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Abstract: Protein phosphorylation is a key post-translational modification (PTM) that is a central
regulatory mechanism of many cellular signaling pathways. Several protein kinases and phosphatases
precisely control this biochemical process. Defects in the functions of these proteins have been
implicated in many diseases, including cancer. Mass spectrometry (MS)-based analysis of biological
samples provides in-depth coverage of phosphoproteome. A large amount of MS data available in
public repositories has unveiled big data in the field of phosphoproteomics. To address the challenges
associated with handling large data and expanding confidence in phosphorylation site prediction,
the development of many computational algorithms and machine learning-based approaches have
gained momentum in recent years. Together, the emergence of experimental methods with high
resolution and sensitivity and data mining algorithms has provided robust analytical platforms for
quantitative proteomics. In this review, we compile a comprehensive collection of bioinformatic
resources used for the prediction of phosphorylation sites, and their potential therapeutic applications
in the context of cancer.

Keywords: phosphoproteomics; machine learning; deep learning; cancer; post-translational
modification; personalized medicine

1. Introduction

Protein phosphorylation is the most widespread post-translational modification (PTM)
in eukaryotes and plays a cardinal role in regulating protein functions, such as modulating
their intracellular dynamics, stability, subcellular localization, and interaction with other
proteins [1,2]. Protein phosphorylation is reversibly controlled by protein kinases (PK) and
protein phosphatases (PP) [3]. Protein phosphorylation regulates many cellular processes,
including cellular metabolism, cell migration, cell division, proliferation and differentiation,
apoptosis, etc. [4–11]. Dysregulated phosphorylation has been identified as a hallmark of
many diseases, including numerous cancers, Alzheimer’s disease, and diabetes [12–14].
Therefore, understanding protein phosphorylation and its effects on cell signaling is a
major endeavor in the post-genomics era.

Recent advances in experimental approaches have immensely helped in the charac-
terization of PTMs. However, the analysis and understanding of PTMs involve several
challenges. Efficient and sensitive methods for the detection of PTMs are indispensable.
Traditionally, techniques including Edman degradation, mutational analysis, isotopic la-
belling, or immunochemistry have been used for PTM such as protein phosphorylation
discovery [15–17]. Recently, mass spectrometry (MS)-based approaches have shown to be
useful in protein phosphorylation identification [18]. MS provides a good platform for the
experimental determination of protein phosphorylation sites and high in-depth coverage,
and it provides opportunities for ML-based approaches to handle large datasets in public
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repositories. PTM research has made remarkable progress over the years, especially after
the emergence of new computational techniques. Combined with experimental methods,
the application of bioinformatics tools in PTM analysis enables a more efficient exploration
of the phosphorylation network, resulting in the timely analysis of datasets and providing
insights for biological research and drug discovery [19].

Deep learning (DL) in phosphoproteomics refers to the application of machine learn-
ing (ML) algorithms to analyze large amounts of data generated from phosphoproteomic
experiments. The aim of ML is to identify patterns, classify proteins, and make predictions
about protein phosphorylation. The data analysis in phosphoproteomics involves the
identification of phosphopeptides based on MS/MS spectra. This can be performed by
database searches. The databases report phosphopeptide sequences along with assigned
phosphorylation sites. Next, to determine the confidence of each possible phosphoryla-
tion site candidate in an identified peptide sequence, several computational algorithms or
ML-based approaches can be used. A global understanding of the protein phosphoryla-
tion network using these approaches can aid in our understanding of cellular signaling
pathways, disease mechanisms, disease onset prediction, drug development, and therapy
response in an efficient yet comprehensive manner.

In this brief review, we survey the mainstream tools available to explore the phospho-
rylation network. Additionally, we present a comparative analysis of these computational
tools in terms of technique used, implementation, performance, functionality and limi-
tations from the perspective of a biologist. Finally, we discuss the applications of these
phosphoproteomics-based bioinformatics tools in cancer research in identifying novel
drug targets and advancing personalized medicine. Hence, this review aims to bridge the
gap and emphasize the complementarity between traditional MS-based methods to study
phosphoproteomics and the new cutting-edge deep-learning-based prediction methods.

2. Methods for Phosphorylation Site Prediction

The computational approaches provide a promising strategy for identification and
understanding of phosphorylation sites. Several computational methods have been devel-
oped for phosphorylation site prediction over the years. These can be classified into two
main categories: algorithm-based and more advanced ML-based methods.

