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Abstract: EGFR mutations are strong predictive markers for EGFR tyrosine kinase inhibitor (EGFR-

TKI) therapy in patients with non-small-cell lung cancer (NSCLC). Although NSCLC patients with 

sensitizing EGFR mutations have better prognoses, some patients exhibit worse prognoses. We hy-

pothesized that various activities of kinases could be potential predictive biomarkers for EGFR-TKI 

treatment among NSCLC patients with sensitizing EGFR mutations. In 18 patients with stage IV 

NSCLC, EGFR mutations were detected and comprehensive kinase activity profiling was per-

formed using the peptide array PamStation12 for 100 tyrosine kinases. Prognoses were observed 

prospectively after the administration of EGFR-TKIs. Finally, the kinase profiles were analyzed in 

combination with the prognoses of the patients. Comprehensive kinase activity analysis identified 

specific kinase features, consisting of 102 peptides and 35 kinases, in NSCLC patients with sensitiz-

ing EGFR mutations. Network analysis revealed seven highly phosphorylated kinases: CTNNB1, 

CRK, EGFR, ERBB2, PIK3R1, PLCG1, and PTPN11. Pathway analysis and Reactome analysis re-

vealed that the PI3K-AKT and RAF/ MAPK pathways were significantly enriched in the poor prog-

nosis group, being consistent with the outcome of the network analysis. Patients with poor progno-

ses exhibited high activation of EGFR, PIK3R1, and ERBB2. Comprehensive kinase activity profiles 

may provide predictive biomarker candidates for screening patients with advanced NSCLC harbor-

ing sensitizing EGFR mutations. 
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1. Introduction 

Lung cancer is one of the most common cancers, causing death frequently [1]. Among 

lung cancers, non-small-cell lung cancer (NSCLC) amounts to approximately 80% of 

newly diagnosed lung cancers yearly [2]. Notably, most NSCLC cases are diagnosed as 

lung cancers with advanced stage [2]. For patients with advanced NSCLC, chemotherapy 

has been considered the front-line remedy. However, patients are provided with limited 

therapeutic effects and poor clinical outcomes due to its toxicity and adverse events: the 

outcomes are a median overall survival (OS) of only 8–10 months and a 5-year survival 

rate of less than 15% [3]. Epidermal growth factor receptor tyrosine kinase inhibitors 

(EGFR-TKIs) are used to treat patients with advanced or metastatic NSCLC. EGFR-TKIs 

have demonstrated a significant effect on NSCLC patients harboring EGFR mutations and 

have improved quality of life [4, 5]. 

The overexpression of EGFR is commonly identified in NSCLC (32–81%) and is 

known as a reliable target and biomarker for NSCLC treatment [6, 7]. EGFR-TKIs includ-

ing gefitinib and erlotinib demonstrate surpassing clinical effects compared to standard 

chemotherapy or best supportive care [4, 5]. Previous studies have reported that EGFR 

mutation is a practical predictive marker of increased sensitivity to EGFR-TKIs and con-

cerned with the improvement of progression-free survival with TKIs [8]. Particularly, de-

letions of exon 19 and point mutations of exon 21 (21-L858R) are commonly observed in 

85% of patients with NSCLC harboring EGFR mutations [9-11]. These mutations demon-

strate a high response rate of 70% against EGFR-TKI [12]. Several studies have confirmed 

that patients with NSCLC harboring these two mutations show fewer side effects and im-

proved quality of life [13]. However, the heterogeneity of responses to EGFR TKIs has 

been pointed out to have a wide range from a few months to several years in progression-

free survival. Additionally, in around 10–20% of patients with sensitizing EGFR muta-

tions, objective responses to EGFR TKIs are not exhibited. These phenomena have moti-

vated the search for other predictive biomarkers surpassing EGFR mutations that can de-

tect patients with sensitizing EGFR mutations who have a worse prognosis. 

Protein phosphorylation is an essential apparatus regulating cellular functions such 

as apoptosis, cell proliferation and migration, cell cycle, and differentiation [14]. Approx-

imately 500 different kinases orchestrating these pivotal functions are encoded by the hu-

man genome [15], and 90% of all proteins are subjected to phosphorylation [16]. Aberrated 

kinase activity is caused by genetic mutations such as amplification, point mutation, chro-

mosomal translocation, and epigenetic regulation in carcinogenesis and cancer progres-

sion. Furthermore, the dysregulation of self-phosphorylation and the kinase-to-kinase 

regulatory relationship also result in the aberrant activity of kinases. The corrupted kinase 

activity finally causes various effects including the interruption of important cell func-

tions, the transformation of normal cells into tumor cells, and the determination of malig-

nant features such as invasion, metastasis, and resistance to chemotherapy [17]. Therefore, 

aberrantly regulated kinases and their substrate proteins are considered biomarkers to 

affect the process of cancer treatments [18, 19]. In addition, protein kinases are crucial 

therapeutic targets in oncology [20], and a number of approved kinase inhibitors have 

been used for cancer therapeutics [21]. Therefore, the research of protein phosphorylation 

will deepen the understanding of fundamental biology and provide novel insights for 

clinical applications of NSCLC harboring sensitizing mutations. 

