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Abstract: Understanding protein interaction networks and their dynamic changes is a 

major challenge in modern biology. Currently, several experimental and in silico 

approaches allow the screening of protein interactors in a large-scale manner. Therefore, 

the bulk of information on protein interactions deposited in databases and peer-reviewed 

published literature is constantly growing. Multiple databases interfaced from user-friendly 

web tools recently emerged to facilitate the task of protein interaction data retrieval and 

data integration. Nevertheless, as we evidence in this report, despite the current efforts 

towards data integration, the quality of the information on protein interactions retrieved by 

in silico approaches is frequently incomplete and may even list false interactions. Here we 

point to some obstacles precluding confident data integration, with special emphasis on 

protein interactions, which include gene acronym redundancies and protein synonyms. 

Three human proteins (choline kinase, PPIase and uromodulin) and three different  

web-based data search engines focused on protein interaction data retrieval (PSICQUIC, 

DASMI and BIPS) were used to explain the potential occurrence of undesired errors that 

should be considered by researchers in the field. We demonstrate that, despite the recent 

initiatives towards data standardization, manual curation of protein interaction networks 
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based on literature searches are still required to remove potential false positives. A three-step 

workflow consisting of: (i) data retrieval from multiple databases, (ii) peer-reviewed 

literature searches, and (iii) data curation and integration, is proposed as the best strategy to 

gather updated information on protein interactions. Finally, this strategy was applied to 

compile bona fide information on human DREAM protein interactome, which constitutes 

liable training datasets that can be used to improve computational predictions.  

Keywords: bioinformatics; calsenilin; choline kinase; data integration; DREAM; gene 

acronym; gene redundancy; HGNC; HUGO; human interactome; KChIP3; protein accession; 

protein interactions; protein-protein prediction; uromodulin 

 

1. Introduction 

In 1996, it was estimated that the human genome consists of 50,000–100,000 genes [1]. Far from 

the previous estimations, and in the light of the results from human sequencing projects [2,3], the 

current number of human protein-coding genes includes exactly 20,484 different entries [4] [updated 

from the HUGO Gene Nomenclature Committee (HGNC), May 2013]. The human genome is 

considered to be almost completely finished, meaning that the final number of protein-coding genes is 

not likely to increase significantly in the future and that the canonical sequence of each protein-coding 

gene is known. In parallel, the sequences of 20,249 different human protein products (the longest 

isoform produced after translation of each protein-coding gene) are also available (UniprotKB/  

Swiss-Prot, May 2013). On the one hand, the wealth of information available offers unprecedented 

opportunities towards data integration at the two different levels (genomics and proteomics). On the 

other hand, the bulk of information available seems insufficient to explain the complexity of humans. 

In this sense, the identification of protein interactions and their regulation may help to unravel novel 

and relevant information. This hypothesis relies on the fact that proteins do not exist as isolated entities 

inside cells, but perform their function(s) through the interaction with other molecules.  

The size and dynamics of the human interactome is currently unknown. As displayed in Table 1, 

different estimations on the number of protein-protein interactions in humans widely differ, ranging 

from ~13,000 to ~370,000. Even the definition of the term ―protein interaction‖ significantly varies 

among references (binary interactions or protein complexes, stable interactions versus weak or transient, 

predicted computational interactions without experimental validation may be considered, etc.).  

Although there is hardly a consensus on the number and validity of protein interactions, there is 

ample agreement on the idea that our understanding of the human interactome is in its early stages. 

Deciphering the interacting network of each individual protein and the conditions altering the 

interactome may be crucial to understanding their function and thus requires the integration of data 

available gathered from different sources including: (i) experimental data, (ii) prediction algorithms, 

(iii) database searches, and (iv) literature searches. 
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Table 1. Different estimations of the human interactome published in the literature 

including references and a brief description of the interactions. 

Human interactome 

[reference] 

publication year 

Description 

375,000 [5] 

2005 

These authors used literature-mining algorithms and then estimated the number 

of protein interactions assuming 25,000 human genes. 

154,000–369,000 [6] 

2006 
The authors quoted that their estimation includes protein complexes. 

650,000 [7] 

2008 

This estimation relies on data retrieved from Y2H 
a
 experiments and database 

searches. 

130,000 [8] 

2009 
This number of protein interactions exclusively considered binary interactions. 

13,217 
b
 [9] 

2012 

This estimation considered the longest protein isoform 
c
 of 20,846 human 

protein sequences. The size of the interactome was estimated using 

computational methods based on structural inference. The authors claimed that 

this estimation also includes self-interactions. 
a
 Y2H: yeast-two-hybrid; 

b
 Includes self-interactions and it is based on structural inferences; 

c
 See [10] for 

definitions on protein isoform and protein species. 

Regarding experimental data, three main experimental strategies allow for large-scale screening of 

protein networks, including yeast-two-hybrid (Y2H) experiments, co-immunoprecipitation or affinity 

purification, followed by mass spectrometry and protein arrays [11,12]. The biochemical principles 

underlying each experimental approach are different. Thus, it is well acknowledged that the three 

strategies may lead to the identification of different subsets of protein partners. For example, 

immunoprecipitation strategies lead to the identification of both directly and indirectly associated 

proteins (e.g., protein complexes) [11], whereas protein arrays typically focus on direct (also termed 

binary or physical) protein interactions [12]. Accordingly, multiple experimental approaches may be 

performed to screen for protein interactions and the results should be considered as complementary. 