2.1. Algorithm-Based Computational Approaches

In the past, many studies used algorithm-based computational methods to predict
phosphorylation sites in which there are no learning algorithms used to gain information
directly from data. They can be further classified into simple consensus pattern-based
approaches (SCPs) and sequence similarity-based clustering methods (SSs). For example,
in 1988, one of the first computational approaches to predict PTM sites was developed,
which used the primary sequence of the protein and SCP approach [20]. Other examples
of SCPs are PROSITE [21], ELM [22], and HPRD [23], which depend upon the presence
of an exact motif surrounding the phosphorylation site. However, SSs-based methods
were later designed to provide a high score to a query peptide that has a high similarity
score with known phosphorylation peptides, using the sequence similarity measures such
as the BLOSUM62 matrix. PostMod [24] and PSEA [25] are examples of this category.
These methods have been shown to be inappropriate for large-scale analyses since the
performance of these methods in predicting phosphorylation sites is poorer than more
advanced ML-based approaches.
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2.2. Machine Learning (ML)-Based Computational Approaches

Over the last decade, the integration of ML into a wide range of computational models
has improved prediction accuracy and gained a better understanding of protein function
and PTMs [26,27]. With the explosion of DL methods, ML-based approaches for phos-
phorylation site prediction have become more popular. ML is generally the ability of
machines to do actions based on prior knowledge and experience [28]. ML-based methods
can learn the underlying rules and signatures in the data by tuning and optimizing related
parameters during the model training process, resulting in better performance as compared
to SCP-based methods. A few examples of ML-based techniques for phosphorylation site
prediction are neural network (NN), hidden Markov models (HMM), Bayesian decision
theory (BDT), support vector machines, logistic regression (LR), random forest (RF), K-
nearest neighbor (KNN), and conditional random fields (CRFs) [29–31]. A few examples of
phosphorylation site prediction tools based on these techniques are NetPhos, KinasPhos,
DISPHOS, and Ptpset. Most of the databases and phosphorylation-site prediction tools
that use different algorithms and ML-based approaches are listed in Tables 1 and 2, respec-
tively. The development of these models have set the benchmark for ML- and DL-based
approaches for various PTM predictions.
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Table 1. List of protein phosphorylation databases.

Name Technique Organisms Description/Functionality Ref Website

Kinome

Kinomer HMMER 2.3.2 Eukaryotes Annotated classifications for the protein kinase complements of
43 eukaryotic genomes [32,33]

http://www.compbio.dundee.ac.
uk/kinomer/ (accessed on

24 April 2023)

KinaseNET - Human Comprehensive source on human kinases - http://www.kinasenet.ca/ (accessed
on 24 April 2023)

Phosphatome

PTP - - Integrates sequence and structure with cellular and biological
functions on protein tyrosine phosphatases [34] http://ptp.cshl.edu/ (accessed on 24

April 2023)

DEPOD BLAST Comprehensive and informative database on human
kinase-phosphatase substrate [35] http://depod.bioss.uni-freiburg.de/

(accessed on 24 April 2023)

Kinome-Phosphatome

Phospho.ELM BLAST Multiple Database designed to store in vivo and in vitro phosphorylation [36] http://phospho.elm.eu.org/
(accessed on 24 April 2023)

PSP (PhosphositePlus) - Human, mouse, and rat Resource that comprehensively curates information about the
structure and regulatory interactions of phosphorylation sites [37] https://www.phosphosite.org

(accessed on 24 April 2023)

UniProt - Multispecies A central hub for the collection of functional information on
proteins [38] https://www.uniprot.org (accessed

on 24 April 2023)

EPSD (Eukaryotic
Phosphorylation site

Database)
- Multiple A data resource for the collection, curation, integration, and

annotation of p-sites in eukaryotic proteins [39] http://epsd.biocuckoo.cn (accessed
on 24 April 2023)

RegPhos 2.0 (regulatory
network in protein
phosphorylation)

- Human, mouse, and rat
A comprehensive tool to view intracellular signaling networks

by integrating the information of metabolic pathways and
protein–protein interactions

[40] http://140.138.144.141/~RegPhos/
(accessed on 24 April 2023)

Phospho3D 2.0 - Multiple A database for the collection of information on the residues
surrounding the p-site in space (3D zones) [41] http://www.phospho3d.org/

(accessed on 24 April 2023)

http://www.compbio.dundee.ac.uk/kinomer/
http://www.compbio.dundee.ac.uk/kinomer/
http://www.kinasenet.ca/
http://ptp.cshl.edu/
http://depod.bioss.uni-freiburg.de/
http://phospho.elm.eu.org/
https://www.phosphosite.org
https://www.uniprot.org
http://epsd.biocuckoo.cn
http://140.138.144.141/~RegPhos/
http://www.phospho3d.org/
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Table 1. Cont.

