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Abstract: This study was framed within a quantitative research methodology to develop a concise
measure of calculus self-efficacy with high psychometric properties. A survey research design was
adopted in which 234 engineering and economics students rated their confidence in solving year-one
calculus tasks on a 15-item inventory. The results of a series of exploratory factor analyses using
minimum rank factor analysis for factor extraction, oblique promin rotation, and parallel analysis for
retaining extracted factors revealed a one-factor solution of the model. The final 13-item inventory was
unidimensional with all eigenvalues greater than 0.42, an average communality of 0.74, and a 62.55%
variance of the items being accounted for by the latent factor, i.e., calculus self-efficacy. The inventory
was found to be reliable with an ordinal coefficient alpha of 0.90. Using Spearman’ rank coefficient,
a significant positive correlation p(95) = 0.27, p < 0.05 (2-tailed) was found between the deep
approach to learning and calculus self-efficacy, and a negative correlation p(95) = —0.26, p < 0.05
(2-tailed) was found between the surface approach to learning and calculus self-efficacy. These
suggest that students who adopt the deep approach to learning are confident in dealing with calculus
exam problems while those who adopt the surface approach to learning are less confident in solving
calculus exam problems.

Keywords: self-efficacy; deep approach; surface approach; higher education; parallel analysis

1. Introduction

Studies on meaningful learning experiences of students in higher education have taken variant
dimensions over the last decades. A good number of psychologists and sociologists have dug deep
into students’ reflections of themselves as they learn [1-3]. An outcome of this insight into students’
learning is the identification of perceived self-efficacy as a good predictor of desirable learning
outcomes [4]. Perceived self-efficacy, according to Bandura [5], refers to “beliefs in one’s capabilities
to organize and execute the courses of action required to manage prospective situations” (p. 2).
These internal convictions put an individual in a better situation to approach a presented task and
behave in a particular way. An individual will tend to engage in tasks for which they have perceived
self-competence and try to avoid the ones with less perceived self-competence. Self-efficacy is a
determinant factor that positively correlates with the amount of effort expended on a task, perseverance
when faced with impediments, and resilience during challenging situations [1].

There has been a long-time debate among educationists on what are appropriate ways of
assessing self-efficacy with some contending for the general perspective while others opting for the
domain/situation specific perspective (e.g., [6,7]). The domain-specific perspective has influenced the
conceptualization of self-efficacy around many fields. For example, mathematics self-efficacy has long
been conceptualized as “a situational or problem-specific assessment of an individual’s confidence in
her or his fully perform or accomplish a particular” [2]. In a similar manner, engineering self-efficacy has
been defined as a “person’s belief that he or she can successfully navigate the engineering curriculum
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and eventually become a practicing engineer” [8]. Self-efficacy among engineering students has
been investigated from conceptualization through developing measuring instruments to correlation
with other variables like performance, anxiety, and performance [9,10]. In the same way it has been
investigated in mathematics and other science-based courses.

Despite studies on mathematics self-efficacy and performance being sparse, especially in higher
education (HE), the available empirical evidence has established a remarkable relationship between
mathematics self-efficacy and academic performance, with the former being a strong predictor
of the latter [11-14]. For example, Peters [15] reported a quantitative empirical study on the
relationship between self-efficacy and mathematics achievement including other constructs among
326 undergraduate students. Employing multi-level analysis, it was found that mathematics self-efficacy
differed across genders, with boys taking the lead, and positively correlated with achievement. More
recently, Roick and Ringeisen [16] found, in their longitudinal study, that mathematics self-efficacy
exerted a great influence on performance and played a mediating role between learning strategies and
mathematics achievement. Similar corroborative results can also be found in the quantitative study
reported in [17].

A good number of educators have empirically shown and emphatically argued that the best way
to achieve a higher predictive power of mathematics self-efficacy on academic performance of students
is through task-specific measures (e.g., [14]). Surprisingly, an extensive search of the literature revealed
a lack of instruments for measuring students’ self-efficacy on year-one calculus tasks. This is despite
the fact that calculus has been a compulsory part of most year-one Science, Technology, Engineering,
and Mathematics (STEM) curricula of many universities in the world. The current study therefore
aimed at developing a measure for assessing students’ self-efficacy on year-one calculus tasks with high
psychometric properties. Furthermore, in order to enhance the predictive validity of the developed
instrument its relationship with approaches to learning was also investigated.

2. Literature review

It is Albert Bandura who is considered the first psychologist in the history of clinical, social,
and counseling psychology to have introduced the word “self-efficacy” (see, [18]) to refer to
“the conviction that one can successfully execute the behavior required to produce the outcomes” [19].
However, some authors have contended that the “outcome expectancy” concept, which was extensively
investigated prior to 1977, is equivalent to self-efficacy in theory, logic, and operationalization [20,21].
In Bandura’s rebuttal of this criticism, he elicited the conceptual differences between outcome and
self-efficacy expectancies while maintaining that the kinds of outcomes people expect are strongly
influenced by self-efficacy expectancies (see, [22]). An overview of some of these controversies
including arguments, counterarguments, disparities, and agreements can be found in the literature
(e.g., [23,24]).

