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Abstract: Unlike a prevalent expectation that tumor cells secrete tumor-promoting proteins and
stimulate the progression of neighboring tumor cells, accumulating evidence indicates that the role of
tumor-secreted proteins is double-edged and context-dependent. Some of the oncogenic proteins in
the cytoplasm and cell membranes, which are considered to promote the proliferation and migration
of tumor cells, may inversely act as tumor-suppressing proteins in the extracellular domain. Further-
more, the action of tumor-secreted proteins by aggressive “super-fit” tumor cells can be different
from those derived from “less-fit” tumor cells. Tumor cells that are exposed to chemotherapeutic
agents could alter their secretory proteomes. Super-fit tumor cells tend to secrete tumor-suppressing
proteins, while less-fit or chemotherapeutic agent-treated tumor cells may secrete tumor-promotive
proteomes. Interestingly, proteomes derived from nontumor cells such as mesenchymal stem cells
and peripheral blood mononuclear cells mostly share common features with tumor cell-derived
proteomes in response to certain signals. This review introduces the double-sided functions of
tumor-secreted proteins and describes the proposed underlying mechanism, which would possibly
be based on cell competition.
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1. Introduction

Proteome-based characterization of varying types of cancer is an emerging area of
cancer research beyond genome-wide DNA and transcriptome analyses [1]. The proteomic
analysis may assist in the classification of poorly defined subtypes of cancers and the
prediction of a potential new class of tumor-specific targets. The integration of mass
spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles
can deepen our understanding of the role of post-translational modifications such as pro-
tein phosphorylation and acetylation [2]. Pancreatic ductal adenocarcinoma (PDAC), for
instance, is a highly aggressive cancer with poor patient survival [3,4]. Toward under-
standing the underlying molecular alterations that drive PDAC oncogenesis, proteomic
analyses, including phosphoproteomics and glycoproteomics, have been used to charac-
terize proteins and their modifications [5]. In osteosarcoma, an aggressive bone tumor
with a high metastasis rate in the lungs [6,7], proteomics is conducted to identify differ-
ences in the functional network including chaperones, structural proteins, stress-related
proteins, proteins of the glycolysis/gluconeogenesis pathway, and oxidoreductases in the
two and three-dimensional culture systems [8]. One of the main purposes of characterizing
cancer proteomes is to identify tumorigenic and antitumorigenic proteins and develop a
protein-based strategy for cancer treatment. This review focuses on the recent advance in
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our understanding of cancer proteomes as well as noncancer proteomes, and evaluates
their unconventional involvement in the progression and suppression of cancer growth.

Before reviewing the role of cancer proteomes, we will briefly describe the linkage of
oncogenes to cancer proteomes. An oncogene is a mutated gene that has the potential to
induce oncogenesis and converts normal cells into cancerous cells [9]. Prior to genetic alter-
ations such as an increase in the copy number, mutations, chromosomal translocations, and
epigenetic modifications, an oncogene is called a proto-oncogene [10]. Cellular myelocy-
tomatosis (cMyc) and the Kirsten rat sarcoma viral oncogene homolog (K-Ras), for instance,
are two of the well-known proto-oncogenes [11,12]. cMyc is a transcription factor that is
involved in cell proliferation, transformation, and apoptosis [13,14]. K-Ras is a GTPase that
regulates various cellular signalings for cell cycles, proliferation, and migration, including
phosphoinositide 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) [15–17].
In many types of cancer, these proto-oncogenes are dysregulated and expression profiles
of many other proteins are significantly altered [18,19]. In about 90% of PDAC cases, K-
Ras is mutated and the mutated K-Ras drives tumorigenic signaling cascades [20]. Thus,
most efforts have been directed to inhibit the action of oncogenes [21–24], for instance, the
development of selective K-Ras inhibitors [25]. In some of the recent studies, however,
the other side of the oncogene actions has been revealed [26,27]. Notably, some oncogenic
proteins such as TGFβ [28], spleen tyrosine kinase [29], and Sirtuin [30] may induce an-
tiproliferative and proapoptotic signaling in a context-dependent fashion [31]. Regarding
cMyc, its deregulated expression occurs in many cancers and is often associated with poor
prognosis [32]. At the same time, its role is not single-sided, and it is unclear whether cMyc
is instrumental in the tumor initiation and progression, and whether its inactivation would
lead to tumor regression [32]. The observed double-sided nature of oncogenes, as well as
the cancer cell-derived proteomes [33,34], are reviewed herein, which is critically important
in developing an effective therapeutic strategy and inhibiting cancer progression.