Although most NSCLC patients with sensitizing EGFR mutations exhibit a better 

prognosis, some exhibit a worse prognosis. For the identification of predictive biomarkers 

that are useful to detect these patients with worse prognoses, we performed a comprehen-

sive kinase activity analysis using PamStation 12 (PamGene International, BJ’s-Hertogen-

bosch, The Netherlands) in NSCLC patients at advanced stages with sensitizing EGFR 

mutations and followed their prognosis prospectively. Finally, kinomic profiles may pro-

vide prognostic biomarkers for patients with advanced NSCLC harboring sensitizing 

EGFR mutations. 
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2. Materials and Methods 

2.1. Patients 

Nineteen patients with advanced NSCLC who were treated in the enrolled hospitals 

between June 2018 and October 2020 were included in the study. All patients had available 

tumor tissues for biomarker analysis. Tumor tissue from the primary sites was obtained 

by surgery or biopsy. The samples were rinsed with saline after being taken. The samples 

were simply put into a −80 °C freezer. The time between biopsy and freezing was con-

ducted within a few minutes in all samples. Serial sections were used for mutational and 

tyrosine kinase activity analyses. After the diagnosis of NSCLC, EGFR-TKIs were admin-

istered as monotherapy (composed of the first therapy in gefitinib, afatinib, or osimer-

tinib) and complete clinicopathological findings were examined in all patients. Treatment 

with gefitinib (250 mg), afatinib (20–40 mg), or osimertinib (80 mg) alone was maintained 

unless disease progression, adverse events, or patient refusal occurred. Written informed 

consent was obtained from all patients. The study protocol was approved by the Institu-

tional Ethics Committee of the National Cancer Center (2018-208) and the Kyoto Prefec-

tural University of Medicine (ERB-C-1106). 

2.2. Study Design 

This prospective observational study was designed to evaluate tyrosine kinase activ-

ity for predicting the clinical response to EGFR-TKI treatment in patients with advanced 

NSCLC harboring activating EGFR mutations. Tumor samples were obtained at the initial 

diagnosis. Until all clinical data were evaluated, the clinical data were enclosed during 

laboratory analysis Recorded clinical data consisted of age, sex, smoking history, pathol-

ogy, stage at diagnosis, treatments, EGFR mutation, and adverse events. After the admin-

istration of EGFR-TKIs, the prognosis was followed. Efficacy evaluations included the 

best response, disease control rate (DCR), objective response rate (ORR), progression-free 

survival (PFS), and overall survival (OS). The outline of this study is presented in Figure 

1. 
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Figure 1. Workflow of this study. A number of NSCLC patients with sensitizing EGFR mutations 

were enrolled in this study. The prognosis was followed. 

2.3. Assessments 

Tumors were assessed at diagnosis and every 8–12 weeks until the investigators re-

ported disease progression or unacceptable adverse events. According to the Response 

Evaluation Criteria in Solid Tumors (RECIST), clinical responses to TKIs consisting of 

complete response (CR), partial response (PR), stable disease (SD), and disease progres-

sion (PD) were examined [22]. The definition of PFS was the time from the initiation of 

TKI treatment to PD or death. The definition of OS was the time from TKI initiation to 

death. All films were assessed by an independent radiologist who was blinded to the 

EGFR biomarker status. 

2.4. EGFR-mutation Analysis 

EGFR mutations in exons 18–21 were examined using the polymerase chain reaction 

method for tumor and plasma samples. Sequencing was performed at commercial clinical 

laboratories (SRL, Inc., Tokyo, Japan). 

2.5. Comprehensive Tyrosine Kinase Activity Assay 

Frozen biopsy tissues were processed at 4 °C for kinomic profiling after grinding. 

The tissues were lysed in M-PER Mammalian Extraction Buffer (Pierce, Rockford, IL, 

USA) with Halt protease and phosphatase inhibitors (Pierce cat. 78420, 78415) [23]. Protein 

quantification was performed using a Bradford reaction assay. The extracted protein (5 

mg) was mixed with kinase buffer, ATP, and fluorescently labeled anti-PY20 antibodies. 

Then, the mixed protein was loaded into the tyrosine (PTK) PamChips. The samples were 

subjected to the PamStation 12 kinomics workstation (PamGene International, BJ’s-Her-

togenbosch, The Netherlands) using the PTK PamChip protocol in Evolve12 Software (v. 
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1.5) (PamGene International), as previously reported [23]. When lysates were pumped 

through the array, images were captured, analyzed, and quantified using BioNavigator v. 

5.1 (PamGene International). The study was performed in duplicate and subjected to ac-

tivity analysis. 

2.6. Identification of Upstream Kinases 

Comprehensive kinase activity was analyzed using BioNavigator software v. 6.3.67.0 

(PamGene International). The analysis of kinase activity was conducted corresponding to 

the phosphorylated peptide-specific reaction per each “spot” on the PamChip. The inten-

sities of the raw signals of the 144 spots were measured over multiple 50 ms exposures 

sequentially as lysates were pumped through the array. The measurement was also per-

formed over multiple exposure times (10, 20, 50, 100, and 200 ms) after the lysates were 

rinsed off. These values were converted to slopes of intensity by exposure time. The slopes 

were multiplied by 100 and log2-transformed. The unsupervised hierarchical clustering 

of the kinomic activity data was performed using Euclidean distance. Active kinases were 

predicted using PhosphoSitePlus (https://www.phosphosite.org, accessed on 25 January 

2023) [24] and the UniProt database (https://www.uniprot.org/, accessed on 25 January 

2023) [25]. These kinases, which were found in all the databases, were considered posi-

tively identified. 

2.7. STRING Analysis 

The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database 

(https://string-db.org/, accessed on 25 January 2023) was used to examine the protein–

protein interaction (PPI) network. The STRING app in Cytoscape (https://cyto-

scape.org/index.html, accessed on 1 February 2023)was used to examine the potential cor-

relation between these signal intensities and each peptide phosphorylation [26]. To per-

form the PPI network analysis, significant peptides were selected (p-value using a t-test 

between cluster 1 and cluster 2). These peptides (n = 2) were translated into their corre-

sponding UniProt ID using UniProt (https://www.uniprot.org/, accessed on 25 January 

2023). After the removal of duplicated UniProt IDs, UniProt IDs and fold changes were 

entered into the STRING database. In the setting for organism, “Homo sapiens” was se-

lected. 