A number of prediction algorithms and computational methods currently coexist and can be used to 

infer the occurrence of protein–protein interactions [13–19]. These algorithms rely on one or more 

features—such as genomic sequence, topological genomic clustering, protein sequence, protein 

structure, protein functional/structural domains or evolutionary relationship—and may also take 

advantage of known protein–protein interaction datasets to test, train, and improve the quality of their 

predictions. A comparative overview of prediction algorithms is beyond the scope of this report, but it 

is important to underline that computational algorithms frequently take advantage of reliable training 

datasets (i.e., bona fide list of protein interactions) to test and to improve their predictions.  

A range of databases currently allows the retrieval of information on protein interactions, including 

predictions of interactions and even modeling the pathways involved (reviewed in [20]). In this regard, 

it is important to distinguish databases compiling data from experimentally observed protein 

interactions from those reporting predictions without experimental evidence [21]. Another issue for 

consideration is that the list of candidate protein partners retrieved may significantly differ among 

databases, due to the fact that the amount and quality of the information deposited in each database are 
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not really comparable ([22] reviewed protein-protein interaction databases and their sources of 

information). The overall information overlap among databases is limited and, thus, gathering 

information from as many databases as possible may represent an advantage if thorough information 

on the interactome of a specific protein is the objective. This task currently constitutes an obstacle that 

may be prohibitive in terms of time. In order to facilitate interaction data retrieval from multiple 

databases, several web-based search engines such as PSICQUIC [23], DASMI [24] and BIPS [25] 

were recently developed and made publicly available for the scientific community. These web tools 

significantly simplify the screening of information. Nevertheless, relevant information affecting 

protein interactions is frequently overlooked [26] and, more importantly, still suffers from high rates of 

false positives and errors [9]. For that reason, literature searches on peer-reviewed journals still 

constitutes the main source of information on protein-protein interactions in two ways: first, literature 

searches may retrieve information that may not be included in databases and, second, the comparison 

of the list of protein interactors retrieved upon database searches and after literature searches enables 

manual correction of potential errors. To exemplify this, a recent report focusing on the identification 

of the Salmonella host interactome [26] compared the information available in >100 databases and 

>2,200 journal articles, leading to the identification of 62 protein-protein interactions of Salmonella 

proteins with human and mouse proteins, both acting as host for this bacteria. The authors stated that 

only six of these interactions were retrievable from databases and concluded that literature searches 

represented an essential step. In this sense, we strongly support that manual curation of protein-protein 

interactions based on literature searches is a requisite [27]. Indeed, in this report we point to several 

constraints hindering the fast integration of information on protein interactions, which support the need 

for curation strategies based on literature data. We also point out the main sources of errors that 

preclude fully automated protein-protein data retrieval: the proper use of standard acronyms, and the 

occurrence of acronym redundancies and synonyms that are arbitrarily used in the literature.  

2. Experimental  

2.1. Human Gene Consensus Sequences and Acronyms 

The updated list of human genes was adapted from the information provided by the National Center 

for Biotechnology Information [28]. This information is provided in this report as a comma separated 

values (CSV) (Supplementary File 1) and is also available in our public data repository at [29]. This 

file includes the complete list of protein-coding genes (20,484 entries) and pseudo genes (13,191 entries).  

2.2. Human Protein Consensus Sequences and Acronyms 

The consensus amino acid sequence of human proteins was retrieved from the Uniprot protein 

knowledgebase/Swiss-Prot [30]. The strategy used to retrieve this information consisted of the 

inclusion of the following string of keywords and Boolean connectors in the ―query‖ field of this 

database: organism: 9606 AND keyword: ―Complete proteome [KW-0181]‖ reviewed:yes. This string 

of characters retrieved 20,249 different human protein entries (May 2013) and can be used ad hoc for 

the retrieval of the updated list of human proteins. The list of proteins considered in this report is 

provided as a comma separated values (CSV) (Supplementary File 2) and can be downloaded from our 
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public data repository at [29]. Relevant information on the proteins such as protein description, Swiss-

Prot protein accessions and entries are also included. Protein accessions and entries represent unique 

and unambiguous identifiers for each protein (see [31] for further information). 

2.3. Database Searches and Protein Networking 

Protein networks and list of interacting proteins were carried out using PSICQUIC [23], DASMI [24] 

and BIPS [25]. These three search engines are representative examples of popular web-based tools 

frequently used by researchers in the field and able to merge protein interaction data combining the 

information deposited in multiple databases.  

2.4. Gene Redundancy 

The official gene acronyms and the corresponding synonyms accepted for each human gene were 

retrieved from UniProtKB (May 2013). Redundant symbols within gene names and synonyms were 

retrieved for each UniProtKB entry using case-sensitive comparison of all human symbols. A text file 

where each line represents alternative symbols used for a specific gene was prepared. For each line, 

redundant gene symbols were removed. That is, each line contains a non-redundant list of alternative 

symbols for a specific gene. From this per gene entry non-redundant list, a new redundant list of 

symbols was prepared where each line contains one symbol. The frequency of each symbol in this 

redundant list corresponds to the number of times a symbol refers to different genes and can 

conveniently be calculated using the ―table‖ command in the R statistical programming language. 

3. Results and Discussion 

3.1. Evidence for Erroneous Protein-Protein Interactions after Database Searches 

In this report, we demonstrate that searching for protein–protein interactions using in silico searches 

may lead to errors. To exemplify this, we first retrieved for human choline kinase (gene acronym: 

CHKA, accession: P35790, entry: CHKA_HUMAN) interactors using three web interfaces able to 

retrieve and integrate data from multiple source databases: PSICQUIC [23], DASMI [24] and BIPS [25]. 