Name Technique Organisms Description/Functionality Ref Website

dbPSP - Prokaryotes Collection of p-sites in prokaryotic phosphoproteins [42] http://dbpsp.biocuckoo.cn
(accessed on 24 April 2023)

LymPHOS - Human, mouse A database for storage, sharing, and visualization of data related
with the human T-lymphocyte phosphoproteome [43] http://www.lymphos.org (accessed

on 24 April 2023)

P3DB - Plant species
Displays data in a relational, hierarchical manner that integrates

proteins, peptides, phosphosites, and spectra for each
phosphorylation event

[44] http://www.p3db.org/ (accessed on
24 April 2023)

PHOSIDA
(Phosphorylation site

database)
- Multiple Structural and evolutionary investigation and prediction of

phosphosites [45] http://phosida.de/ (accessed on
24 April 2023)

HPRD (human protein
reference database) BLAST Human

A database of curated proteomic information including PTMs,
kinase/phosphatase motifs, and binding motifs pertaining to

human proteins
[46] http://www.hprd.org (accessed on

24 April 2023)

VPTMdb SVM, NB, RF Virus Predicts viral p-Ser [47]
http://vptmdb.com:

8787/VPTMdb/ (accessed on
24 April 2023)

pTestis - Mouse
Testis phosphorylation sites from various studies were analyzed,
integrated with the iGPS prediction results, which present the

potential kinase–substrate regulatory relationships
[48] http://ptestis.biocuckoo.org/

(accessed on 24 April 2023)

PhosphoPep BLAST Multiple Database of protein phosphorylation sites for systems level
research in model organisms [49]

http://www.unipep.org/
phosphopep/index.php (accessed on

24 April 2023)

PhosphoPOINT PPI, BLASTP Human Annotates interactions among kinases, with their downstream
substrates and interacting phosphoproteins [50]

http://kinase.bioinformatics.tw/
(accessed on 24 April 2023),

https://bioregistry.io/registry/
phosphopoint.protein (accessed on

24 April 2023)

http://dbpsp.biocuckoo.cn
http://www.lymphos.org
http://www.p3db.org/
http://phosida.de/
http://www.hprd.org
http://vptmdb.com:8787/VPTMdb/
http://vptmdb.com:8787/VPTMdb/
http://ptestis.biocuckoo.org/
http://www.unipep.org/phosphopep/index.php
http://www.unipep.org/phosphopep/index.php
http://kinase.bioinformatics.tw/
https://bioregistry.io/registry/phosphopoint.protein
https://bioregistry.io/registry/phosphopoint.protein
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Table 2. A comprehensive list of computational tools used for phosphoproteomic data analysis, including phosphorylation site prediction, predicting kinases, and
phosphoproteomic data annotation. Column headings are as follows. Name: Name of the tool; Technique: the machine learning technique used; Organisms: list of
organisms the tool is applicable; Description/Functionality: important properties of the tool in terms of its functions; Reference; the paper describing that tool,
website: the address of that tool’s web implementation or source of access (if applicable). ANN: artificial neural network; PSSM: position-specific scoring matrices;
ZSL: zero-short learning; RNN: recurrent neural network; BLR: bagged logistic regression; LR: logistic regression algorithm; DNN: deep neural network; PPI:
protein–protein interaction; XGBoost: extreme gradient boosting; MLS: motif length selection (MLS); LSTM: long short-term memory.

Name Technique Organisms Description/Functionality Ref Website

NetPhos 3.1 ANN Multiple
Generates NN predictions for serine, threonine, and tyrosine phosphorylation

sites in eukaryotic proteins. Utilizes sequence composition features, both generic
and kinase specific predictions

[30] https://mybiosoftware.com/tag/
netphos (accessed on 24 April 2023)

NetPhosK ANN Eukaryotes Kinase-specific phosphorylation sites prediction [51]
https://www.hsls.pitt.edu/obrc/
index.php?page=URL1117048165

(accessed on 24 April 2023)

Scansite 2.0 PSSM Human

A tool built on experimental binding and/or substrate information from oriented
peptide library screening and phage display experiments, together with detailed
biochemical characterization to derive a weight matrix-based scoring algorithm

that predicts protein–protein interactions and sites of phosphorylation

[52] https://scansite4.mit.edu/#home
(accessed on 24 April 2023)

PhosphoNet PSSM Human An open source of putative phosphosites predicted after improvisation of kinase
substrate prediction algorithm to the primary structure of proteins [53] http://www.phosphonet.ca

(accessed on 24 April 2023)

Predphospho SVM Human Predicts the changes in phosphorylation sites caused by amino acid variations at
intra- and interspecies levels [54]

http://www.ngri.re.kr/proteo/
PredPhospho.htm (accessed on

24 April 2023)

NetworkKIN ANN, PSSM Human Uses probabilistic protein association network (string) to model the context of
kinases and substrates, combined with consensus sequence motifs [55] https://networkin.info/ (accessed

on 24 April 2023)

jEcho Weight vector Human Phosphorylation sites of kinases [56]
http://www.healthinformaticslab.
org/supp/resources.php (accessed

on 24 April 2023)

PhoScan Scoring function Human Predicts kinase-specific phosphorylation sites with sequence features by a
log-odds ratio approach [57]

http://bioinfo.au.tsinghua.edu.
cn/phoscan/ (accessed on

24 April 2023)

https://mybiosoftware.com/tag/netphos
https://mybiosoftware.com/tag/netphos
https://www.hsls.pitt.edu/obrc/index.php?page=URL1117048165
https://www.hsls.pitt.edu/obrc/index.php?page=URL1117048165
https://scansite4.mit.edu/#home
http://www.phosphonet.ca
http://www.ngri.re.kr/proteo/PredPhospho.htm
http://www.ngri.re.kr/proteo/PredPhospho.htm
https://networkin.info/
http://www.healthinformaticslab.org/supp/resources.php
http://www.healthinformaticslab.org/supp/resources.php
http://bioinfo.au.tsinghua.edu.cn/phoscan/
http://bioinfo.au.tsinghua.edu.cn/phoscan/


Proteomes 2023, 11, 16 7 of 19

Table 2. Cont.