2.8. Pathway Analysis, Network Analysis, and Reactome Analysis 

STRING analysis was also used for pathway analysis. The dataset after conversion to 

UniProt ID was entered as an input into STRING. UniProt IDs were mapped onto path-

ways based on curated data from the literature. The top 20 pathways were grouped ac-

cording to the processes. The identified peptides were used for the network analysis. The 

Uniprot IDs corresponding to the peptides were used in Cytoscape software version 3.9.3 

[27] and the STRING database [28]. The network analysis was conducted using a network 

analyzer. Hub bottlenecks were determined following the degree values and betweenness 

centrality. Common hub bottlenecks and top nodes were identified as the central nodes 

according to closeness centrality and stress. Action maps consisting of activation, inhibi-

tion, and expression were demonstrated for the central nodes using CluePedia [29]. The 

Kapa score was considered to be the default value in CluePedia. Reactome analysis was 

conducted with the ReactomePA package with the p-value cutoff set as 0.05 [30]. Only the 

top entries with a minimum adjusted p-value were included in the dotplot. 

2.9. Statistical Analysis 

Progression-free survival (PFS) was calculated from the date of EGFR-TKI admin-

istration to the date of disease progression or death from any cause, and overall survival 

(OS) was calculated from the date of EGFR-TKI administration to the date of death from 

any cause. Fisher’s exact test or χ2 test for categorical variables and the t-test for 

https://www.uniprot.org/
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continuous variables were used to analyze the clinicopathological features of the two 

groups divided by the cut-off value. Survival curves were plotted using the Kaplan–Meier 

method and compared using the log-rank test. All statistical analyses were performed us-

ing the GraphPad Prism software (v.9.0; GraphPad Software, San Diego, CA, USA). 

3. Results 

3.1. Patient Characteristics 

Patient characteristics are summarized in Table 1. The median age was 73.0 years 

(range, 46–88 years). There were six men and thirteen women, of whom six were non-

smokers and thirteen were smokers. All patients had stage IV adenocarcinoma. A total of 

11 cases with exon 19-del mutation and 8 cases with exon 21 L858R mutation were iden-

tified. As EGFR-TKI therapy, two patients received first-line therapy as gefitinib, three 

patients as afatinib, and fourteen patients as osimertinib. One case was not evaluated us-

ing a comprehensive kinase activity assay because the amount of extracted protein did 

not meet the required amount for the experiment. Thus, 18 cases were analyzed. Based on 

RECIST 1.1, fifteen patients were categorized as PR, one patient was categorized as SD 

and PD, and two patients were not evaluated as NE. Based on the results of the RECIST, 

the objective response rate (ORR) was 88.24% and the disease control rate (DCR) was 

94.12%. 

Table 1. Patient characteristics. 

Characteristics  n (%) 

Median age, years  73.0 (46.0–88.0) 

Age <70 7 (36.8) 

 ≧70 12 (63.2) 

Gender Male 6 (31.6) 
 Female 13 (68.4) 

Smoking history Never 6 (31.6) 
 Current or former 13 (68.4) 

ECOG performance status 0 6 (31.6) 
 1 13 (68.4) 

 2 2 (10.5) 

Histology Adenocarcinoma 18 (94.7) 

 NOS 1 (5.3) 

Stage IV 19 (100) 

EGFR mutation Del19 11 (57.9) 

 L858R 8 (42.1) 

EGFR TKI therapy Gefitinib 2 (10.5) 

 Afatinib 3 (15.8) 

 Osimertinib 14 (73.7) 

Response PR 15 (78.9) 

 SD 1 (5.3) 

 PD 1 (5.3) 

 NE 2 (10.5) 

ORR  88.24% 

DCR  94.12% 

Median MTS  44.1 (−36.0–80.0) 

Proteome analysis Cluster 1 9 (47.4) 

 Cluster 2 9 (47.4) 

 Unanalyzable 1 (5.3) 
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Abbreviations: EGFR, epidermal growth factor receptor; PR, partial response; SD, stable disease; 

PD, progressive disease; NE, not evaluated; ORR, objective response rate; DCR, disease control rate; 

TKI, tyrosine kinase. 

3.2. Comprehensive Kinase Activity Analysis in NSCLC Patients with Sensitizing EGFR 

Mutations 

The tyrosine kinase activity profiles of advanced NSCLC patients with sensitizing 

EGFR mutations were examined in nineteen NSCLC patients with pathologically con-

firmed NSCLC who underwent panel sequencing. In one patient, the amount of protein 

was too low to measure the protein kinase activity. Therefore, this sample was excluded 

from the analysis. Except for this case, all NSCLC tissue samples demonstrated protein 

kinase activity profiles. As a quality control, peptides that showed no increase in signal 

intensity over time were eliminated. After the quality control, 102 of 144 PTK peptides 

were evaluated. The values of mean signal intensity per peptide were calculated and log2-

transformed (Supplementary Table S1). In all samples, the kinase activity assay was per-

formed in duplicate. 

3.3. Identification of Peptides Showing Significant Activation of Phosphorylation in Advanced 

NSCLC with Sensitizing EGFR Mutations 

The results were imaged as a heat map (Figure 2a); the rows of the heatmap represent 

each peptide, and the columns of the heatmap represent each sample. The peptides were 

grouped according to the signal intensity of NSCLC patients with sensitizing EGFR mu-

tations (Figure 2a). The peptides were classified into three groups: cluster A, intermedi-

ately phosphorylated group; cluster B, highly phosphorylated group; and cluster C, 

poorly phosphorylated group (Figure 2a). These included peptides in cluster A, 34 pep-

tides; cluster B, 29 peptides; and cluster C, 39 peptides (Supplementary Table S2). The 

samples were classified into two groups: cluster 1, the lower phosphorylated group, and 

cluster 2, the higher phosphorylated group (Figure 2a). Cluster 1 included 19 samples and 

cluster 2 comprised 17 samples. 