While oncogenes by definition stimulate many cancerous features, their effects on
neighboring cells via extracellular proteomes can be counterintuitive. An intriguing ob-
servation is the counterintuitive effects of cMyc on neighboring cells. In Drosophila, cells
overexpressing d-myc, which is a homolog of cMyc, are reported to eliminate neighbor-
ing wild-type cells [35]. It is also reported that the conditioned medium (CM), derived
from dmyc-overexpressing cells, induces cell death of nearby wild-type cells [36]. We also
reported that cMyc-overexpressing cancer cells generate a tumor-suppressing CM that
induces apoptosis to cohort tumor cells [36]. Consistently, tumor-suppressing CM, derived
from cMyc-overexpressing cells, is shown to suppress metabolic activities, proliferation,
two-dimensional motility, and transwell invasion of multiple breast cancer cell lines [37].
Furthermore, the systemic administration of tumor-suppressing CM to a mouse model of
breast cancer and bone metastasis is reported to inhibit the growth of mammary tumors
and the osteolytic destruction of tumor-invaded bone [37–39]. An emerging paradigm
is that some of the oncogenes have a double-edged role as a tumor enhancer as well as
a tumor suppressor [40–42]. Although paradoxical, a provocative question is whether a
novel therapeutic strategy could be developed not by inhibiting those proto-oncogenes but
by utilizing their neighbor-removing capabilities.

The concept of induced tumor-suppressing cells (iTSCs) was introduced by our re-
search group in 2021 [37–39,43–47]. By definition, iTSCs suppress the progression of
tumor cells and they generate tumor-suppressing proteomes in their secreted CM. Tumor-
suppressing CM is enriched with a group of tumor-suppressing proteins, some of which
have been known as tumorigenic proteins. Interestingly, iTSCs can be generated using two
of the four transcription factors, which are employed in creating induced pluripotent stem
cells (iPSCs) [39]. This article reviewed the brief history of iTSCs, the procedure of generat-
ing tumor-suppressing proteomes, and their possible therapeutic use in cancer treatments.
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2. Induced Tumor-Suppressing Cells (iTSCs) and Their Conditioned Medium (CM)

The first generation of iTSCs is induced by the activation of Wnt signaling in osteo-
cytes, the most abundant type of bone cells in the calcified matrix [43]. Wnt signaling is
activated in response to mechanical stimulation of the bone, and it promotes loading-driven
bone formation [48]. Wnt signaling is also involved in varying tumorigenic actions in many
types of cancer [49], and its inhibition has been the main target for primary and metastatic
cancer [50]. Paradoxically, however, the activation of Wnt signaling by the overexpression
of Lrp5, a Wnt co-receptor [51], and β-catenin in osteocytes [52], generated osteocyte-
derived tumor-suppressive CM. The proliferation, two-dimensional motility, and transwell
invasion of breast cancer cell lines such as MDA-MB-231 were suppressed in response to
the treatment with Wnt-activated osteocyte-derived CM [43]. Subsequently, the treatment
of osteocytes and other bone cells such as mesenchymal stem cells (MSCs) with a pharma-
cological Wnt activator, BML284, was shown to generate iTSCs and tumor-suppressive
CM [43,44].