In all cases, database searches were triggered using the human choline kinase Swiss-Prot accession 

(P35790, [32]).The Swiss-Prot accession acts as a unique and unambiguous identifier corresponding to 

a single protein product. Surprisingly, despite the unambiguity of the accession number submitted to the 

searches, we noticed that the three web engines listed one or more false protein interactors. As 

depicted in Figure 1 and Supplementary File 3, the list of wrong CHKA interactors included proteins 

such as regulator of chromosome condensation (gene acronym: RCC1, accession: P18754, entry 

RCC1_HUMAN) [33] and several casein kinases (CSNKs). Such errors could only be confirmed upon 

manual curation using experimental data published in peer-reviewed journals. Fortunately, information 

and/or links to citations containing original data are typically provided through search engines (see 

Supplementary File 3), facilitating their access to researchers. 
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Figure 1. Protein interaction network corresponding to human choline kinase (CHKA) 

using two different versions of STRING [34] versions 9.0 and 9.05. String may be 

accessed through it web interface [35] or selecting the corresponding option in PSICQUIC 

View [36]. Searches were triggered using the Swiss-Prot accession number P35790 [32], 

which uniquely identifies CHKA. The query protein (CHKA, depicted as a red sphere) 

appears connected with surrounding candidate interacting proteins. Left panel: database 

searches using STRING v9.0 retrieved false positive nodes A (RCC1, regulator of 

chromosome condensation) and B (casein kinase proteins -CSNKs- 1G2, 1D, 1A1, 1E, 

1AIL and 1G1). Right panel: a recent version of the software (STRING v.9.05) removed 

false positives and improved the quality of CHKA interactions. STRING also shows 

information on the source of the interaction mapped is also included as colored lines 

(databases, textmining and experimental evidence). The default scoring filtering criteria 

were selected in all cases. 

 

The example above clearly evidences that database queries may lead to errors, thereby allowing us 

to hypothesize that the source for such errors is the lack of consensus in the gene acronyms and protein 

abbreviations used to refer to human proteins. This hypothesis is based on the observation that casein 

kinases and choline kinase may be abbreviated in the scientific literature using the same abbreviation 

(i.e., CK). This was already detailed in a recent publication [37], quoting that up to five different 

abbreviations may be used to refer to the human choline kinase alpha gene (CHKA, CHK, CKI, CK 
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and EK) and they are all accepted as synonyms and are simultaneously and arbitrarily used in the 

literature. The lack of consensus in the use of gene acronyms may add confusion when searching for 

protein interactions. CHKA is exclusively attributed to choline kinase genes, CHK and CKI can be 

used to denote checkpoint kinases or casein kinase I, respectively. CHK may also refer to 

megakaryocyte-associated tyrosine kinase (CHK) and the three letter code ―CHK‖ is also included in 

the gene symbol used for choline kinase beta (CHKL). Similarly, two letter symbols (CK and EK) are 

included in a number of genes within the list, which contributes to add some noise.  

From the example above, it becomes obvious that the same string of characters used as 

abbreviations or acronyms may refer to different genes or gene products. We also demonstrate that 

such redundancy may lead to the inclusion of erroneous candidates among the list of protein interactors. 

Database builders and data integration initiatives are very aware that gene acronym redundancy 

may significantly undermine the quality of the list of interactions retrieved by in silico approaches. 

Indeed, as depicted in Figure 1, different versions of the same software may significantly differ since 

both data annotation and curation improve with time. In the absence of consensus, and given that 

multiple synonyms currently coexist in the literature, data curation is required. In this sense, ways to 

report the occurrence of errors from users to database builders should be implemented because the 

contribution from users may significantly foster the tedious task of data curation. 

3.2. The Redundancy of Gene Acronyms 

As quoted in the example above, one gene acronym may refer to different genes or gene products 

and such redundancy may lead to errors when identifying protein-protein interactions through 

automated database searches. Thus, we hypothesized that redundancy leads to ambiguity that 

constitutes the causal origin of mistakes, introducing erroneous protein interactors through in silico 

searches. This fact raised the question whether and to what extent such redundancy could be 

extrapolated to other proteins of interest. Therefore, we were prompted to investigate the frequency of 

gene acronym redundancy and its effect on the identification of protein–protein interactions. To that 

aim, we built a file (Supplementary File 1) containing the description and the gene acronyms of the 

20,484 human protein-coding genes. It is important to note that acronyms from the nomenclature 

authority and synonyms of each gene found in the literature are also included in the same file. All the 

acronyms and synonyms listed in Supplementary File 1 are accepted and arbitrarily used by authors in 

the literature. Therefore, this file likely constitutes the best resource for measuring the frequency of 

redundancy. We calculated the redundancy of gene names and synonyms and plotted the number of 

names referencing N different genes versus N genes referred (Figure 2). 

Interestingly, as displayed in Figure 2, the repetition of gene acronyms is a frequent event and a 

significant portion of the genes displayed redundancies ranging from two, up to ten. This plot 

evidences that one gene acronym may designate multiple genes and/or protein. Importantly, a 

significant percentage of gene acronyms may refer to two or more different genes. The gene acronym 

PPIASE constitutes a paradigmatic example of gene acronym redundancy since this is used to 

abbreviate the name of ten different protein-coding human genes (GeneIDs: 2080, 2081, 2086, 2287, 

2288, 2289, 8468, 11328, 51645, 51661 and 60681, all of them mapped on different gene locations) 

(Supplementary File 4). Obviously, such redundancy leads to undesired ambiguities and errors 
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introduced by database retrieval algorithms, which are unable to discern the attribution of a gene 

acronym to a certain gene or protein product. As explained above, the lack of consensus regarding the 

use of gene symbols may constitute a significant hurdle in the process of retrieving bona fide protein 

interactions from public repositories. On the other hand, using gene symbols to trigger searches in 

protein interaction repositories is a common practice. Moreover, the string of characters ―PPIAase‖ is 

also found in the description of a range of different human genes (see Supplementary File 4), 

contributing to extra confusion. 

