not only generates good average proteome coverage but also
contains exceptionally low missing values, making biomarker discovery more reliable.

For small-quantity proteomics applications such as single-cell or laser capture mi-
crodissection, the SWATH-DIA platform is not suitable; however, for applications where
sample quality is not limited, such as plasma sample analysis, this platform is appropriate
with good reproducibility and low cost. In comparison to other DIA platforms (timsTOF
and Orbitrap), the current capillary flow TripleTOF SWATH-DIA platform has similar pro-
teome coverage for plasma proteomics analysis with a similar starting volume of plasma
samples. However, the peptide mass spec injection quantity requirement (3–4 µg) is approx-
imately 5× higher than orbitrap (0.5–1 µg) and 10× higher than that of timsTOF (0.3 µg)
mainly due to the lack of true nanoflow and the lack of trapping function of the TripleTOF
instrument. While the overall yield of plasma proteomics sample preparation is more
than sufficient to support the 4 µg injections, a higher injection quantity may lead to faster
instrument contamination and performance deterioration, which should be considered
for large-scale cohort analysis. To this end, the entire workflow can be easily transferred
(including sample preparation and data analysis) when the mass spectrometry instrument
itself is upgraded to more sensitive options.

The comprehensiveness of the spectral library is a major factor for protein detection
in DIA-based proteomics. In this study, the project-specific spectral library derived from
222 fractions presented a deep coverage of plasma proteins and contributed to the identifi-
cation of 663 proteins. The generation of a spectral library from deep fractionations can be
time consuming, cost effective, and limited by the availability of extra samples from the
same study. Nonetheless, it is beneficial for future studies with the same sample type as the
spectral library. On the other hand, generating spectral libraries from in silico digestion of
the FASTA protein databases has recently become increasingly popular and demonstrated
equivalent performance to the DDA libraries [18,64]. We also evaluated the in silico spec-
tral library generated by DIA-NN and it achieved overall similar proteome coverage as
the DDA library, suggesting that the in-silico library could be a viable alternative if the
experiment-specific library is unfeasible. However, the number of proteins identified in
the in-silico library varied significantly between individual samples. Interestingly, fewer
proteins were identified using the merged DDA and in silico libraries; thus, merging the
DDA and in silico libraries is not pursued for the current study. Based on this learning, the
effort of protein isoform analysis was entirely based on in silico libraries without rebuild-
ing peptide spectral libraries based on DDA runs. Available alternative splicing isoform
analyses using mass spectrometry proteomics from human plasma are limited. The fact
that the current platform can analyze splice variants exemplifies its unique capabilities.

The latest build of the Human Plasma Proteome Project has 4395 canonical pro-
teins [65], with an average of ~450 proteins from each experiment and even lower protein
coverage per sample. The current paper presents the advancement of shotgun plasma
proteomics (bottom-up approach) by using a comprehensive peptide library and DIA
approach. However, the shotgun approach still only covers a narrow range of protein se-
quences (1–2 peptides) for the low-abundance proteins. Although only one unique peptide
per protein was sufficient for protein inference from peptide-spectral matching (PSM), the
detected peptides did not necessarily contain unique isoform sequences. On the other hand,
the possible number of proteoforms in human plasma is much higher [66,67].

Proteoforms are the different forms of a protein with a variety of sequence variations,
splice isoforms, and post-translational modifications [68,69]. One of the most important
sources of proteoform complexity is alternative splicing. Some genes can produce multiple
isoforms of the same protein through alternative splicing or transcription initiation, which
might have distinct functions and properties. Differential protein expressions related to
disease may not be manifested at the overall protein expression level but at the splice
variant isoform level [70]. Although trypsin digestion-based shotgun proteomics provides
high coverage of canonical protein sequences, the detection and quantitation of splice
variants using shotgun proteomics is limited as the unique sequences of splice variants are
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often masked by the trypsin digestion site [71]. Protein post-translational modification is
another source of proteoform complexity in disease states [72]. The most common PTM
in plasma proteins is glycosylation [73], while the measurement of glycopeptides using
the shotgun proteomics method is a specialty by itself, with dedicated sample preparation,
chromatography, and mass spec fragmentation mechanisms [73,74].