Name Technique Organisms Description/Functionality Ref Website

Predphos SVM Multiple
Structural-based prediction of phosphorylation sites, hybrid approach,
which incorporates bootstrap resampling technique, SVM-based fusion

classifiers and majority voting strategy
[58] No tool link

NetPhosYeast ANN Yeast Prediction of protein phosphorylation sites in yeast [59]
https://services.healthtech.dtu.dk/service.

php?NetPhosYeast-1.0 (accessed on
24 April 2023)

GPS 6.0
(group-based

prediction
system)

MLS, PSSM, GA Mammalian Protein phosphorylation sites and their cognate kinases (addresses false
positive rates in prediction) [60,61] http://gps.biocuckoo.org/ (accessed on 24

April 2023)

iGPS GPS with PPI Human It is a GPS algorithm with the interaction filter, or in vivo GPS mainly for
the prediction of in vivo site-specific kinase-substrate relation (ssKSRs) [62] http://igps.biocuckoo.org/links.php

(accessed on 24 April 2023)

PPRED PSSM, SVM - Incorporates only evolutionary information of PSSM profile of the
proteins in predicting phosphorylation sites [63]

http://www.cse.univdhaka.edu/~ashis/
ppred/index.php (accessed on

24 April 2023)

Phos3D SVM Human
Prediction of phosphorylation sites (p-sites) in proteins, originally

designed to investigate the advantages of including spatial information in
p-site prediction

[64] https://phos3d.mpimp-golm.mpg.de/cgi-
bin/index.py (accessed on 24 April 2023)

DAPPLE 2 BLAST Human Homology-based prediction of phosphorylation sites [65] http://saphire.usask.ca/saphire/dapple2
(accessed on 24 April 2023)

EMBER CNN + RNN Multiple

Embedding-based multilabel prediction of phosphorylation events
(EMBER), a DL method that integrates kinase phylogenetic information

and motif-dissimilarity information into a multilabel classification model
for the prediction of kinase motif phosphorylation events

[66] https://github.com/gomezlab/EMBER
(accessed on 24 April 2023)

KinomeXplorer
NetworKIN algorithm,

a novel Bayesian
scoring scheme

Human and
major

eukaryotes
Analyze phosphorylation-dependent protein interaction networks [67] http://kinomexplorer.info/ (accessed on 24

April 2023)

PhosTransfer CNN Info not
available Hierarchical kinase-specific phosphorylation site (KPS) prediction [68] https://github.com/yxu132/PhosTransfer

(accessed on 24 April 2023)

https://services.healthtech.dtu.dk/service.php?NetPhosYeast-1.0
https://services.healthtech.dtu.dk/service.php?NetPhosYeast-1.0
http://gps.biocuckoo.org/
http://igps.biocuckoo.org/links.php
http://www.cse.univdhaka.edu/~ashis/ppred/index.php
http://www.cse.univdhaka.edu/~ashis/ppred/index.php
https://phos3d.mpimp-golm.mpg.de/cgi-bin/index.py
https://phos3d.mpimp-golm.mpg.de/cgi-bin/index.py
http://saphire.usask.ca/saphire/dapple2
https://github.com/gomezlab/EMBER
http://kinomexplorer.info/
https://github.com/yxu132/PhosTransfer
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Table 2. Cont.

Name Technique Organisms Description/Functionality Ref Website

MusiteDeep CNN/CapsNet Human Prediction and visualization for multiple PTMs and simultaneously potential
PTM cross-talks [69] https://www.musite.net (accessed

on 24 April 2023)

PROSPECT CNN E. coli Predicts histidine phosphorylation sites from sequence information [70] https://bio.tools/prospect-web
(accessed on 24 April 2023)

DeepKinZero ZSL Human Predicts the kinase acting on a phosphosite for kinases with no known
phosphosite information [71]

https://github.com/Tastanlab/
DeepKinZero (accessed on

24 April 2023)

DeepPPSite LSTM
Mammals and

Arabidopsis
thaliana

Long short-term memory (LSTM) recurrent network for predicting
phosphorylation sites [72]

https://github.com/saeed344
/DeepPPSite (accessed on

24 April 2023)

DeepIPs CNN + LSTM Human Identification of phosphorylation sites using deep learning method [73]
https://github.com/linDing-

group/DeepIPs (accessed on 24
April 2023)

Rice_Phospho
1.0 SVM Rice Predicts protein phosphorylation sites in rice [74]

http://bioinformatics.fafu.edu.cn/
rice_phospho1.0 (accessed on 24

April 2023)

Yeast KID - Yeast
The first literature-curated database for kinases that integrates a series of HTP

and LTP, genetic, physical, and biochemical experimental evidence with the goal
of establishing known kinase–substrate relationships.