Besides the activation of Wnt signaling, the activation of PI3K/Akt [53] and protein ki-
nase A (PKA) signaling [54] was shown to generate tumor-suppressing CM from osteocytes,
osteoblasts, osteoclasts, and MSCs [38,43,44,46] (Table 1). PKA signaling is also known as a
cAMP-dependent kinase pathway, and it is involved in the regulation of glycogen, sugar,
and lipid metabolism [55]. PKA signaling is implicated in the initiation and progression
of many types of tumors and is proposed as a biomarker for cancer detection and as a
potential target for cancer therapy [56]. Besides the above bone-linked adherent cells,
PKA-activated iTSCs were generated from cells in suspension such as peripheral blood
mononuclear cells (PBMCs), lymphocytes, and monocytes [57]. CM retained its antitumor
capability regardless of nuclease digestion to remove DNA and RNA, and filtration to
eliminate small molecules such as amino acids, metabolites, and neurotransmitters [46].
Therefore, it is considered that the main antitumor action of CM is caused by the secreted
proteomes from iTSC-generating cells.

Table 1. List of the signalings to be regulated to make iTSCs from varying cells.

Signaling Regulation Drug iTSC-Generating Cells Reference

PKA activation CW008 lymphocytes, PBMCs [57]

Wnt activation BML284 MSCs, osteocytes osteoblasts,
osteoclasts, tumor cells [38,43,44,46]

PI3K/AKT activation YS49 MSCs [44,45]

cMyc overexpression tumor cells [39]
Note: PBMC = peripheral blood mononuclear cells, and MSC = mesenchymal stem cells.

In addition to the generation of iTSCs from nontumor cells, cancer cells and isolated
cancer tissues were utilized to generate tumor-suppressive CM. For instance, breast cancer
cell lines (MDA-MB-231, MDA-MB-436, MCF-7, EO771, and 4T1.2), prostate cancer cell
lines (PC-3 and TRAMP-C2ras), PDAC cell lines (PANC1), and osteosarcoma cell lines
(MG63, U2OS) were converted into iTSCs by regulating varying signaling pathways and
overexpressing pro-oncogenic genes [37]. Besides Lrp5 and β-catenin, the overexpression of
proto-oncogenic genes such as cMyc, octamer-binding transcription factor 4 (Oct4), and zinc
finger protein SNAI1 (Snail) was shown to generate iTSCs [38,39,44]. Of note, cMyc and
Oct 4 are two of the four transcription factors, i.e., Yamanaka factors, to generate iPSCs [58],
while Snail is one of the key transcription factors that are involved in an epithelial-to-
mesenchymal transition [59]. Collectively, available data indicate that iTSCs are generated
in a counterintuitive procedure, in which the tumorigenic pathways are stimulated in
tumor and nontumor cells.

The generation of iTSCs was achieved not only by the activation of tumorigenic
signaling but also by the inactivation of antitumorigenic signaling such as an AMP-activated
protein kinase (AMPK) pathway [60]. Although the pro- and antitumorigenic role of AMPK
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signaling could depend on cellular conditions [61], its inactivation by Dorsomorphin, a
pharmacological AMPK inhibitor, converted PBMCs into iTSCs and generated PBMC-
derived tumor-suppressing CM. In addition to MSCs, PBMCs can be harvested from cancer
patients and autologous MSC/PBMC-derived CM can be synthesized. Taken together,
it is possible to engineer iTSCs from varying tumor and nontumor cells by regulating
tumorigenic signaling pathways. Of note, the efficacy of tumor-suppressing capabilities
differs among iTSC-deriving host cells and the pathways to be regulated (Figure 1). For
instance, to generate PBMC-derived tumor-suppressive CM, the activation of PKA signaling
and the inactivation of AMPK signaling are effective. However, the activation of Wnt
signaling is less effective for converting PBMCs than MSCs into iTSCs. Further studies are
recommended to develop the most effective procedure to generate potent antitumor CM
from various types of iTSC host cells.
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Figure 1. Generation of induced tumor-suppressing cells (iTSCs). iTSCs can be generated from
osteocytes, osteoblasts, mesenchymal stem cells (MSCs), peripheral blood mononuclear cells (PBMCs),
and varying types of tumor cells by the activation of Wnt, PI3K, and PKA signaling pathways, as
well as the overexpression of cMyc and Oct4. The iTSC-derived conditioned medium (CM) has been
shown to be effective in suppressing the progression of breast, pancreatic, and prostate cancer cells,
as well as osteosarcoma cells.