 

 



Proteomes 2023, 11, 6 8 of 18 
 

 

(a) (b) 

Figure 2. Kinase activity profiles in advanced patients with NSCLC with sensitizing EGFR muta-

tions. (a) Kinase activity was comprehensively analyzed using clustering and heatmap analyses. 

The rows represent peptides and the columns represent samples. The peptides were categorized 

into three groups according to their kinase activity: cluster A, intermediate group (yellow); cluster 

B, highly activated group (red); and cluster C, poorly activated group (blue). The right column rep-

resents the expected kinase types according to the corresponding peptide sites. The samples were 

categorized into two groups according to their kinase activity: cluster 1, poorly phosphorylated 

group (purple), and cluster 2, highly phosphorylated group (navy). (b) Venn diagram of identified 

kinases among the three clusters. 

3.4. Putative Upstream Kinases 

Of these 102 peptides, 29 peptides were identified to be able to phosphorylate the 

tyrosines (upstream kinases). The putative tyrosine kinases for each peptide are listed in 

Table 2, Supplementary Table S3, and Figure 2b. Six receptor tyrosine kinases (RTK), 

ERRB2, FGFR2, MET, PDGFRB, RET, and VEGFR2, were identified, as well as members 

of the four non-receptor tyrosine kinases (NRTK), including Abl1, Lck, SRC, and Syk in 

cluster A, the intermediately phosphorylated group. In the highly phosphorylated group, 

cluster B, the two RTKs, PDGFRB and VEGFR2, the three NRTKs, FER, FES, and Syk, and 

the serine/threonine kinase, WEE1, were identified. The six RTKs, including EGFR, 

EPHA4, ERBB4, FGFR1, INSR, and VEGFR2, the two NRTKs, including ABL1 and SRC, 

and the five serine/threonine kinases (STKs), including MAP2K1, MAP2K2, MAP2K3, 

MAP2K4, and MAP2K6, were poorly phosphorylated in cluster C (Figure 2b). Based on 

the Venn diagram, one kinase, VEGFR2, was phosphorylated in all groups. Except for 

VEGFR2, two kinases were commonly identified in the two clusters: PDGFRB and SYK 

were detected both in clusters A and B, and SRC and ABL1 were detected both in clusters 

A and C. 

Table 2. List of kinases based on clustering analysis. 

Peptide ID 
Uniprot Ac-

cession 

Protein 

Name 
Sequence Tyr 

Type of 

Cluster  
UniProt Phosphosite Plus 

PGFRB_1002_1014 P09619 PDGFRB LDTSSVLYTAVQP (1009) Cluster A PDGFRB PDGFRB 

MET_1227_1239 P08581 MET RDMYDKEYYSVHN (1230, 1234, 1235) Cluster A MET MET, Ron 

RAF1_332_344 P04049 RAF1 PRGQRDSSYYWEI (340, 341) Cluster A SRC SRC 

ERBB2_1241_1253 P04626 ERBB2 PTAENPEYLGLDV (1248) Cluster A ERBB2 ERBB2 

FGFR2_762_774 P21802 FGFR2 TLTTNEEYLDLSQ (769) Cluster A FGFR2 FGFR2 

LCK_387_399 P06239 LCK RLIEDNEYTAREG (394) Cluster A Lck Lck, AXL, yopH 

PDPK1_369_381 O15530 PDPK1 DEDCYGNYDNLLS (373, 376) Cluster A SRC, INSR SRC 

CBL_693_705 P22681 CBL EGEEDTEYMTPSS (700) Cluster A ABl1 Abl, Fyn, INSR 

FAK1_569_581 Q05397 PTK2 RYMEDSTYYKASK (570, 576, 577) Cluster A RET, SRC 
FAK, FGR, Met, 

RET 

PGFRB_771_783 P09619 PDGFRB YMAPYDNYVPSAP (771, 775, 778) Cluster A PDGFRB PDGFRB 

KSYK_518_530 P43405 SYK ALRADENYYKAQT (525, 526) Cluster A SYK SYK, Lyn 

PGFRB_768_780 P09619 PDGFRB SSNYMAPYDNYVP (771, 775, 778) Cluster A PDGFRB PDGFRB 

VGFR2_1168_1180 P35968 KDR AQQDGKDYIVLPI (1175) Cluster A VEGFR2 Src, VEGFR2 

VGFR2_1052_1064 P35968 KDR DIYKDPDYVRKGD (1054, 1059) Cluster A VEGFR2 VEGFR2 

PLCG1_764_776 P19174 PLCG1 IGTAEPDYGALYE (771, 775) Cluster B SYK Abl, EGFR, SYK 

PAXI_111_123 P49023 PXN VGEEEHVYSFPNK (118) Cluster B PTK6 Abl, FAK 

FES_706_718 P07332 FES REEADGVYAASGG (713) Cluster B FES FES 

PGFRB_572_584 P09619 PDGFRB VSSDGHEYIYVDP (579, 581) Cluster B PDGFRB PDGFRB 

CDK2_8_20 P24941 CDK2 EKIGEGTYGVVYK (15, 19) Cluster B WEE1 WEE1 

VGFR2_989_1001 P35968 KDR EEAPEDLYKDFLT (996) Cluster B VEGFR2 VEGFR2 

PGFRB_1014_1028 P09619 PDGFRB 
PNEGDNDY-

IIPLPDP 
(1021) Cluster B PDGFRB PDGFRB 

FER_707_719 P16591 FER RQEDGGVYSSSGL (714) Cluster B FER FER, Src 
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VGFR2_1046_1058 P35968 KDR DFGLARDIYKDPD (1054) Cluster C VEGFR2 VEGFR2 