[75]
http://www.moseslab.csb.

utoronto.ca/KID/ (accessed on 24
April 2023)

AutoMotif SVM The service uses a supervised support vector machine approach to predict
various types of phosphorylation sites in proteins [76] http://ams2.bioinfo.pl/ (accessed

on 24 April 2023)

PhosIDN Multilayer DNN Human An integrated DNN approach for improving protein phosphorylation site
prediction by combining sequence and protein–protein interaction information [77]

https://github.com/
ustchangyuanyang/PhosIDN

(accessed on 24 April 2023)

DeepPhos CNN Human Uses densely connected CNN for kinase-specific phosphorylation site prediction [29]
https://github.com/USTC-HIlab/

DeepPhos (accessed on
24 April 2023)

Chlamy-
EnPhosSite CNN + LSTM Chlamydomonas

reinhardtii
Can predict novel sites of phosphorylation within the entire C. reinhardtii

proteome [78]
https://github.com/dukkakc/

Chlamy-EnPhosSite (accessed on
24 April 2023)

https://www.musite.net
https://bio.tools/prospect-web
https://github.com/Tastanlab/DeepKinZero
https://github.com/Tastanlab/DeepKinZero
https://github.com/saeed344/DeepPPSite
https://github.com/saeed344/DeepPPSite
https://github.com/linDing-group/DeepIPs
https://github.com/linDing-group/DeepIPs
http://bioinformatics.fafu.edu.cn/rice_phospho1.0
http://bioinformatics.fafu.edu.cn/rice_phospho1.0
http://www.moseslab.csb.utoronto.ca/KID/
http://www.moseslab.csb.utoronto.ca/KID/
http://ams2.bioinfo.pl/
https://github.com/ustchangyuanyang/PhosIDN
https://github.com/ustchangyuanyang/PhosIDN
https://github.com/USTC-HIlab/DeepPhos
https://github.com/USTC-HIlab/DeepPhos
https://github.com/dukkakc/Chlamy-EnPhosSite
https://github.com/dukkakc/Chlamy-EnPhosSite
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Table 2. Cont.

Name Technique Organisms Description/Functionality Ref Website

DeepPSP DNN, SENet,
Bi-LSTM ? Uses both local and global sequence information to improve

phosphorylation site prediction performance [79] https://github.com/DeepPSP (accessed on
24 April 2023)

Predikin 2.0 PSSM Human
Utilizes the kinase sequence to build scoring matrices based on key residues

in the kinase catalytic domain that are known from structural analysis to
interact with the substrate phosphorylation site.

[80] http://predikin.biosci.uq.edu.au (accessed
on 24 April 2023)

KinasePhos2.0 SVM Human? Predicts phosphorylation sites based on protein sequence profile and
protein coupling pattern and the type of kinase that acts at each site [81]

http://kinasephos2.mbc.nctu.edu.tw/
document.html,

https://bio.tools/kinasephos_2.0 (accessed
on 24 April 2023)

KinasePhos 3.0 SVM, XGBoost Human and
others

Provides comprehensive annotations of kinase-specific phosphorylation
sites on multiple proteins. Shapley additive explanations (SHAP) was

integrated to increase the feature interpretability
[82]

https://awi.cuhk.edu.cn/KinasePhos/
index.html, https://github.com/tom-209/

KinasePhos-3.0-executable-file (accessed on
24 April 2023)

DISPHOS
(disorder-
enhanced

phosphorylation
predictor)

BLR Human
Position-specific amino acid frequencies and disorder information is used to

improve the discrimination between phosphorylation and
non-phosphorylation sites

[83] http://www.ist.temple.edu/DISPHOS
(accessed on 24 April 2023)

pkaPS Scoring function Human Phosphorylation sites of PKA [84] http://mendel.imp.univie.ac.at/sat/pkaPS
(accessed on 24 April 2023)

Quokka Seqeunce scoring
function + LR Human Predicts kinase-specific phosphorylation sites [85] http://quokka.erc.monash.edu/ (accessed

on 24 April 2023)

PHOSIDA
(phosphorylation

site database)
SVM Multiple Structural and evolutionary investigation and prediction of phosphosites [45] http://phosida.de/ (accessed on

24 April 2023)

VPTMdb SVM, NB, RF Virus Predicts viral p-Ser [47] http://vptmdb.com:8787/VPTMdb/
(accessed on 24 April 2023)

https://github.com/DeepPSP
http://predikin.biosci.uq.edu.au
http://kinasephos2.mbc.nctu.edu.tw/document.html
http://kinasephos2.mbc.nctu.edu.tw/document.html
https://bio.tools/kinasephos_2.0
https://awi.cuhk.edu.cn/KinasePhos/index.html
https://awi.cuhk.edu.cn/KinasePhos/index.html
https://github.com/tom-209/KinasePhos-3.0-executable-file
https://github.com/tom-209/KinasePhos-3.0-executable-file
http://www.ist.temple.edu/DISPHOS
http://mendel.imp.univie.ac.at/sat/pkaPS
http://quokka.erc.monash.edu/
http://phosida.de/
http://vptmdb.com:8787/VPTMdb/
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3. Framework of ML-Based Approaches for Phosphorylation Site Prediction