3. Double-Edged Role of Tumor-Suppressing Proteins

Mass spectrometry-based global proteomics analyses predicted the tumor-suppressing
protein candidates, which were enriched in tumor-suppressive CM. The candidate proteins
included Enolase 1 (Eno1) [62], Moesin (MSN) [63], Calreticulin (Calr) [64], Ubiquitin
C (Ubc) [65], Histone H4 (H4) [66], Heat shock protein 90 alpha family class B member
1 (Hsp90ab1) [67], etc. (Table 2). In vitro analyses using recombinant proteins as well as
their gain and loss-of-functions by plasmid transfection and RNA silencing revealed that
most of the predicted tumor-suppressing proteins in CM acted as oncoproteins inside



Proteomes 2023, 11, 5 5 of 14

tumor cells and tumor suppressors in the extracellular domain, although Calr is known as
a tumor suppressor intracellularly.

Unraveling the mechanism of iTSC-driven tumor suppression requires intensive
proteome and protein interaction analyses (Figure 2), but several regulatory axes have been
proposed through publicly available protein databases and protein interaction analyses. For
instance, extracellular Eno1 recombinant proteins are reported to suppress the metabolic
activities of breast cancer cells and act as cytotoxic agents by downregulating Snail, TGFβ,
and MMP9 [39], and its antitumor action was shown to be mediated by the Eno1-CD44
regulatory axis. CD44 is a cell surface adhesion receptor [39], and is known as a cancer stem
cell marker in several cancer cells [68]. By contrast, the overexpression of Eno1 in breast
cancer cells upregulated the above tumorigenic genes and elevated their proliferation and
transwell invasion. Another example is MSN, which is a member of the ezrin-radixin-
moesin (ERM) family of proteins. These three proteins in the family are known to cross-link
the plasma membrane with the actin cytoskeleton [69]. An accumulating body of evidence
indicates that ERM proteins regulate cellular signaling implicated in cell motility and
adhesion, which are involved in the proliferation and migration of cancer cells [70]. It is
shown that the antitumor action of extracellular MSN is mediated by CD44 and fibronectin
1 (FN1) [38]. FN1 plays a major role in cell adhesion and migration, and its elevated
expression is reported in many types of cancer [71]. It is reported that FN1-expressing
MSCs promote breast cancer metastasis [72].
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Figure 2. Proposed mechanism of tumor-suppressing actions by iTSC-derived conditioned medium
(CM). iTSCs produce a spectrum of secretory proteins in their conditioned medium. They include
Enolase 1 (Eno1), Moesin (MSN), Calreticulin (Calr), Ubiquitin C (Ubc), Histone H4 (H4), Hsp90ab1
(HSP), etc. It is proposed that most of those tumor-suppressing proteins interact with cell-surface
proteins on tumor cells such as TLR2/4, CD44, and CD47, and induce antitumor actions.
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Calr (aka Calregulin) is a calcium-binding protein that is mostly localized in the
endoplasmic reticulum [73]. It functions as a calcium buffer and a chaperone in normal
cells, but its low level is associated with accrued malignant features [64]. Unlike atypical
tumor-suppressing proteins that present a double-sided role, the high expression level
of Calr inversely correlates with patient survival [74]. Calr is reported to interact with
CD47, which is an integrin-associated transmembrane protein [75]. CD47 is known as an
immunoregulator, and its high expression in cancer cells blocks the induction of immune
responses [76]. Interestingly, extracellular histones (H1, H2A, H2B, H3, and H4) have been
reported to play multiple roles in various diseases [77–80]. Histone H4 is one of the five
core histone proteins that are involved in the formation of nucleosomes in chromatin [81].
The unexpected cytotoxic role of extracellular H4 is reported in sepsis via the interaction
with toll-like receptor (TLR) 2 and 4, which are upregulated in inflammatory injuries [82].
Regarding Hsp90ab1 (aka Hsp90b), it is shown in osteosarcoma cells that secreted Hsp90ab1
proteins inhibit the activation of latent TGFβ [83]. In the bone-tumor microenvironment,
TGFβ is considered critical for driving the feedforward vicious cycle of tumor growth [84].
It is noted, however, that it has a conflicting role as a tumor suppressor [85] as well as an
enhancer, which may present a challenge in developing TGFβ-related therapeutics [84].