The basic tenet of the self-efficacy theory is that all psychological and behavioral changes occur as
a result of modifications in the sense of efficacy or personal mastery of an individual [19,25]. In the
words of Bandura [19], “people process, weigh, and integrate diverse sources of information concerning
their capability, and they regulate their choice behavior and effort expenditure accordingly” (p. 212).
In addition, Bandura’s theory posits that the explanation and prediction of psychological changes can be
achieved through appraisal of the self-efficacy expectations of an individual. In other words, the mastery
or coping expectancy of an individual is a function of outcome expectancy—the credence that a given
behavior will or will not result to a given outcome—and self-efficacy expectancy—*“the belief that the
person is or is not capable of performing the requisite” [23].

Furthermore, the applications of Bandura’s theory as suitable frameworks of conceptualization
are numerous in cardiac rehabilitation studies [26], educational research, clinical nursing, music and
educational practices [27-30]. In a study involving undergraduate students taking a biomechanics
course in the United States, Wallace and Kernozek [31] demonstrated how the self-efficacy theory can
be used by instructors to improve students’ learning experience and lower their anxiety towards the
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course. Moreover, Sheu et al. [32] reported a meta-analysis study on the contributions of self-efficacy
theory in learning science, mathematics, engineering, and technology. The foregoing discussion points
to the wide acceptance of Bandura’s self-efficacy theory not only among psychologists but also the
educational community at large.

The different conceptualizations of self-efficacy involving general and domain-specific perspectives
have recurring implications on the measurement of the construct. A look into the literature reveals that
mathematics self-efficacy has been measured with instruments tailored towards general assessment
(e.g., [16]), sources of efficacy (e.g., [33]), task-specific efficacy (e.g., [34]), and adaptations from other
instruments or which are self-developed (e.g., [35]). These instruments have their strengths and
weaknesses. A brief account of each type of instruments is presented in the forthcoming paragraphs
accompanied by the justification for a desired approach in the current study.

General assessment instruments have been developed to measure students’ self-reported ratings
of their capabilities to perform in mathematical situations. Chan and Yen Abdullah [36] developed a
14-item mathematics self-efficacy questionnaire (MSEQ) in which respondents appraised their ability
on a five-point Likert scale from 1 (never) to 5 (usually). MSEQ had four sub-structures comprised of
three items each measuring general mathematics self-efficacy and “efficacy in future” coupled with
four items each measuring self-efficacy in class and in assignments. Evidence of validity was provided,
and internal consistency of the items was investigated with Cronbach’s alpha of 0.94, which showed
high reliability. A similar result was also reported in an omnibus survey instrument developed by
Wang and Lee [37], in which mathematics self-efficacy was a subcategory. These kinds of omnibus
instruments have been reported to be problematic in their predictive relevance [38].

Other closely related instruments to mathematics general assessment types are the adapted
mathematics subcategory items from other instruments. For example, in a longitudinal study involving
3014 students, You, Dang and Lim [39] developed a mathematics self-efficacy measure by adapting
items from the motivated strategies for learning questionnaire (MSLQ) developed by Pintrich, Smith,
Garcia, and McKeachie [40]. Furthermore, in an attempt to operationalize mathematics self-efficacy,
Y.-L. Wang et al. [35] developed an instrument which was an adaptation of the science learning
self-efficacy questionnaire developed in [41] by substituting mathematics for science in the original
instrument. Some authors have independently developed measures for mathematics self-efficacy in
which the sources of their items are not disclosed. For example, Skaalvik, Federici, and Klassen [42]
developed a 4-item mathematics self-efficacy Norwegian measure as part of a survey instrument
without any disclosure of the sources of their items. These instruments were not too different from the
general academic self-efficacy measures in terms of their predictive power of performance [38].

Based on Bandura’s [3,5] theorized sources of self-efficacy—mastery experience, vicarious experience,
verbal/social persuasions, physiological or affective states—some educationists have developed and
investigated some measures [33,43,44]. In a quantitative empirical three-phase study, Usher and
Pajares [33] developed a measure and investigated the sources of mathematics self-efficacy. The study
started in Phase One with an 84-item measure and ended in Phase Three with a revised 24-item
instrument. The final version contained six items in each of the mastery experience, vicarious experience,
social persuasions, and physiological state subcategories with 0.88, 0.84, 0.88, and 0.87 Cronbach’s
alpha coefficients as pieces of evidence of item internal consistency, respectively. The study confirmed
the hypothesized mastery experience of Bandura [5] as the strongest predictor of learning outcome [33].
Other studies have also reported corroborative empirical evidence to confirm the hypothesized sources
of mathematics self-efficacy using Usher and Pajares’ [33] instrument with either wording or language
adaptations [45,46].