Generally, ML-based computational approaches for phosphorylation site prediction
are developed using the following five steps: (1) dataset preparation; (2) selection of
encoding methods; (3) building prediction models; and (4) performance evaluation and
development of a web-server (Figure 1).
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3.1. Dataset Preparation

The first step for phosphorylation site prediction is dataset preparation that includes
the extraction of experimentally validated phosphorylation sites from the publicly available
databases, dbPTMs, and the literature [86]. A few of the protein phosphorylation databases
are enlisted in Table 1. An extracted dataset must include both positive and negative
datasets. The fragments or peptides that have the phosphorylated residues (S, T, Y) com-
piled from the aforementioned dbPTMs are considered a positive dataset. The S, T, Y amino
acids in the experimental peptides with no phospho-groups on them are considered as
negative datasets. Almost all studies use databases to gather positive samples, yet, selecting
the negative dataset is the most challenging step. While a particular residue that can be
phosphorylated can be validated experimentally, a particular residue that is not phosphory-
lated under any conditions is difficult to prove experimentally. Therefore, databases contain
thousands of known phosphorylation sites but do not contain phosphorylation sites that are
known to be unphosphorylated. A few criteria to apply while extracting a negative dataset
include the selection of a site that should not have been reported as a phosphorylation
site in the positive dataset, the thresholding of a solvent accessible area of the protein, etc.
Following the construction of these datasets, the next step is the removal of homologous
and redundant sequences. The Cluster Database at high identity with tolerance (CD-hit)
is a popular program to detect and filter similar sequences [87]. The threshold of identity
between sequences is considered to range from 30% to 90%. These prepared datasets are
used as benchmark data, which are eventually divided into 80% training data for learning
and 20% testing set for model validation. The training data are used for feature selection
and ML model generation, which also includes a 5-fold internal cross-validation of the
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trained classifiers’ performance. The testing dataset is used for further assessment and
validation of ML models using various statistical measures.

3.2. Feature Encoding and Selection

For feature encoding, all the proteins are partitioned into polypeptides in such a way
that the target residue is placed at the center of the peptide. Each polypeptide sequence
(both positive and negative datasets) is encoded as a numerical feature vector according to
the appropriate biological descriptors, such as amino acid composition [88], similarity score
to the known motifs [89], and evolutionary and structural properties [90]. Occasionally, to
enhance the prediction performance, all features are pooled, thus resulting in a combination
of features to generate learning models. Feature selection methods are then used to choose
the most relevant features while minimizing the redundancy in the data and further
improving the model performance by reducing its computational time. The feature selection
is performed at two levels: minimum redundancy maximum relevance (mRMR) approach
followed by symmetrical uncertainty (SU) selection method. mRMR is a widely used feature
selection method approach that ranks the features while taking into consideration their
importance to the classification variable along with the redundancy among the features
themselves [91]. The SU attribute evaluation method weighs the merit of an attribute by
determining its uncertainty with reference to other sets of attributes [92].

3.3. Model Construction and Validation

Once the features have been extracted, data are used to train a model/classifier for
PTM site prediction. At this point, different classifiers are trained, and based on the
performance of each classifier, a suitable classifier is selected. One of the most popular
ML-based methods used for predicting sites is SVM. SVMs are a set of points in the n-
dimensional space of data that define the boundaries of categories. It is a maximum margin
classifier in which data are separated by a hyperplane, provided that they have the highest
margin over the data. RF is one of the other well-known ML-based algorithms used for
phospho-sites. RF is a supervised learning algorithm; as the name suggests, it builds forests
randomly whereby forests are groups of decision trees. Once several decision trees are
made, they are merged to make more stable and accurate stable predictions. The classifier
is trained on a subset of assembled dataset (training dataset) after parameter optimization
and, finally, the predictor is ready to be assessed for performance and compared with other
methods. The prediction performance of the model is assessed by its accuracy (proportion
of correct positive and negative predictions), sensitivity or true-positive rate, F-score, and
Mathew’s correlation coefficient (MCC). An independent test set is carried out to evaluate
the performance of the classifier and further verify its practicality.