Figure 2. Bar-plot demonstrating the redundancy displayed by human gene acronyms and their synonyms. 

 

As a result, we show that the probability of including false protein interactions after in silico 

searches using gene symbols is relatively high. This means that it is probable that using gene 

abbreviations as the only information included in database searches may end up showing interactions 

that do not strictly correspond to the protein of interest. Consequently, in order to discard potential 

errors, manual curation of the list of interactors retrieved using gene symbols against published data 

seems highly recommendable, especially in those cases where the frequency of the gene symbols used 

for a protein in the literature is ≥2. 

Regarding proteins, in a previous section using choline kinase as an example, we showed that one 

protein may correspond to multiple gene acronyms. As a means to preclude such ambiguity, the 

UniprotKB/Swiss-Prot database uses two different types of alphanumerical identifiers for each protein 

entry: accession and entry names [38]. Accessions are composed of six consecutive alpha-numerical 

characters without spaces or special characters and constitute stable and unique identifiers for each 

protein. These are stable identifiers and should be used to cite UniprotKB/Swiss-Prot entries. Upon 

integration into UniprotKB/Swiss-Prot, each entry is assigned a unique accession, which is called 

―Primary (citable) accession.‖ 

Probably the best way to circumvent the ambiguity problem caused by gene acronym redundancies 

would be using consensus lists of gene acronyms exclusively attributed to single genes (not shared by 
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any other gene) [4]. Nevertheless, as exemplified above, manual curation of metadata seems necessary 

to preclude unnecessary errors. In the meantime, we provide here an open-access standalone software 

tool termed ―Gene Symbol Redundancy Checker‖ to facilitate validation of gene redundancies [39]. 

This software runs under Windows (32-bit or 64-bit systems, downloadable as zip compressed file) 

and calculates the degree of symbol redundancy for a list of gene symbols pasted into the application. 

This can, for example, be a list of genes in a network provided by an online tool. The output also 

summarizes all alternative symbols for all the genes that share a given gene symbol. The output can be 

subsequently exported or copy and pasted to any spreadsheet data-processing software for further analysis. 

3.3. Protein Accessions, Protein Entries and Database Searches 

Several databases may be used for proteomic research and their selection mainly depends on the 

quality of protein annotation and on objective pursued. In this regard, the Swiss-Prot protein database 

is widely considered as the ―gold standard‖ for proteomic approaches because it contains high-quality 

and manually annotated data, as well as the sequence of the proteins and access to protein-protein 

interaction data. Remarkable efforts were carried out in the past and others are under way towards the 

convergence, integration and standardization of the bulk of the data available in different protein 

databases. For instance, in 2011, the Swiss-Prot database incorporated the information of the human 

International Protein Index database (further information in this link [40]), a database frequently used 

in the past decade for proteomic experiments. It is evident, therefore, that protein databases rapidly 

evolve. Improved versions are continuously released and the descriptions of the proteins included in 

them also vary with time. In the case of the Swiss-Prot database, such changes are listed in The 

UniprotKB/Swiss-Prot Sequence/Annotation Version Archive (UniSave). 

For that reason, every protein included in the Swiss-Prot database is characterized by at least one 

protein accession and one protein entry that are exclusively attributed to a known protein product. 

Proteins characterized by more than one accession may be included in Swiss-Prot. For example, 

uromodulin (gene acronym: UMOD, accession: P07911, entry: UROM_HUMAN) was associated in 

the past with four different Swiss-Prot accessions (P07911, Q540J6, Q6ZS84 and Q8IYG0, Swiss-Prot 

v57.15). Currently, only the first accession is accepted (P07911), but previous accession numbers still 

appear in the literature, contributing to the confusion. Regarding protein descriptions and continuing 

with the same example, uromodulin is also frequently referred to as the Tamm-Horsfall protein. The 

latter term is frequently used in medical literature for historical reasons because it was first purified 

from the urine of healthy individuals by Tamm and Horsfall [41,42]. It is important to underline that 

the two descriptions are correct and synonymous, but their arbitrary use in the literature complicates 

the integration of data and may hamper thorough retrieval of protein interactions.  

The trend towards data simplification and integration is evident, and the number of initiatives 

aiming overall integration of -omic(s) data is under way, but it is still not sufficient. As an example, a 

recent web-based application termed KUPKB (Kidney and Urinary Pathway Knowledge Base) offers 

access to data from multiple -omic approaches [43]. To reiterate, the lack of consensus to name genes 

and proteins significantly obstructs data integration. As a proof of principle, in a previous report, we 

built a consensus list of proteins found in human urine. This objective required the integration of proteomic 

metadata previously published and the combination of a list of proteins identified independently in 
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different laboratories during the last decade [44]. Previously, we demonstrated that integrating and 

updating previous metadata may be a tedious task but it is necessary for data integration. 

Accordingly, in order to promote automated data integration, the lists of proteins identified by 

proteomic experimental approaches should include primary accessions and/or entries exactly in the 

form they appear in the Swiss-Prot database and, if possible, the corresponding gene acronym as 

recommended by the HUGO Gene Nomenclature Committee. Similarly, the use of recommended 

protein names exactly as they appear in the Swiss-Prot database should be promoted, since this could 

significantly simplify database searches whilst reducing ambiguity at the same time. 