INSR_992_1004 P06213 INSR YASSNPEYLSASD (992, 999) Cluster C INSR INSR 

EGFR_1165_1177 P00533 EGFR ISLDNPDYQQDFF (1172) Cluster C EGFR EGFR 

ERBB4_1277_1289 Q15303 ERBB4 IVAENPEYLSEFS (1284) Cluster C ERBB4 HER4 

EGFR_1190_1202 P00533 EGFR STAENAEYLRVAP (1197) Cluster C EGFR EGFR 

FGFR1_761_773 P11362 FGFR1 TSNQEYLDLSMPL (766) Cluster C FGFR1 FGFR1 

CRK_214_226 P46108 CRK GPPEPGPYAQPSV (221) Cluster C ABL1 ABL1 

VGFR3_1061_1073 P35916 FLT4 DIYKDPDYVRKGS (1063, 1068) Cluster C SRC, FLT4 SRC 

ANXA2_17_29 P07355 ANXA2 HSTPPSAYGSVKA (24) Cluster C SRC SRC, IGF1R, Yes 

EGFR_1103_1115 P00533 EGFR GSVQNPVYHNQPL (1110) Cluster C EGFR EGFR 

VGFR2_944_956 P35968 KDR RFRQGKDYVGAIP (951) Cluster C VEGFR2 VEGFR2 

MK14_173_185 Q16539 MAPK14 RHTDDEMTGYVAT (182) Cluster C 

MAP2K3, 

MAP2K4, 

MAP14, 

MAP2K6 

MAP2K3, 

MAP2K4, 

MAP2K6, 

MAP3K6 

EPHA4_589_601 P54764 EPHA4 LNQGVRTYVDPFT (596) Cluster C EPHA4 EPHA4 

MK01_180_192 P28482 MAPK1 HTGFLTEYVATRW (187) Cluster C 
MAP2K1, 

MAP2K2 

JAK2, EGFR, 

MAP2K2, Ret, 

MAP2K1 

Bold characters indicate predicted kinases using two database analysis including UniProt and Phos-

phosite Plus. 

3.5. Pathway Analysis and Network Analysis 

Pathway analysis (STRING) using the UniProt IDs of the 102 peptides and the signal 

intensity values for each peptide yielded many pathways (Table 3). The identified path-

ways are highly significant with the p-values ranging from 4.27 × 10–23 to 2.21 × 10–12. 

The significantly enriched pathways were the PI3K-Akt, Ras, Rap1, and MAPK signaling 

pathways. 

Network analysis revealed that a network including 102 UniProt IDs was constructed 

(Figure 3a). The network contained seven isolated nodes and a main connected compo-

nent (78 nodes and 619 edges). The top 10% of nodes based on degree values, including 

CTNNB1, EGFR, PIK3R1, ERBB2, PTPN11, PLCG1, CRK, and CBL, were selected as hubs. 

The top 10 nodes regarding betweenness centrality, CTNNB1, EGFR, PIK3R1, PLCG1, 

ERBB2, MAPK1, PTPN11, and CRK, were determined as bottlenecks. Common hubs and 

bottlenecks, including CTNNB1, EGFR, PIK3R1, ERBB2, PTPN11, PLCG1, and CRK, were 

identified (Table 4 and Supplementary Table S3). The action map of the identified seven 

kinases is shown in Figure 3b. 

Table 3. Pathway analysis of kinase activity profiles in NSCLC patients with sensitizing EGFR mu-

tations. 

#term ID Term Description 
Observed 

Gene Count 

Background 

Gene Count 
Strength 

False Discovery 

Rate 

hsa04151 PI3K-Akt signaling pathway 26 350 1.27 4.27× 10 −23 

hsa04014 Ras signaling pathway 21 226 1.37 2.53× 10 −20 

hsa04015 Rap1 signaling pathway 20 202 1.4 6.04× 10 −20 

hsa05200 Pathways in cancer 26 517 1.1 1.29× 10 −19 

hsa04010 MAPK signaling pathway 21 288 1.26 1.12× 10 −18 

hsa05205 Proteoglycans in cancer 17 196 1.34 4.08× 10 −16 

hsa01521 EGFR tyrosine kinase inhibitor resistance 13 78 1.62 1.54× 10 −15 

hsa05235 PD-L1 expression and PD-1 checkpoint pathway in cancer 13 88 1.57 5.55× 10 −15 

hsa04510 Focal adhesion 16 198 1.31 7.92× 10 −15 

hsa04360 Axon guidance 15 177 1.33 3.50× 10 −14 

hsa05215 Prostate cancer 12 96 1.5 3.99× 10 −13 

hsa05230 Central carbon metabolism in cancer 11 69 1.6 4.38× 10 −13 
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hsa04660 T cell receptor signaling pathway 12 101 1.47 5.90× 10 −13 

hsa04722 Neurotrophin signaling pathway 12 114 1.42 2.07× 10 −12 

hsa04012 ErbB signaling pathway 11 83 1.52 2.21× 10 −12 

hsa04658 Th1 and Th2 cell differentiation 11 87 1.5 3.32× 10 −12 

hsa05167 Kaposi sarcoma-associated herpesvirus infection 13 187 1.24 2.08× 10 −11 

hsa04670 Leukocyte transendothelial migration 11 109 1.4 2.85× 10 −11 

hsa05161 Hepatitis B 12 159 1.28 5.99× 10 −11 

hsa05135 Yersinia infection 11 125 1.34 1.02× 10 −10 

 

 

 

(a) (b) 

Figure 3. Network analysis of kinase activity in advanced patients with NSCLC with sensitizing 

EGFR mutations. (a) Altered kinases from each patient were mapped on a network using the Cyto-

scape STRING application. Red nodes represent higher kinase activity and blue nodes represent 

lower kinase activity. The size of the node represents the number of connections between nodes. (b) 

Action map of the identified 7 kinases. Binding (blue), activation (green), inhibition (red), catalysis 

(purple), reaction (black), expression (yellow), and ptmod (pink) actions for the 7 kinases. The map 

was illustrated using the CluePedia-STRING ACTIONS-v10.5-20.11.2017 program. 