4. Use of Machine Learning-Based Approaches for Phosphoproteome Prediction
in Cancers

Quantitative phosphoproteomics-based approaches are powerful tools to investigate
the signaling pathways and cross-talk networks in cancer cells, assess disease prognosis,
and develop personalized treatments [8,9,93–95]. Integrating ML and multi-omics data
to classify cancer stages or accelerate the prognosis of the disease in the early stages is an
active area of investigation. Many in silico approaches for predicting the phosphoproteomic
profiles of cancer patients have gained attention in recent years. Sequence-based approaches
to predict phosphoproteomes have limited accuracy as phosphoproteomic profiles may vary
considerably across cancer patients [96]. Further, MS-based approaches are time-consuming
and expensive. Therefore, new computational methods to predict phosphoproteomic
profiles across cancer patients are now widely investigated. Several models have been
developed and used to predict phosphoproteome in cancer cells, discover biomarkers,
patient-specific drug targets, individualized prediction of drug response, and clinical
outcomes and toxicity [95,97–101] (Figure 2).
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4.1. Machine Learning-Based Approaches for Phosphoproteome-Based Biomarker Prediction

The Cancer Genome Atlas (TCGA), the National Cancer Institute (NCI), and the Clini-
cal Proteomic Tumor Analysis Consortium (CPTAC) are valuable resources that provide a
collection of genomic, transcriptomic, proteomic, and phosphoproteomic data for a variety
of cancer types. Artificial intelligence (AI) can be used to train these datasets to create algo-
rithms that can predict patient-specific outcomes by predicting biomarkers. For example,
using the Boruta algorithm to identify mutant genes involved in the vascular invasion from
TCGA, the National Institute of Health, Medical Research, and AMC databases, a gene
signature was identified and a recurrence prediction model for recurrence for HCC patients
was established [102]. A convolutional NN algorithm was used to analyze proteomics and
histology imaging datasets generated by the Clinical Proteomic Tumor Analysis Consor-
tium (CPTAC) from clear cell renal cell carcinoma patients. This study reported a robust
correlation between diagnostic markers and predictions generated by the imaging-trained
classification model [103]. Joint learning (JL) is a type of ML method to predict proteome
from the transcriptome. This method was developed using a training dataset by NCI-
CPTAC and TCGA, consisting of proteomic, phosphoproteomic, and transcriptomic data
from 77 breast and 105 ovarian cancer samples. In this powerful model, a gene-specific
regulatory network was trained, followed by creating a cross-tissue model by JL, the shared
regulatory networks and pathways across many cancer tissues. Such a robust model can
help facilitate biomarker discoveries for high- and low-risk patients in survival analyses
with different clinical outcomes due to the activation of different functional pathways [104].
Further, the proteome complexity across cancer types and within the patient-specific cohort
can also be effectively studied using these models, whereas the traditional approaches may
have limited scope to address these issues.

Further, to predict the drug response and design rational combination therapies, a
recent study used seven targeted anticancer drugs in 35 non-small cell lung cancer (NSCLC)
cell lines and 16 samples of pleural effusions from NSCLC and analyzed dynamic changes
in 52 phosphoproteins. They developed an orthogonal ML approach to predict drug
response and rational combination therapy. Such studies can supplement the existing
methods of using gene mutations to predict biomarkers by utilizing the proteomics data
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and predict treatment choices and therapy outcomes based on the dynamic proteome
complexity [98].

4.2. Machine Learning-Based Approaches for Phosphoproteome-Based Patient-Specific Drug
Targets and Responses

ML is becoming increasingly popular and valuable in enhancing our current un-
derstanding of established or new molecular targets in regulating stemness and cancer
metastasis. These studies are key to identifying novel phosphoproteome-based drug targets
for hard-to-treat cancers. In a recent in-depth global and phosphoproteomic analyses of
tumor cells, using protein structure modeling and interface prediction-guided mutagenesis,
the interaction between CD44 and CD81 in extracellular vesicles (EVs) secretion was identi-
fied [100]. EVs are the drivers of breast cancer stemness and metastasis in triple-negative
breast cancer (TNBC). Hence, this study is seminal to identifying new molecular drug
targets with the help of ML approaches. Another study analyzed the phosphoproteomes of
cholangiocarcinoma cell lines and patient tumors using MS-based phosphoproteomics and
computational methods to identify patient-specific drug targets. This study identified the
inhibitors of histone deacetylase and PI3K pathway members as high-ranking therapies to
use in primary cholangiocarcinoma by the drug ranking using machine learning (DRUML)
algorithm [97]. Drug ranking using ML (DRUML) has also been successfully applied to
predict the efficacy of anticancer drugs [105].

KSTAR is graph- and statistics-based algorithm that can capture patient-specific kinase
activities from phosphoproteomic data. This algorithm was applied to clinical breast cancer
phosphoproteomic data. The study reported that the predicted kinase activity profiles could
successfully identify misclassified HER2-positive breast cancer patients. In addition, the
algorithm can also identify the likelihood of clinically diagnosed HER2-negative patients
to respond to HER2-targeted therapy [106]. Thus, in addition to identifying novel drug
targets, ML-based studies are also actively contributing to our current understanding of
patient-specific drug responses.