With the exception of sources of self-efficacy measures, the most effective approach in terms of
achieving high predictive power of learning outcome is to assess mathematics self-efficacy through
a task-specific measure [47]. The basic idea in developing a mathematics task-specific instrument
is to conceptualize self-efficacy on predefined mathematical task(s) and tailor the instrument items
towards the respondent’s self-capability to complete the tasks. An example of early instruments
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developed using this approach was the 52-item mathematics self-efficacy scale (MSES) by Betz and
Hackett [34] to measure self-efficacy among mathematics college students. In the administration
of this instrument, the respondents had to rate their confidence in successfully completing 18-item
mathematics tasks; solving 18-item math related problems; and achieving at least a “B” grade in a
16-item college mathematics related course like calculus, statistics, etc. Evidence of reliability was
provided with Cronbach’s alpha coefficients of 0.90, 0.93, and 0.92 on each subscale as well as 0.96
on the 52-item scale [34]. MSES has been investigated, revised, and validated with items adapted to
university mathematics tasks/problems as well as its rating reduced from a 10-point to five-point Likert
scale [14,48].

A task-specific mathematics self-efficacy instrument was also utilized by the Programme for
International Student Assessment (PISA) in their 2012 international survey across 65 countries as
reported in [49]. The eight-item instrument measured students’ self-reported level of confidence in
completing some mathematical tasks without solving the problems. The rating involved a five-point
Likert scale ranging from “not at all confident” to “very confident”” in which students were asked,
for example, “how confident would they feel about solving an equation like 2(x + 3) = (x + 3) (x - 3)"?
Cronbach’s alpha coefficient of 0.83 was provided as evidence of reliability [49].

4

3. Methods

3.1. Item Development

The items of the calculus self-efficacy inventory (CSEI) were developed based on the
recommendations of Bandura’s self-efficacy theory using the guidelines explained in the literature
(e.g., [50]). The initial inventory used in the current study contained 15 items selected from old
final examination questions in a year-one calculus course from 2014/2015 to 2018/2019 academic
sessions. Some of the topics covered in the course were functions, limits, continuity and differentiability,
differentiations and its applications, integration and its applications, etc. The items varied in level of
difficulty from procedural (involving recall of facts, definition, use of formulae, etc.) to conceptual items
which involve higher cognitive abilities such as applications, analysis, evaluations, etc. The students
were asked to rate their confidence to solve the tasks on a scale ranging from 0 (not confident at all),
through 50 (moderate confidence), to 100 (very confident). The 100-point scale was used because it
has been reported to enhance the predictive validity of the self-efficacy inventory (see, [50]). Sample
questions are presented in Table 1.

Table 1. Sample items on the calculus self-efficacy inventory (CSEI).

How Confident are You that You can Solve Each of These Problems

SN. Right Now? Confidence (0-100)
Calculate the limit:
3 li 17(:05(17}(2)
xlf} x¥2-2x+1
7 A curve is given by x = y? — x>y — 1. Use implicit differentiation to find ’.

Evaluate the integral.
11 f X7 g &
A surface is bounded by the function f(x) = %exz where 0 < x < 2 and the
14 x-axis. A vessel is made by rotating the surface about the x-axis. Find the
resulting volume.

3.2. Research Design and Participants

This study adopted a survey research design involving 234 year-one university students in
engineering and economics programs offering a compulsory calculus course. The study population
comprised 135 males and 99 females with an average age between 19-22 years. The multicollinearity
and adequacy of the sample correlation matrix was checked using Bartlett’s test sphericity (N = 234,
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d =91) =1632.2, p < 0.05, which was significant, with a Kaiser-Meyer-Olkin (KMO) test = 0.88 and a
determinant greater than 0.00001. These all confirmed the sufficiency of the sample for factor analysis
as well as absence of multicollinearity in the data [51]. Moreover, the sample was also within the
suggested ranges, in the literature, for factor analysis of multiple item instruments (e.g., [52]).

3.3. Materials

Two instruments were used in this study. The first was the 15-item CSEI described in the previous
section entitled “item development”. The second instrument was a Norwegian version of the two-factor
revised study process questionnaire (R-SPQ-2F) developed by Biggs, Kember, and Leung [53]. This
version is a 19-item instrument that measures students’ approaches to learning on a five-point
Likert scale with 10 items measuring deep approach to learning and 9 items measuring surface
approach to learning mathematics. The psychometric properties of this instrument were investigated
elsewehere [54,55], and its reliability was found to be appropriate from 0.72 to 0.81 using Raykov and
Marcoulides’ [56] formula.