3.4. Database Searches Fail to Include Dynamic Changes on Protein Networks 

The retrieval of the overall list of interactors for a specific protein of interest is essential to 

discerning novel from previous findings and also serves to identify the pathways involved. In the 

sections above we quoted some problems affecting the number and quality of interactors retrieved by 

searching in multiple databases and the need to complete and curate that information by comparing the 

list of interactors with published literature. However, the interactome of a given protein of interest is 

not static and adapts to changes in the environmental conditions. Thus, understanding the dynamics or 

protein interaction networks is crucial to unraveling the role and the regulation of proteins under 

different cellular conditions [45]. Here, we briefly point to the fact that in silico database searches 

typically fail to provide information on protein interaction changes as a response to modifications in 

the experimental conditions. To exemplify this, we used human calsenilin (gene acronym: KCNIP3, 

accession: Q9Y2W7, entry: CSEN_HUMAN), a protein of interest in our lab that was originally 

identified as calsenilin—a Ca
2+

-binding protein belonging to the family of neuronal calcium sensor 

proteins [46]. Shortly thereafter, this protein was found to be identical to the Ca
2+

-dependent gene 

silencer DREAM (downstream regulatory element antagonist modulator) [47] and, later, to one of the 

interacting proteins (KChIPs)—or -subunits—of the voltage-gated Kv channels, KChIP3 [48]. The 

three descriptions correspond to the same protein, since it is the product of a single gene, and localizes 

to three different cellular compartments (membrane, cytoplasm and nucleus). In these three cellular 

locations, DREAM plays different roles (K
+
 channel, Ca

+2
 binding protein and transcriptional 

repressor, respectively) and interacts with different subsets of molecules—including the interaction 

with DNA in the nucleus [49]. At structural level, DREAM harbors four EF-hand domains able to bind 

Ca
+2

 ions that provoke structural changes. Thus, it is foreseeable that the DREAM interactome 

significantly varies depending on sub-cellular localization or the presence/absence of Ca
+2

. It is 

important to underline that none of the databases tested—including 22 databases focused on protein-

protein interactions available at [22,50] or integrated web-based platforms like PSICQUIC [23], 

DASMI [24] and BIPS [25]—offered direct information about DREAM interactome changes or 

provided clues on factors modifying or affecting DREAM networking. Conversely, a good deal of 

information can be extracted from published literature (for review see [51]). Thus, we decided to 

compile the current status of DREAM interactome (Table 2) including supporting references, year of 

publication, in vitro and in vivo models used in the experiments, human gene acronyms (including 

synonyms), UniprotKB/Swiss-Prot accessions and entries, description, techniques used for detection of 

the interactions. Further information influencing DREAM interactions is also included, such as the 

potential effect of Ca
+2

 and post-translational modifications. 
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Table 2. DREAM interactome: publication year, experimental model used, corresponding human gene acronyms (May 2013), Swiss-Prot 

protein accessions release 2013_05 (May-2013), protein entries, protein descriptions and synonyms, detection method used and other 

additional relevant information is also included. 

Year 

Ref. 

Experimental model 

used 

HUMAN GENE 

ACRONYM  

HUGO acronym (bold), 

other synonyms 

Human Swiss-Prot 

accession, entries 

Protein description 

and synonyms 
Detection method Additional information 

1998 

[46] 

in vitro: Y2H, PSEN as 

bait and human brain 

cDNA. 

in vitro: COS-7 cells. 

PSEN1,FAD, PS1, S182,  

PS-1, AD3 

P49768 

PSN1_HUMAN 
Presenilin-1, Protein S182. 

Y2H and co-precipitation 

followed by Western blot. 

Y2H experiments included in this 

report could not confirm PSEN2–

DREAM interaction. 

1998 

[46] 

 

2008 

[52] 

in vitro: Y2H, PSEN as 

bait and human brain 

cDNA. 

in vitro: COS-7 cells. 

in vitro: SH-SY5Y cells. 

PSEN2, AD3L, PS2, STM2, 

AD4, CMDV1 

P49810 

PSN2_HUMAN 

Presenilin-2, AD3LP, AD5, E5-1, 

STM-2. 

Co-localization in COS-7 

cells and co-precipitation 

followed by Western blot.  

Co-transfection,  

co-precipitation followed 

by Western blot 

Y2H experiments were not able to 

confirm PSEN2-DREAM 

interaction. 

This interaction occurs in a Ca+2-

independent manner. 

1996 

[47] 

1999 

[53] 

2011 

[54] 

in vitro: CHO cells. 

in vitro: HEK 293 cells. 

in vitro: CHO cells. 

KCNIP3, CSEN, DREAM, 

KCHIP3 

Q9Y2W7, 

CSEN_HUMAN 

Calsenilin, A-type potassium 

channel modulatory protein 3, 

DRE-antagonist modulator 

(DREAM), Kv channel-interacting 

protein 3 (KCHIP3) 

Molecular mass from 

SDS-PAGE gels and 

Western blot. 

Multimeric forms (monomers [47], 

dimers [47,54] and tetramers 

[47,53] described). 

2000 

[53] 

in vitro: HEK293, NB69, 

SK-NMC cells. 

CREM, CREM-2, ICER, 

hCREM-2 

Q03060 

CREM_HUMAN 

cAMP-responsive element 

modulator, inducible cAMP early 

repressor (ICER). 

Pull-down using CREM 

as bait. 

DREAM–CREAM protein-protein 

interaction leads to loss of binding 

of the transcriptional repressor 

DREAM to target genes [53]. 

2000 

[48] 

in vitro: Y2H, KCNIP4 

as baits. 
KCNIP4, CALP, KCHIP4 

Q6PIL6 

KCIP4_HUMAN 

Kv channel-interacting protein 4 

(KChIP4), A-type potassium 

channel modulatory protein 4, 

Calsenilin-like protein, Potassium 

channel-interacting protein 4. 