An intact analysis of plasma proteins is more appropriate to investigate disease-related
proteoforms. However, the analysis and quantification of proteoforms at the intact level is
highly challenging. Among the different analytical options, highly sensitive reagent-based
assays, such as SomaScan or Olink, require the development of proteoform-specific reagents
(aptamers or antibodies) for each proteoform. While mass spectrometry is highly capable
of analyzing proteoforms and there has been tremendous progress in the field of top-down
proteomics [75], the coverage of top-down proteomics analysis is still too low to be used
as the primary biomarker discovery tool [73]. Most of the advances are using top-down
mass spectrometry to study low-molecule-weight proteoform species [76] or based on
sample fractionation [77] or immunoaffinity sample enrichment of the targeted proteoform
analysis [78]. Another limitation of intact proteoform analysis is for glycoproteins, as the
complexity of glycoforms could be overwhelming [79].

One possible strategy could be using shotgun proteomics results to nominate pro-
teoform biomarker candidates, for example, using shotgun proteomics to identify splice
variants [80]. The shortlist of isoform biomarker candidates could be validated by using
antibody-based immunoaffinity enrichment, followed by targeted intact protein/top-down
MS analysis [78]. The glycoprotein proteoform can be analyzed using shotgun glycopro-
teomics [73] or intact protein analysis for purified proteins [81]. To achieve higher splice
variance in protein isoform detectability, the proteomics platform needs to have good
overall protein sequence coverage and peptide level coverage. The current study provides
an example of improved peptide-level proteome coverage. One explanation is that the
current platform is based on an in-depth peptide-spectral library building, which helps
provide a large splice isoform-specific peptide repertoire. There are still many limitations to
this approach, but it provides a starting point for the comprehensive proteoform biomarker
discovery process.

In addition to the technical improvements in workflow and detection sensitivity,
the current study also highlights that these modifications can be implemented without
sacrificing the ability to detect biologically meaningful differences in the proteomic profile
of plasma from RA patients compared to healthy donors. A differential expression analysis
and pathway over-representative analysis revealed that the change in protein expression
profiles in RA plasma primarily reflected active inflammation and immune response, as
well as the repression of platelet functions (Figures 2 and 3). Some of the DEPs that
increased in abundance in the plasma may indicate enhanced expression of the same
proteins in synovial tissues and fluids of RA patients (Table 1). Particularly, the expression
of calprotectin (S100A8 and S100A9) showed the capability to discriminate between RA and
healthy plasma samples (Figure 4). However, most of the upregulated proteins detected in
this study were typical inflammatory markers that are not specific to RA, thus undermining
their value as diagnostic biomarkers for RA. For example, inflammatory bowel disease
(IBD), which includes Crohn’s disease and ulcerative colitis, is a chronic inflammatory
disorder of the gastrointestinal tract. Studies have reported that C-reactive protein, serum
amyloid A, and calprotectin all show diagnostic value for IBD with high sensitivities
and specificities [82–85]. Therefore, non-inflammatory RA-specific biomarkers require
further investigation. A comparison of protein expression profiles between RA and other
inflammatory disorders, such as asthma and IBD, could potentially lead to more specific
biomarker discovery for RA [58]. Despite this, these proteins can potentially be used as
generic indicators of treatment effectiveness for these inflammatory diseases.