So far, regulatory mechanisms have been proposed for several tumor-suppressing
proteins (Table 2), whereas the overall CM’s mechanism of action is yet to be elucidated.
No clear mechanism is presented for the antitumor actions of Ubc, peptidyl-prolyl cis-trans
isomerase B (Ppib), eukaryotic translation elongation factor 2 (Eef2), and Vinculin (VCL).
Interestingly, these three proteins are generally treated as tumor enhancers in various can-
cers. Ubc is a source of ubiquitin that contributes to ubiquitylation for protein degradation.
While the direct role of Ubc in cancer progression is not reported, ubiquitin-mediated
protein degradation can stabilize oncoproteins and increase tumor suppressors, contribut-
ing to tumorigenesis and cancer progression [86]. PPib is localized in the endoplasmic
reticulum for various cellular functions, including inflammation, apoptosis, and mitochon-
drial metabolism, and it is known to be involved in diseases such as ischemia, AIDS, and
cancer [87]. Eef2 is reported as a potential biomarker of prostate cancer [88] and a promoter
of the proliferation of ovarian cancer [89]. VCL is a membrane protein in focal adhesion and
it links integrin with the actin cytoskeleton [90]. It is reported to orchestrate the progression
of prostate cancer [91].

Table 2. List of atypical tumor-suppressing proteins.

Symbol Name Predicted Antitumor Action Reference

Eno1 Enolase 1 Interact with CD44 [37,39,46]

MSN Moesin Interact with CD44 and
fibronectin 1 (FN1) [37–39,46]

Calr Calreticulin Interact with CD47 [44,57]

Ubc Ubiquitin C Unknown [37]

H4 Histone H4 Interact with TLR2/4 [47,92]

Hsp90ab1 Heat shock protein 90 alpha
family class B member 1

Immunoprecipitates latent
TGFβ and inactivate TGFβ [38,39,44–46]

Ppib Peptidylprolyl isomerase B Unknown [44]

Eef2 Eukaryotic elongation factor 2 Unknown [39]

VCL Vinculin Unknown [39]

In addition to in vitro assays that evaluate the efficacy and mechanism of antitumor
actions, preclinical studies using a mouse model supported the in vivo efficacy of proteome-
based therapy. For instance, the systemic administration of Lrp5-overexpressing CM
reduced the weight of mammary tumors and the size of tumor-invaded areas in the
lung [38]. Moreover, the progression of primary bone tumors (osteosarcoma), as well as
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secondary bone tumors (breast cancer-associated bone metastasis), was suppressed by the
administration of iTSC-derived CM in mouse models [38,39,44,57]. The engineered CM was
also applied to freshly isolated human breast cancer tissues, and the shrinkage of cancer
tissue fragments was observed [37–39,44]. The viability of patient-derived xenografted
osteosarcoma tissues was also suppressed by PKA-activated PBMC-derived CM that was
prepared by the peripheral blood samples of healthy humans [57].