Y2H and co-precipitation. 

Y2H cDNA library was 

constructed from polyA+ RNA 

extracted from rat brain. 
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Table 2. Cont. 

Year 

Ref. 

Experimental model 

used 

HUMAN GENE 

ACRONYM  

HUGO acronym (bold), 

other synonyms 

Human Swiss-Prot 

accession, entries 

Protein description 

and synonyms 
Detection method Additional information 

2002 

[55] 

in vivo: rat brain nuclear 

extract. 

in vitro: HEK293, PC12 

cells. 

CREB1, CREB 
P16220 

CREB1_HUMAN 

Cyclic AMP-responsive element 

binding protein 1. 

Immunoprecipitation 

from brain nuclear 

extracts using anti-

DREAM antibody. 

DREAM–CREB1 protein-protein 

interaction prevents recruitment of 

CBP by phospho-CREB and affects 

CRE-dependent transcription. 

2004 

[56] 

in vivo: thyroid-derived 

FRTL-5 cells. 

in vitro: co-

immunoprecipitation in 

CHO cells. 

NKX2-1, BCH, BHC, NK-2, 

NKX2.1, NKX2A, 

TEBP,TITF1,TTF-1, TTF1 

P43699 

NKX21_HUMAN 

Homeobox protein Nkx-2.1, 

Homeobox protein NK-2 

homolog A, Thyroid nuclear 

factor 1, Thyroid transcription 

factor 1. 

Co-precipitation using 

GST-DREAM as bait in 

FRTL-5 thyroid-derived 

cells. 

DREAM regulates the expression of 

the thyroglobulin gene. 

2005 

[57] 

2008 

[58] 

in vitro: co-incubation 

query protein (GST-

DREAM) and bait 

protein (6His-VDR). 

VDR, NR1/1 
P11473 

VDR_HUMAN 

Vitamin D3 receptor,  

1,25-dihydroxyvitamin D3 

receptor, Nuclear receptor 

subfamily 1 group I member 1. 

Pull-down after 

incubation of Ni-

Sepharose beads with a 

1:1 protein mixture of 

GST-DREAM  

(Δ65-256) and 6His-VDR. 

Ca2+ induces dimerization of DREAM 

and a binding interaction between 

DREAM and VDR. 

Chromatin immunoprecipitation 

showed that DREAM also binds to 

DNA, acting as a transcriptional 

regulator on vitamin D and retinoic 

acid response elements. 

2006 

[59] 

in vitro: Y2H, DREAM 

as bait. 

in vitro: co-

immunoprecipitation in 

H4 cells. 

CtBP1,CTBP 
Q13363 

CTBP1_HUMAN 
C-terminal-binding protein 1. 

Y2H using N-terminus 

of DREAM as bait and 

co-precipitation. 

DREAM–CTBP may modulate 

transcriptional repression of c-fos. 

2006 

[59] 

in vitro: Y2H, DREAM 

as bait. 

in vitro: co-

immunoprecipitation in 

H4 cells. 

CtBP2, ribeye 
P56545 

CTBP2_HUMAN 
C-terminal-binding protein 2. 

Y2H using N-terminus 

of DREAM as bait and 

co-precipitation. 

DREAM–CTBP may modulate 

transcriptional repression of c-fos. 

 

  



Proteomes 2013, 1  

 

  

15 

Table 2. Cont. 

Year 
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Experimental model 
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HUMAN GENE 

ACRONYM  

HUGO acronym (bold), 

other synonyms 

Human Swiss-Prot 

accession, entries 

Protein description 

and synonyms 
Detection method Additional information 

2007 

[60] 

in vitro: Y2H, DREAM 

as bait. 

in vitro: co-

immunoprecipitation in 

PC12 cells. 

in vitro: DREAM Ser95 

phosphorylation using 

HEK293. 

GRK6, GPRK6 
P43250 

GRK6_HUMAN 

G protein-coupled receptor 

kinase 6, G protein-coupled 

receptor kinase GRK6. 

Y2H and confirmed by 

co-precipitation of 

PC12 cell extracts and 

antibodies specific for 

GRK6. 

A mutated DREAM insensitive to 

Ca+2was used to preclude potential 

artifacts in Y2H screening.  

2007 

[60] 

in vitro: Y2H, DREAM 

as bait. 

in vitro: co-

immunoprecipitation 

using PC 12 cells. 

in-vitro: DREAM Ser95 

phosphorylation using 

HEK293. 

ADRBK1, BARK1, BETA-

AEK1,GRK2 

P25098 

ARBK1_HUMAN 

Beta-adrenergic receptor kinase 1, 

G-protein coupled receptor kinase 

2. 

Co-precipitation of PC12 

cell extracts and 

antibodies specific for 

GRK6. 

May regulate DREAM function 

through phosphorylation. 

2008 

[61] 

in vitro: Y2H, mouse 

G3GALT2 as bait and 

human brain cDNA. 

in vitro: co-

immunoprecipitation in 

CHO-K1 cells. 

B3GALT2, BETA3GALT2, 

GLCT2, beta3Gal-T2 

O43825 

B3GT2_HUMAN 

Beta-1,3-galactosyltransferase 2, 

Beta-1,3-GalTase 2, UDP-

galactose:2-acetamido-2-deoxy-D-

glucose 3beta-

galactosyltransferase 2. 

Y2H using N-terminus of 

GalT2 as bait. 

DREAM is involved in the 

trafficking of glycosyl-transferases 

to Golgi and endoplasmic 

reticulum. 