Besides the canonical proteins, this study identified 25 non-canonical protein isoforms
from human plasma samples and 4 of these, FN1 (P02751-11), TPM3 (P06753-2), TPM1
(P09493-5), and NME2 (P22392-2), showed greater than 1.5-fold change decreases in RA
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with statistical significance (Supplementary Data S4). Fibronectin (FN1) has 15 isoforms
from alternative splicing, and different isoforms have been reported to be present in
synovial fluid from RA patients [86]. Interestingly, fibronectin has been found to promote
differentiation and mineralization of osteoblasts [87], thus the decrease in fibronectin
isoforms in RA plasma may indicate dysfunction of osteogenesis. Further investigation of
the isoforms dysregulated in RA could reveal more biological mechanisms.

In addition to LC/MS-based proteomics, capture reagent-based proteomics platforms,
such as OLINK and SomaScan, are popular options for analyzing plasma proteins for
biomarker discovery. These platforms provide a wide range of options for quantifying
hundreds to thousands of plasma proteins from a single sample and cover broad dynamic
ranges to enable the detection of low-abundant proteins [4,5,88]. Compared to these plat-
forms, LC/MS proteomics is not limited by the availability of detection reagents but lacks
the sensitivity to identify low-abundance proteins. Therefore, LC-MS and capture reagent-
based proteomics platforms are complementary. Mass spec-based plasma proteomics has
witnessed tremendous progress in recent years through the development of deep fractiona-
tion and efficient depletion. However, nanoparticle-based protein enrichment has been the
most impactful development based on nanoparticle-based protein enrichment [12]. Based
on a panel of five nanoparticle types, the Seer platform can routinely analyze >1500 protein
groups in human plasma using 250 µL of samples. Continuous improvements in sensitivity
and throughput in mass spectrometry will enable routine analysis of human plasma at
>2000 protein groups [81,89]. However, considering the cost and volume requirements of
the Proteograph platform and other equivalent platforms, the approach presented here
still has good value and suitability for plasma biomarker discovery in certain applications,
especially for mouse plasma biomarker discovery applications where the plasma volume is
limited and the suitability of the nanoparticle panel for mouse protein is still untested.

Although the platform presented here was developed for human plasma, it can
be readily deployed for other matrixes for biomarker applications. Matrixes other than
plasma are actually less challenging and the sample preparation procedure can be further
simplified. An attractive biomarker discovery and validation approach could be using the
high-throughput proteomics platform presented in this study to quickly generate biomarker
“hits” using secreted matrixes, such as plasma, CSF, and feces, together with tissue of “site-
of-action” and confirmed using targeted protein quantitation assays, for example, LC/MS
or ligand binding assays in the secreted matrices through a more comprehensive study
design. The benefit of this approach is its low cost, independence of reagent availability,
and broad applicability in various matrices.

5. Conclusions

In summary, we analyzed plasma samples from RA patients and healthy donors using
an improved SWATH-DIA proteomics workflow. A good proteome coverage of 663 proteins
was achieved with low missing values. The change in protein expression in RA plasma
mostly reflected active inflammation and immune response, as well as inhibition of platelet
activities and loss of muscle mass. Several differently expressed proteins were found to be
consistent with previous reports. Compared to the workflows that require high costs either
on assays (NPs) or LC-MS instruments (Evosep LC, timsTOF), the current workflow is a
viable option for plasma proteomics with satisfactory throughput and proteome coverage
to enable biomarker discovery applications with cost effectiveness, and it can be easily
expanded to plasma proteomic studies for other species and disease indications without
sample volume restrictions.
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www.mdpi.com/article/10.3390/proteomes11040032/s1. A Supplementary Data file is available
with the following information. Supplementary Data S1: Result of differential expression analy-
sis of all proteins comparing RA vs. Healthy plasma samples. Supplementary Data S2: List of
over-representative Gene Ontology Biological Processes among DEPs increasing in abundance in
RA (p-value < 0.05). Supplementary Data S3: List of over-representative Gene Ontology Biological
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Processes among DEPs decreasing in abundance in RA (p-value < 0.05). Supplementary Data S4: Dif-
ferential expression analysis results of twenty-five protein isoforms.
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