Table 4. Hub-bottlenecks of the NSCLC network based on comprehensive kinase activity data. 

ID Kinase  Uniprot ID 
BetweennessCen-

trality 

ClosenessCen-

trality 
Degree Stress 

1 CTNNB1 P35222 0.180455356 0.768421053 51 4522 

2 EGFR P00533 0.100566651 0.760416667 51 3226 

3 PIK3R1 P27986 0.061532117 0.688679245 42 1996 

4 ERBB2 P04626 0.043504506 0.688679245 41 1742 

5 PTPN11 Q06124 0.036477003 0.688679245 41 1594 
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6 PLCG1 P19174 0.04424585 0.651785714 39 1566 

7 CRK P46108 0.03378544 0.646017699 36 1354 

3.6. Kinase Profile Different between Highly Phosphorylated and Lower Phosphorylated Group 

In the previous heat map, cases were grouped according to the signal intensity of 

NSCLC patients with sensitizing EGFR mutations (Figure 2a). The cases were classified 

into two groups: cluster 1, the lower phosphorylated group, and cluster 2, the highly phos-

phorylated group. The 19 samples from the 10 cases were classified into cluster 1, and the 

other 19 samples from the other 10 cases were classified into cluster 2 (Supplementary 

Table S3). Peptides showing significant differences in phosphorylation between clusters 1 

and 2 were identified. Thirty-five peptides were identified as differentially phosphory-

lated (p < 0.05, FDR = 0.090) (Supplementary Table S4). For these 35 peptides, kinases re-

ported to be able to phosphorylate tyrosine as upstream kinases were identified. The pu-

tative tyrosine kinases upstream of each peptide are listed in Table 5. Several receptor 

tyrosine kinases such as EGFR and JAK2 have been identified. 

Table 5. A list of peptides and kinases related to prognosis in NSCLC patients with sensitizing EGFR 

mutations. 

Peptide Site 
Phosphorylation 

Site 
Signal Intensity Fold Change p Value 

FDR q 

Value 
PhosphoPlus Uniprot 

DYR1A_312_324 (19, 321) 13.52805 3.116532 9.83× 10 −8 3.34× 10 −6 EGFR - 

VINC_815_827 (822) 6.042773 3.077846 1.55× 10 −5 0.000144 KARS - 

ACHD_383_395 (383, 390) 6.138561 2.551585 0.00015 0.001174 - - 

MK01_180_192 (187) 9.516106 2.024014 5.80× 10 −6 6.58× 10 −5 EGFR 
MAP2K1, 

MAP2K2 

CD3Z_116_128 (123) 42.36624 1.731 0.001188 0.006731 - - 

EFS_246_258 (253) 1559.662 1.719715 0.013831 0.04551 - Src 

ANXA2_17_29 (24) 20.03061 1.659909 0.009685 0.036588 Src, IGF1R Src 

EGFR_1103_1115 (1110) 21.06897 1.621966 0.01073 0.03774 EGFR EGFR 

EPOR_419_431 (368) 59.07756 1.599058 0.001489 0.007994 JAK2 JAK2 

PRGR_786_798 (795) 14.26506 1.579949 0.002504 0.012161 - - 

SRC8_CHICK_476_488 (477, 483) 1262.13 1.566668 1.80× 10 −6 3.01× 10 −5 - Src 

P85A_600_612 (607) 419.0784 1.515741 0.000528 0.00359 EGFR, INSR, CSFR - 

Bold characters indicate predicted kinases using two database analysis including UniProt and Phos-

phosite Plus. 

3.7. Pathway Analysis, Reactome Analysis, and Network Analysis between Highly 

Phosphorylated Group and Low Phosphorylated Group 

Pathway analysis using the UniProt IDs of the 35 peptides and the value of signal 

intensities for each peptide yielded many pathways (Table 6). These pathways were 

highly significant, as the p-values range from 2.74 × 10–23 to 1.10 × 10–12. The 20 most sig-

nificant pathways were enriched in the PI3K-Akt, Ras, Rap1, and MAPK signaling path-

ways, which were similar to those of NSCLC patients with sensitizing EGFR mutations. 

Reactome analysis using the UniProt IDs of the 29 peptides with p-values less than 

0.05 in the t-test yielded many pathways (Figure 4). The pathways, including the PI3K-

AKT and RAF/MAP pathways, were involved in the highly phosphorylated group. 

Network analysis revealed that a network consisting of 35 UniProt IDs was con-

structed (Figure 5). The network contained three isolated nodes and a main connected 

component (26 nodes and 93 edges). The top 10% of the nodes based on degree values, 

including EGFR, PIK3R1, and ERBB2, were selected as hubs. The top ten nodes regarding 

betweenness centrality contained EGFR, PIK3R1, and ERBB2 as bottlenecks. Common 

hubs and bottlenecks, including EGFR, PIK3R1, and ERBB2, were identified. All hub bot-

tlenecks were included in the top nodes based on closeness centrality and stress (Table 7 

and Supplementary Table S5). 
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Table 6. Pathway analysis for NSCLC patients harboring sensitizing EGFR mutations with poor 

prognosis. 