2009 

[62] 

in vivo: thyroid glands 

from mice. 

in vitro: co-

immunoprecipitation in 

CHO cells. 

TSHR, CHNG1, LGR3, 

hTHSR-1 

P16473 

TSHR_HUMAN 

Thyrotropin receptor, Thyroid-

stimulating hormone receptor. 

Co-immunoprecipitation 

using mice thyroid protein 

extracts and cells 

transfected with 

hemagglutinin-tagged 

DREAM. 

Activation of cAMP signaling 

pathway, thyroid enlargement and 

nodular development. 
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Detection method Additional information 

2010 

[63] 

in vivo: co-

immunoprecipitation 

using mouse 

hippocampal extracts. 

DLG4, PSD-95, PSD95, 

SAP-90, SAP90 

P78352 

DLG4_HUMAN 

Disks large homolog 4, 

Postsynaptic density protein 95, 

Synapse-associated protein 90. 

Co-immunoprecipitation. 

DREAM modulates the function of 

postsynaptic NMDA receptor, 

synaptic plasticity, behavioral 

learning and memory. 

2010 

[64] 

in vivo: co-

immunoprecipitation 

using rat brain extracts. 

CACNA1H, Cav3.2 
O95180 

CAC1H_HUMAN 

Voltage-dependent T-type 

calcium channel subunit alpha-

1H, Low-voltage-activated 

calcium channel alpha1 3.2 

subunit, Voltage-gated calcium 

channel subunit alpha Cav3.2 

Co-immunoprecipitation. Rat brain protein extracts. 

2010 

[64] 

in vivo: co-

immunoprecipitation 

using rat brain extracts. 

CACNA1I, Cav 3.3, 

KIAA1120 

Q9P0X4 

CAC1I_HUMAN 

Voltage-dependent T-type 

calcium channel subunit alpha-

1I, Voltage-gated calcium 

channel subunit alpha Cav3.3. 

Co-immunoprecipitation. Rat brain protein extracts. 

2010 

[65] 

in vitro: co-

immunoprecipitation in 

HEK293 cells. 

in vivo: co-

immunoprecipitation in 

rat hippocampus extracts. 

GRIN1, GluN1, NR1, 

NMDAR1, NMDR1 * 

Q05586 

NMDZ1_HUMAN 

Glutamate receptor ionotropic, 

Glutamate [NMDA] receptor 

subunit zeta-1, N-methyl-D-

aspartate receptor subunit NR1. 

Immunoprecipitation 

from rat hippocampus 

extracts. 

This interaction supports the role of 

DREAM in learning and memory. 

2011 

[66] 

in vitro: Y2H, DREAM 

as bait and human brain 

cDNA. 

in vitro: co-

immunoprecipitation in 

PC12 and HEK293 cells. 

UBE2I, C358BE.1, P18, 

UBC9 

P63279 

UBC9_HUMAN 

SUMO-conjugating enzyme 

UBC9, SUMO-protein ligase, 

Ubiquitin carrier protein 9 

Ubiquitin carrier protein I, 

Ubiquitin-conjugating enzyme 

E2, Ubiquitin-protein ligase I, 

p18. 

Y2H and co-

immunoprecipitation of 

PC12 cell protein 

extracts. 

Sumoylation regulates nuclear 

localization of DREAM. A mutated 

DREAM insensitive to Ca+2 was 

used to preclude potential artifacts 

in Y2H screening. 
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2011 

[54] 

in vitro: Y2H, Ca+2 

insensitive DREAM as 

bait and human bone 

marrow cDNA. 

in vitro: co-

immunoprecipitation in 

COS-7 cells. 

Prdx3,AOP-1, AOP1, 

HBC189, MER5, PRO1748, 

SP-22, Prx-III 

P30048 

PRDX3_HUMAN 

Thioredoxin-dependent 

peroxidereductase, mitochondrial, 

Antioxidant protein 1, HBC189, 

Peroxiredoxin III, Peroxiredoxin-3, 

Protein MER5 homolog. 

Y2H and co-

immunoprecipitation of 

CHO cell protein 

extracts. 

Prdx3 is a mitochondrial protein. 

Unlikely to mediate the regulation 

of DREAM under basal conditions. 

The subcellular compartment 

where the redox regulation of 

DREAM in vivo takes place not yet 

characterized. 

2012 

[67] 

in vivo: co-

immunoprecipitation 

using rat brain extracts. 

CALM1,CAMI, 

CPVT4,DD132, PHKD, 

caM,CALML2 

P62158 

CALM_HUMAN 
Calmodulin. 

Affinity capture followed 

by mass spectrometric 

identification of 

interacting proteins. 

In the presence of Ca+2, DREAM 

binds to calmodulin. A list of 

proteins potentially binding to 

DREAM under Ca+2-dependent and 

independent conditions is included 

in [67]. 

2012 

[67] 

in vivo: co-

immunoprecipitation 

using rat brain extracts. 

PPP3R1, CALNB1, CNB, 

CNB1 

P63098 

CANB1_HUMAN 

Calcineurin subunit B type 1, 

Protein phosphatase 2B regulatory 

subunit 1, Protein phosphatase 3 

regulatory subunit B alpha isoform 

1. 

Affinity capture and 

mass spectrometric 

identification of 

interacting proteins. 

In the absence of Ca+2, DREAM 

binds to calcineurin subunit-B.  

A list of proteins potentially 

binding to DREAM under Ca+2-

dependent and independent 

conditions is included in [67]. 
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4. Conclusions 

The study of protein interactomes and the pathways involved is a major objective currently pursued. 