One major question, which is linked to potential side effects, is whether the cytotoxic
effects of iTSC-derived CM present tumor selectivity. To minimize undesirable side effects,
the cytotoxic action of CM, which induces proapoptotic signaling, should be selective to
tumor cells, and ideally, nontumor cells would receive no or significantly smaller effects
than tumor cells. In a study of bone metastasis, the cytotoxic effect of iTSC-derived
CM was compared between breast cancer cells and noncancer cells such as osteoblasts,
osteocytes, and MSCs [38,43–45,47]. Available data indicate that tumor-suppressive CM
and the selected tumor-suppressing proteins in general induced stronger cytotoxic effects
on tumor cells than nontumor cells. The result is probably linked to interactions of tumor-
suppressing proteins with cell-surface proteins of tumor cells. For instance, the expression
level of CD44, which may interact with Eno1 and MSN, can be expressed higher in cancer
cells than noncancer cells, and thus the impact of CD44-mediated cytotoxicity is stronger
in tumor cells. In preclinical studies using mouse models, the reduction in body weight
during the administration of CM is in general insignificant compared to the effect with the
administration of chemotherapeutic agents. Another major question is the effects of CM’s
action on immune responses. It is important to evaluate the compatibility of CM’s action
with immunotherapy such as CAR-T-cell therapy [93].

Another interesting question is about the form of intercellular communication between
iTSCs and tumor cells. Although we have primarily discussed the possible binding of
tumor-suppressing proteins to membrane proteins in this review, the tumor-suppressing
effects may occur through the binding of proteins in the extracellular microenvironment,
extracellular vesicles, and/or interactions with recently described nanoparticles such as
exomes [94] and supermeres [95].

4. Cell Competition and Cooperation

An interesting question on tumor-suppressive CM is its significance in the context of
Darwin’s evolutionary theory. Intuitively, cancer cells are considered to proliferate and
migrate as a group by taking advantage of any resources. Thus, they may cooperate and
help each other to maximize their growth as a group. However, the procedure to generate
iTSCs provided an alternative view on the role of cell competition and cooperation among
tumor and nontumor cells. A common perception of cancer progression emphasizes the
role of cooperation in promoting tumor growth and metastases, in which tumor cells help
enhance their mutual survival [96]. They may cooperatively interact directly via cell-surface
proteins, and indirectly with secreted proteins and exosomes. By contrast, cell competition
may favor the survival of the fittest at the expense of less-fit cells [97–102]. It is rational to
assume that both cell cooperation and competition are at work among tumor and nontumor
cells, and the role of cooperation and competition may differ depending on the context.
At a first glance, it is paradoxical to generate tumor-suppressing proteomes by activating
tumorigenic signaling or inactivating antitumorigenic signaling. From an evolutionary
viewpoint, however, it is reasonable to presume that highly-fitted tumor cells become the
ultimate winner by eliminating less-fitted cells. Notably, the behavior of super-fit cells
can be the opposite of dying tumor cells, for instance, in response to chemotherapeutic
agents. Less-fit cells may not survive, but they may induce tumor-promoting CM to
increase the survival of neighboring tumor cells and contribute to making them fitter for
survival [103]. It is also important to know the effects of cellular heterogeneity among
individual cancer cells. For instance, significant variations are reported in single-cell
analyses in the development of pancreatic injury and cancer [104,105]. The heterogeneous
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interactions of iTSCs with the microenvironment would alter the outcome of the survival-
of-the-fittest evolutionary process.