#Term ID Term Description 

Observed 

Gene 

Count 

Background 

Gene Count 
Strength 

False Discov-

ery Rate 

hsa04151 PI3K-Akt signaling pathway 26 348 1.27 2.74× 10 −23 

hsa04014 Ras signaling pathway 20 228 1.34 5.64× 10 −19 

hsa04015 Rap1 signaling pathway 19 203 1.37 1.28× 10 −18 

hsa04010 MAPK signaling pathway 21 293 1.25 1.32× 10 −18 

hsa05200 Pathways in cancer 25 515 1.08 1.32× 10 −18 

hsa05205 Proteoglycans in cancer 18 195 1.36 8.99× 10 −18 

hsa04510 Focal adhesion 17 197 1.33 2.40× 10 −16 

hsa01521 
EGFR tyrosine kinase inhibitor re-

sistance 
13 78 1.62 8.07× 10 −16 

hsa04360 Axon guidance 15 173 1.33 1.74× 10 −14 

hsa05230 Central carbon metabolism in cancer 11 65 1.62 1.69× 10 −13 

hsa05215 Prostate cancer 12 97 1.49 2.64× 10 −13 

hsa04670 Leukocyte transendothelial migration 12 112 1.42 1.17× 10 −12 

hsa04012 ErbB signaling pathway 11 83 1.52 1.48× 10 −12 

hsa04658 Th1 and Th2 cell differentiation 11 88 1.49 2.47× 10 −12 

hsa04660 T cell receptor signaling pathway 11 99 1.44 7.54× 10 −12 

hsa04722 Neurotrophic signaling pathway 11 116 1.37 3.49× 10 −11 

hsa04380 Osteoclast differentiation 11 124 1.34 6.45× 10 −11 

hsa04370 VEGF signaling pathway 9 59 1.58 6.57× 10 −11 

hsa04068 FoxO signaling pathway 11 130 1.32 9.30× 10 −11 

hsa01522 Endocrine resistance 10 95 1.42 1.10× 10 −10 

 

Figure 4. Reactome analysis of kinase activity in comparison between cluster 1 and cluster 2. Dot 

size describes the number of genes; gene ratio is defined as the percentage of genes in each pathway 

compared with all genes in the samples. 
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Figure 5. Network analysis of kinase activity in poor prognosis. Altered kinases from each patient 

were mapped onto a network using the Cytoscape STRING app. Red nodes represent higher fold 

change in kinase activity, and white nodes represent lower fold change in kinase activity. The size 

of a node represents the number of connections between the nodes. 

Table 7. Network analysis of kinases based on prognosis. 

Kinase Uniprot ID Degree 
Betweenness 

Centrality 

Closeness 

Centrality 
Stress 

EGFR P00533 19 0.230237725 0.851851852 306 

PIK3R1 P27986 17 0.183294549 0.793103448 248 

ERBB2 P04626 17 0.120685682 0.793103448 218 

3.8. Disease Free Survival (DFS) and Overall Survival (OS) 

The relative hazard for local progression or death between patients with cluster 1 and 

cluster 2 was 0.5119 (95% CI, 0.1149–2.281; p = 0.38), with a median duration of 20.7 months 

vs 39.4 months (Figure 6a). Survival between the study groups did not significantly im-

prove in cluster 2 (HR: 0.7359; 95% CI, 0.1270–4.263; p = 0.732) (Figure 6b). 
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Figure 6. Kaplan-Meier survival curves. Disease-free survival (a) and overall survival (b) in clus-

ters 1 and 2. 

4. Discussion 

The present study investigated comprehensive kinomic profiles to identify com-

monly upregulated kinases and develop prognostic markers for patients with NSCLC har-

boring sensitizing EGFR mutations. This is the first study to demonstrate the activity of 

multiple tyrosine kinases in NSCLC patients harboring sensitizing EGFR mutations. Sam-

ples from 18 NSCLC patients with EGFR mutations were used to perform kinase activity 

analysis using PamStation12. This was a prospective study that integrated kinase infor-

mation and clinical outcomes. Notably, prominent tyrosine kinases of the ErbB receptor 

family, EGFR and ERBB2, and kinases belonging to downstream signaling pathways, in-

cluding CRK, CTNNB1, PIK3R1, PLCG1, and PTPN11, were highly activated in all pa-

tients. In particular, tyrosine receptor kinases, including EGFR, ERBB2, and PIK3R1, rep-

resent key components that affect patient prognosis. Pathway analysis and Reactome 

analysis revealed that PI3K-AKT and RAF/MAPK signaling pathways were enriched in 

NSCLC with sensitizing EGFR mutations.  

4.1. Common Activated Kinases in NSCLC with Sensitizing EGFR Mutations 

Our study revealed that seven kinases, CTNNB1, CRK, EGFR, ERBB2, PIK3R1, 

PLCG1, and PTPN11, were highly activated in all NSCLC patients harboring sensitizing 

EGFR mutations. Among these seven kinases, CTNNB1, CRK, PLCG1, and PTPN11 were 

newly identified as highly activated kinases in our study. Β-catenin, encoded by the 

CTNNB1 gene, plays an important role in a signaling pathway affecting cell proliferation 

and differentiation [31]. Despite the low frequency of mutations in CTNNB1 in NSCLC, 