The overall understanding of protein networks requires gathering and merging information from 

multiple sources (large-scale experiments, multiple data repositories and published literature) but 

compilation of protein interactions still constitutes a major current bottleneck. Different methodologies 

currently enable the generation of large bulks of data, and a plethora of databases are continuously fed 

with novel data. It is important to highlight that despite the rapid advances towards data integration and 

standardization, integration of interaction data from in silico sources is an error-prone task and, thus, 

requires manual data curation.  

Here, we pointed to two sources of ambiguities that promote the accumulation of errors: gene 

acronym redundancies and protein description synonyms. We take advantage of several proteins of 

interest in our group to exemplify the occurrence of such ambiguities and to evidence that arbitrary 

ways to name human genes and proteins undermine fully automated and reliable data integration. 

We emphasize that gene acronym redundancies constitutes a frequent event. A significant number 

of gene acronyms suffer some degree of redundancy, which probably constitutes the most significant 

hurdle towards data integration. In parallel, at the protein level, it is obvious that different authors refer 

to the same proteins using different acronyms arbitrarily chosen. These two sources of ambiguities  

lead to errors, especially when using bioinformatics and data-mining algorithms for the retrieval of 

protein interactions.  

Initiatives such as the Human Proteome Organization Proteomics Standards Initiative (HUPO  

PSI-MI) focused on the need for data format standardization and proposed the incorporation of 

controlled vocabularies to facilitate data exchange and integration (see [27] for review). Despite the 

ongoing efforts, the list of potential interactors retrieved through bioinformatic tools still lacks 

reliability and requires confirmation of data through literature searches. The last statement is especially 

true assuming that protein-protein interactions available in databases will be always behind state-of-

the-art information described in the literature. Moreover, looking for interactions in the literature may 

be advantageous in several ways: first, it may provide valuable interactions not included in databases; 

second, it is the best way to find detailed information on the experimental conditions favoring the 

interactions and the techniques used to identify them; and, finally, scientific articles serve as a basis for 

data curation.  

We applied the recommendations provided in this report to explore the current status of the human 

DREAM interactome. Updated information on this protein is tabulated in this report, including the list 

of interactors retrieved from databases and confirmed upon manual data screening based on supporting 

peer-reviewed literature. The DREAM interactome can, thus, be further exploited for drug discovery 

approaches and serves as a bona fide ―training-set‖ for future improvements of protein-protein 

prediction algorithms. 

To summarize, we propose the use of standard unambiguous gene acronyms and/or protein 

accessions in published literature and in electronic data repositories as the best way to promote data 

integration and to minimize the possibility of errors in the task of retrieving protein-protein 

interactions from databases. The use of unique gene and protein identifiers should be promoted by 

editorials and, if possible, in a retrospective manner (by including suitable gene and/or protein 
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descriptions and abbreviations in those articles previously published). In our opinion, this could be the 

best way to foster data integration while ameliorating the tedious task of manually reviewing, 

extracting data and filtering out errors based on published data. This rationale is supported by the fact 

that once published, it is hardly possible to include changes, including designation and abbreviation of 

genes and proteins. In our opinion, our proposal is certainly feasible, since a list of unambiguous gene 

acronyms and protein accessions are already available from the HUGO Gene Nomenclature 

Committee (HGNC) and UniprotKB/Swiss-Prot). A clear and concise specification of the source of 

gene description and abbreviation may facilitate future data integration strategies, including the 

identification of protein interactions. Therefore, we propose that the source of genes and/or proteins 

used and their corresponding abbreviations should be clearly quoted in publications, including 

sentences such as: ―Human gene names, description and abbreviations used in this report follow the 

recommendations from the HUGO Gene Nomenclature Committee (HGNC),‖ or ―Human protein names, 

description and abbreviations follow the recommendations from the UniprotKB/Swiss-Prot database.‖  

Electronic Supplementary Material 

Supplementary File 1. Full list of human genes, acronyms and description included in the National 

Center for Biotechnology Information. The list includes protein-coding genes, pseudo genes and  

non-coding RNA. The updated list of genes can be downloaded using the file transfer protocol (FTP) 

from the NCBI at [68]. 

Supplementary File 2. Full list of human proteins, accession, entries and descriptions included in the 

Uniprot protein knowledgebase/Swiss-Prot (UniprotKB/Swiss-Prot). Each human protein contained in 

this database is represented by one unique UniProtKB/Swiss-Prot accession and one entry (for further 

information see [31]. The updated list of human proteins can be retrieved using the following strings in 

the ‗query‘ field: organism:9606 AND keyword: ―Complete proteome [KW-0181]‖ reviewed:yes. 

Supplementary File 3. Human choline kinase protein-protein interactions retrieved in databases using 

three different web interfaces: PSICQUIC View [36], DASMI [69] and BIPS [70]. In all cases, the 

search was triggered by introducing the UniprotKB/Swiss-Prot accession P35790 [32] as unique 

identifier for human choline kinase. RCC1 (regulator of chromosome condensation) was included 

among the list of candidates in all cases (highlighted in red), but this protein is a false positive and 

constitutes an error of database searches, as derived from [33] reporting the interaction between RCC1 

and casein kinase I. The list of candidate interacting proteins, accessions (where available), supporting 

publications and the source (database) of information are included.  

Supplementary File 4. Paradigmatic example of gene acronym redundancy. The use of the gene 

acronym PPIASE (or PPIase) can be found in the literature to abbreviate the name often different 

protein-coding human genes (GeneIDs: 2080, 2081, 2086, 2287, 2288, 2289, 8468, 11328, 51661 and 

60681) mapped on different gene locations. The string of characters 'PPIASE' is also included in the 

description of a range of different proteins (highlighted in red). 
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