5. Application

The application of iTSC-derived proteomes can be considered at several different
levels, including the transplantation of iTSCs, the administration of CM, the application of
the selected cocktail proteins that are enriched in CM, and the development of peptides
that are critical in inducing antitumor actions in CM. First, the transplantable iTSCs can be
synthesized using MSCs [106], PBMCs, and lymphocytes [107] that are autologous to cancer
patients. MSCs can be harvested from the bone marrow and adipose tissues. Engineering
lymphocytes may allow for the use of technology analogous to that of CAR-T cells for
immunotherapy [108,109]. Autologous cell-based therapy is experimentally and clinically
practiced in regenerative medicine, in the area of tissue repair, hair regrowth, etc., including
an application of iPSCs [110,111]. Second, the administration of CM is expected to have
an advantage over the single or several selected proteins or peptides because of its large
number of versatile components. Stem-cell secretome therapy is experimentally applied by
a biotech firm such as Anova in Europe as regenerative medicine with a broad spectrum
of treatment possibilities, including multiple sclerosis, osteoarthritis, rheumatoid arthritis,
Parkinson’s disease, motor neuron disease, spinal cord injury, and stroke. The advantage
of an integrative mixture of multiple tumor-suppressing proteins may become a hurdle in
gaining FDA approval for clinical applications. Nevertheless, a proteome-based therapy
can provide a comprehensive set of substances that are based on Mother Nature’s strategy
to eliminate cancer cells. Another approach is to select a group of effective proteins and
peptides and apply them as a cocktail. It is not known, however, whether iTSC-derived
CM contains peptides that present potent tumor-suppressing capabilities. Available data
indicate that proteins or peptides, smaller than 3 kD, are not the major source of antitumor
actions of iTSC-derived CM. The cocktail can be custom-designed based on the diagnosis
of individual cancer patients. Lastly, it is necessary to test whether CM or cocktail proteins
could be used with standard-of-care chemotherapeutic agents such as Paclitaxel [112] and
Cisplatin [113].

6. Perspective

To generate iTSCs, we employ pharmacological agents that activate tumorigenic
signaling or inactivate it. The procedure is counterintuitive and opposite to regular uses
of pharmacological agents. To improve tumor-suppressing capabilities, it is important to
employ highly effective agents, which are suitable for iTSC-generating host cell types. We
also need to evaluate a proper matching of pharmacological agents with iTSC-generating
host cells. One caution is the potentially detrimental responses of pharmacological agents to
the survival of iTSCs. A higher concentration of CW008 (PKA activator), for instance, tends
to reduce the rate of cellular proliferation of iTSCs. The generation of iTSCs requires the
activation of tumorigenic signaling, and currently, the availability of those protumorigenic
agents is limited. It is not clear whether the observed inhibitory effect on the growth of
iTSCs is caused by the oncogenic activation itself or nonspecific side effects. The most
effective combination of the agent and iTSC-generating cells may differ depending on the
target cancer type, such as breast cancer, prostate cancer, pancreatic cancer, osteosarcoma,
etc. Although the current efforts are mainly focused on breast cancer, prostate cancer,
and pancreatic cancer, it is recommended to test whether iTSC-derived CM might exert
antitumor actions for other cancer types such as blood cancer, lung cancer, liver cancer,
glioblastoma, etc.

In cell-based therapy, the discovery of iPSC technology has opened up unprecedented
opportunities in regenerative medicine, gene therapy, drug discovery, and disease model-
ing [114,115]. Ongoing autologous iPSC-derived cell regeneration includes retinal pigment
epithelial cells in the eye, dopaminergic progenitor cells and neurons in the brain, myo-
genic stem cells for the treatment of muscular dystrophies, and neural crest-derived dermal
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papillae for hair loss [111]. While the use of iPSC technology for cancer immunotherapy is
considered [116], iPSCs with an incomplete reprogramming process by the four transcrip-
tion factors may induce tumorigenesis [117]. It is imperative to make sure that iTSCs and
their CM do not induce any tumorigenic responses.

Lastly, it is expected that future cancer therapy, particularly for the treatment of
advanced cancer, requires the application of multiple agents to cope with ever-changing
cancer cells. Most agents may initially be effective, whereas cancer cells tend to develop
resistance and the efficacy may not be sustained [118]. The advantage of proteomes and
CM is that they include a spectrum of tumor-suppressing proteins, and cancer cells may
not easily develop resistance. Below is a list of pressing questions that should be addressed
to advance the current iTSC technology.