Cellular immunotherapies are a form of personalized medicine that has revolutionized
cancer treatment. However, only a subset of patients responds to immunotherapy; hence,
there is vast room for improvement. In a recent study, ML-based algorithms were applied to
MS-based serum proteomics signatures to predict the response and toxicity of immunother-
apy. Datasets from advanced non-small cell lung cancer and malignant melanoma patients
were used in this study. Interestingly, the algorithm was able to effectively categorize
patients into groups with good and poor treatment outcomes independent of the biomarker
signatures [99].

To understand the disease progression and therapy outcome and to identify new drug
targets, a holistic understanding of the complex phosphoproteome in cancer is required.
This will involve a combination of mass spectrometry-based phosphoproteomics, together
with databases and bioinformatics tools to capture the actual, real-time activity of kinases.
Such tools could be valuable to establish a phosphoproteomics-based personalized medicine
platform for hard-to-treat cancers.

5. Conclusions and Future Perspective

The function of a protein is strongly affected by the post-translational chemical modi-
fications that play important functions in a myriad of cellular processes. Therefore, PTM
identification is critical for the understanding of molecular functions and diseases. The
considerable amount of PTM data generated from the in-depth MS-based experimental
approaches could be used to support the development of downstream computational
identification methods. DL is a highly effective computational approach to understand
large and complex datasets to predict PTMs. In recent years, several DL methods have been
developed to predict PTM sites with high efficiency. While these tools have shed light on
the quicker, efficient, and less labor-intensive ways on the discovery of phosphorylation site
prediction, there are some common weaknesses in assessing these methods, and various
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factors should be considered in deciding which tool to choose. The most critical factor
relevant for the evaluation of prediction tools is the motif size and proper biological context.
Another important factor relevant for consideration in PTM predictor construction is the
quality of underlying data, including the amount and redundancy of example substrate
protein sequences and the level of authenticity. There are several DL algorithms employed;
however, each model has its own advantages and disadvantages. In many models, PTM
sites are predicted based on sequence information, physical properties, chemical properties,
and protein structure properties, but there is still room for approaches that are based on
reduced amino acid compositions [107–109].

Thousands of phosphorylation sites have been identified for different proteins by MS;
however, the kinase responsible for the phosphorylation of that amino acid in a few of the
reported datasets is missing. Therefore, there is a need to develop databases which could
bridge the gap between the number of experimentally identified phosphorylation sites and
the number of phosphorylation sites for which the modifying kinase is known. While PTM
identification can be implemented with DL-based methods in a non-invasive, efficient, and
low-cost way, there is still a caveat if these algorithms can be directly used for diseases
diagnoses. The over-arching problem is the false-positive rate, which is not ideal for its
application in healthcare studies where every misdiagnosis can pose a danger to a patient’s
health. An ideal model is characterized by high sensitivity and a very low false-positive
prediction rate. Therefore, further research is required to evaluate more state-of-the-art
frameworks so that these techniques could be applied in clinical practice more effectively.

A phosphorylation event is dynamic and cell type-specific and cannot be traced in a
heterogenous cell population, highlighting the importance of analyzing phosphorylation
events at the single-cell level for complex samples, such as tissues and organs. With the
advent of single-cell proteomics, the adaptation of phosphoproteomics profiling to single-
cells has revolutionized the field in uncovering the heterogeneity in signaling networks,
complementing single-cell genomics and transcriptomics [110–112]. Therefore, we believe
that an integration of computational and biochemical approaches will form the basis for
the future development of methods that can reconstruct trans-regulatory networks for
heterogeneous cells in single-cell multi-omics data [113]. Another forth-coming area of
research in this field is the characterization of cross-talk between different types of PTMs.

Mass spectrometry is one of the key platforms for proteomic analyses that involves
either a ‘bottom-up’ or a ‘top-down’ proteomics approach. The traditional ‘bottom-up’
approach employs the digestion of intact proteins into peptides, followed by introduction
into the mass spectrometer for fragmentation/detection. Majority of the ML-based methods
run smoothly on the bottom-up proteomics data. In the ‘top-down’ approach, the proteins
are ionized directly and the intact fragmented proteins rather than digestive peptides are
used in the analysis [114]. Many phosphoproteins have been studied using the top-down
approach [115–117]. However, one of the major challenges in top-down proteomics data
analysis is the complexity of the high-resolution top-down mass spectra that involves
centroiding, deconvolution, proteoform identification, and quantification [118]. A number
of algorithm- and ML-based approaches are now actively being developed to enhance
the predictions in the top-down proteomics. These methods will be extremely valuable
resources that will aid into our understanding of proteoform complexity and improve the
performance of disease diagnosis and drug target discovery.

Recently, ensembled learning-based feature selection methods were employed to
explore the nature of the phosphorylation of SARS-CoV-2 to contribute to SARS-CoV-2
drug discovery [119]. Finally, in the era of personalized medicine, ML-based approaches in
phosphoproteome studies will play an instrumental role both in understanding the disease
mechanisms and in identifying new therapy targets. ML-based approaches will be valuable
in discovering novel biomarkers, advance our current understanding of patient-specific
drug targets and drug responses, and facilitate cancer stage classification.
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