CTNNB1 contributes to the development of NSCLC through EGFR mutations in vitro and 

in vivo from Nakamura et al. [32]. The CT10 regulator of kinase (CRK) is a family of 

widely expressed adaptor proteins involved in signal transduction from various oncopro-

teins, including Bcr-Abl, EGFR, PDGF, and VEGFR [33, 34] and plays essential roles in 

cytoskeletal changes, cell proliferation, adhesion, and migration [35]. The overexpression 

of CRK has been reported in NSCLC [36] and the high phosphorylation of CRK has been 

verified in NSCLC cell lines [37]. Phospholipase C gamma 1 (PLCG1) is a subtype of phos-

pholipase C gamma (PLCg), a lipase activated by receptors in the cellular membrane in-

cluding RTKs and adhesion receptors [38]. Wenqiang et al. reported that using in vitro 
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and in vivo models of NSCLC and the phosphorylation of PLCG1 promote tumor growth 

in NSCLC, which is consistent with our results [38]. PTPN11, protein tyrosine phospha-

tase non-receptor type 11, is a member of the protein tyrosine phosphatase (PTP) family 

[39] and regulates several molecules involved in Ras signaling [40]. Mutations in PTPN11 

have been linked to the pathogenesis of leukemia and breast cancer. However, a low prev-

alence of somatic PTPN11 mutations has been detected in lung cancer [41]. In addition to 

the prevalence of PTPN11 mutations, our results suggest that the phosphorylation of 

PTPN11 is related to NSCLC harboring sensitizing EGFR mutations. Altogether, these 

newly identified kinases with high activation are important for deepening the pathogen-

esis of NSCLC with sensitizing EGFR mutations. 

4.2. Activated Kinases in NSCLC Patients with Poor Prognosis 

This study revealed that three kinases, EGFR, ERBB2, and PIK3R1, were prognostic 

biomarkers because they were detected as highly activated kinases in the patient group 

with poor prognosis. The overexpression of EGFR is commonly observed in NSCLC pa-

tients (40–80%) [42, 43] and is associated with poor prognosis [44-46]. HER2 is a member 

of the erbB transmembrane receptor family. Increased HER2 expression has an association 

with inferior survival in patients with NSCLC, and high EGFR and HER2 co-expression 

has an additive impact on unfavorable prognosis [47]. Additionally, Rikova et al. reported 

that NSCLC tumors express highly phosphorylated EGFR and ERBB2 at above-average 

concentrations [48], which was concordant with our results. Increased PI3K/Akt activity 

has also been observed in NSCLC. However, the finding that p-Akt has no association 

with EGFR-TKI efficacy is conflicting [49]. PIK3R1 encodes the regulatory subunit (p85a) 

of PIK3CA. Activating mutations in PIK3R1 have been reported in several cancers, includ-

ing colon cancer and glioblastoma, and lead to the activation of the PI3K-AKT pathway 

[49]. Our study identified PIK3R1 phosphorylation as a prognostic biomarker in patients 

with NSCLC with sensitizing EGFR mutations. In addition, we also elucidated that the 

co-occurrence of EGFR, HER2, and PIK3R1 phosphorylation was associated with poor 

prognosis in patients with NSCLC. Our gene ontology analysis and Reactome analysis 

demonstrated that the PI3K-AKT and RAF/MAPK signaling pathways were enriched in 

the group with poor prognosis, which supports newly identified kinases as predictive bi-

omarkers. These observations strongly suggested the utility of the kinase profiling ap-

proach to the prognostic biomarker development, and warrant further validation studies 

using the additional samples. 

4.3. Limitations 

Our study had several limitations. First, the number of patients with a worse prog-

nosis was too small compared with those with a favorable prognosis. Ideally, an equal 

number of patients with both prognoses should be included in the data-mining analysis. 

Secondly, since most of the enrolled patients did not have any adverse events, we could 

not determine whether the peptides and kinases were significantly associated with the 

adverse events. Third, three samples in cluster 2 seemed to be more similar to those in 

cluster 1. We examined the clinical features of those samples, but we could not identify 

the factor that would make an appropriate explanation for the obvious discordance. 

Fourth, many confounding factors such as the different efficacies of osimertinib vs other 

EGFR TKIs, the site of metastases, tumor burden, and performance status have not been 

taken into consideration. These limitations stemmed from the limited number of cases, 

and we could solve them by including more patients. Toward clinical applications, further 

investigation should be required to identify the predictive biomarkers with statistical sig-

nificance. Fifth, the EGFR undergoes other posttranslational modifications which are not 

only Y phosphorylation but also S phosphorylation as proteoforms. In the current study, 

a single modification has been evaluated and the addition of other modification data will 

deepen our understanding of the proteoforms in advanced NSCLC patients harboring 

sensitive EGFR mutations. The current molecular targeted drugs were largely targeting Y 
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phosphorylation, and we employed the PamChip which allows the investigation of only 

Y phosphorylation. The PamChip for S phosphorylation will further our understanding 

of the kinome backgrounds of cancer progression. Sixth, the STRING and Reactome de-

pend on the literature review, and the kinase functions that were not reported yet were 

not considered for the interpretation. Thus, multiple interpretations other than those in 

this discussion will be possible in the near future. Overall, our analysis strongly suggested 

the utility of kinase profiling for the development of predictive biomarkers and warrants 

further investigation.  

5. Conclusions 

Comprehensive kinase activity analysis using 18 samples derived from patients with 

NSCLC harboring sensitizing EGFR mutations identified common kinomic profiles and 

kinases that are specific to patients with poor prognoses. We need more samples from 

different patients and more experiments using different methods to obtain conclusive ex-

perimental results. Continuous and collaborative efforts will thus be required to identify 

prognostic markers using comprehensive kinomic profiles. 
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https://www.mdpi.com/article/10.3390/proteomes11010006/s1, Table S1: Raw data of kinase activity 

in 18 samples; Table S2: List of clustering analysis in 18 NSCLC patients; Table S3: Network analysis 

of kinases in NSCLC patients with common EGFR mutations; Table S4: List of peptides associated 

with prognosis; Table S5: Network analysis of kinases in the NSCLC patients with poor prognosis. 
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