• Generation of iTSCs: What determines the most effective procedure to generate iTSCs?
This question is linked to the genes being overexpressed, signaling pathways to be
regulated, and the compatibility of host cells with the genes and pathways.

• Variations among iTSCs: What is the advantage of using autologous MSCs and PBMCs
as a host of iTSCs? Is there any advantage of generating iTSCs from patient-derived
cancer cells?

• Target cancer types: Is iTSC-derived CM effective for all types of cancer? So far,
in vitro and preclinical studies supported the efficacy for breast cancer, prostate cancer,
pancreatic cancer, and osteosarcoma using cell lines, primary cells, and freshly isolated
cancer tissues. Variations in efficacy were observed, however, and the question is how
to enhance tumor-suppressive actions.

• Protein isoforms and modifications: Do protein isoforms and modifications such as
phosphorylation alter the antitumor capability of atypical tumor-suppressing proteins?
No existing studies have evaluated the role of differential splicing, post-translational
modification, and DNA mutations.

• Nonprotein molecules: Do nonprotein molecules in iTSC CM contribute to tumor-
suppressive capabilities? Neurotransmitters such as dopamine are shown to act as
tumor suppressors, while metabolites such as cholesterol may act as a tumorigenic
factor [119,120]. It is also shown that nucleic acids in exosomes affect tumor pro-
gression [121]. Further analyses are necessary to evaluate whether any nonprotein
molecules significantly contribute to the antitumor action of iTSC CM.

• Mechanism of actions: Do atypical tumor-suppressing proteins exert their antitu-
mor actions by interacting with free proteins, membrane-bound proteins, and ex-
tracellular proteins? While existing studies have been focused on interactions with
plasma membrane-bound receptors, many other mechanisms can be considered, in-
cluding the interaction with a tumor microenvironment. For instance, atypical tumor-
suppressing proteins may interact with extracellular vesicles or the more recently
described nanoparticles such as exomeres [94] and supermeres [95].

7. Limitation

This review has a few limitations. Cancer proteomes are composed of a complex group
of proteins, and they dynamically interact with varying cells locally in a tumor microenvi-
ronment, as well as globally with distant tissues. Few existing studies, however, have been
conducted to analyze the isoforms of tumor-suppressing proteins and their modifications,
as well as proteoforms that are derived from variations in genomic sequences [122]. The
proteoforms may differ depending on the hosting cell type of iTSCs. The efficacy of antitu-
mor actions may depend on the varying protein species. Furthermore, some proteins in
iTSC-derived CM are cell-membrane proteins and are not considered secretory proteins.
Understanding a cellular process to be secreted should help decipher the double-edged
role of tumor-suppressing proteins. Lastly, it is important to conduct pharmacokinetics
analyses and evaluate the stability and availability of the described tumor-suppressing
proteins in preclinical and clinical settings.
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8. Conclusions

Focusing on the role of secretory proteomes of the tumor as well as nontumor cells, in-
cluding MSCs and PBMCs, that can be collected from cancer patients, this review described
the counterintuitive generation procedure of iTSCs, a novel type of tumor-fighting cells,
which produce atypical tumor-suppressing proteins such as Eno1, MSN, Ubc, Hsp90ab1,
etc. Most of those proteins act as oncogenic intracellularly and as antioncogenic extracel-
lularly, except for Calr. The proposed regulatory mechanism is far from complete, and
the function of each of those tumor-suppressing proteins may differ depending on the
cancer type. The double-edged action of these proteins presents a new potential dimension
in cancer treatments as cell and protein-based therapies. The existing in vitro, ex vivo,
and preclinical mouse studies warrant further investigation of the antitumor actions and
underlying mechanisms, and the development of translatable iTSC technologies.
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