3.4. Procedure

The data were collected using both electronic and paper versions of the two questionnaires.
A total of 110 engineering students completed both the CSEI and the R-SPQ-2F, out of whom 95 gave
us their consent to identify their scores on both scales. Economics students only completed the CSEI
due to some logistic problems and formed the remaining 124 of the sample. The collected data were
screened for outlier cases and found to contain none. Responses on CSEI were coded on a 11-point
scale with 0 coded as 0, 0 < values < 10 coded as 1, 10 < values <20 coded as 2, ... , and 90 < values
< 100 coded as 11. Univariate and multivariate descriptive statistics analysis of the data revealed
the presence of excess kurtosis and skewness as both indices were greater than |1.0] on most of the
items of CSEI [57]. For this reason, 11-point categories were further collapsed to five-point ones, and a
polychoric correlation matrix was used in the factor analysis of the data using the FACTOR program
version 10.8.04 [58]. The recoding into five-point categories was done is such a way that 0-2 were
coded as 1, 3—4 were coded as 2, ... , and 9-10 were coded as 5.

4. Results

4.1. Factor Analysis of CSEI

An exploratory factor analysis (EFA) was run on the 15-item CSEI data to determine the factor
structures of the inventory. As the data were found to contain excess kurtosis and skewness,
instead of a Pearson correlation matrix, a polychoric correlation matrix was used to enhance analysis
effectiveness [59]. Minimum rank factor analysis (MRFA) was used in extracting the common
underlying factors of CSEI instead of maximum likelihood (ML), unweighted least squares, etc., due to
its ability to optimally yield communalities of the sample covariance matrix [60]. The number of factors
to retain was based on the optimized parallel analysis procedure [61,62] which has been confirmed to
outperform the original Horn’s parallel analysis [63].

This procedure involves simulations of 500 datasets by permuting the sample data at random so
that numbers of cases and variables are unchanged. On each of these datasets, EFA was conducted
using MRFA, and the average eigenvalues of the extracted factors were then compared with the
eigenvalues of the sample. Factors with eigenvalues greater than the average eigenvalues of the
simulated datasets were then retained. This procedure has been shown to be an effective way of
deciding the number of factors to retain in EFA and also outperformed Kaiser’s criteria of eigenvalues
greater than 1 and use of scree plot [61]. The extracted factors were rotated using promin, an example
of oblique rotations described in [64]. An oblique rotation was appropriate because the latent factors
are assumed to be correlated contrary to the assumption of disjoint factors in the orthogonal rotations.
The analysis was performed on both the 11-point and five-point coding of the data. However, results
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from the five-point coding are presented in Table 2 due to slightly higher precisions in estimating factor
loadings and communalities of the items. Factor loadings less than or equal to |0.30| are excluded from
Table 2.

Table 2. Rotated and unrotated factor loadings and item communalities.

CSEI First Analysis Second Analysis Third Analysis
F1 F2 F1 Communality F1 Communality
Item 01 0.99 0.73 1.00 —  —
Item 02 0.51 0.50 0.82 0.43 0.42
Item 03 0.61 0.78 0.72 0.78 0.83
Item 04 0.79 0.62 0.77 0.64 0.70
Item 05 0.34 0.51 0.48 0.51 0.50
Item 06 0.83 0.55 0.80 0.60 0.89
Item 07 0.40 0.35 0.66 0.60 0.65 0.55
Item 08 0.71 0.76 0.82 0.73 0.75
Item 09 0.85 -1.04 — — — —
Item 10 0.35 0.38 0.65 0.75 0.65 0.74
Item 11 0.38 0.74 0.95 0.76 0.96
Item 12 0.69 0.84 0.95 0.85 0.91
Item 13 1.02 -0.30 0.68 0.98 0.72 0.90
Item 14 0.80 0.74 0.77 0.72 0.77
Item 15 0.45 0.68 0.77 0.68 0.66

Table 2 presents rotated and unrotated factor loadings of a series of three exploratory factor
analyses of the CSEI data. The first analysis column of Table 2 represents rotated factor loadings of
a two-factor solution of the data. However, there was a gross misspecification in this model with
Items 07, 09, and 13 exhibiting substantial cross-loadings and out of range rotated factor loadings.
The out of range factor loadings in Item 09 (—1.04) and Item 13 (1.02) are suggestive of negative error
variance in the factor solutions of the items. Furthermore, a look at the polychoric correlation matrix
(see Appendix A) also revealed that Item 09 had negative correlation coefficients with most other items,
which is an indication of a negative variance. For this reason, Item 09 was deleted before the second
EFA was run. Moreover, the results of the optimized parallel analysis (Table 3) recommended retaining
one-factor solution in the model based on the 95 percentile and 2-factor solution based on the mean.
However, the 95 percentile recommendation of the parallel analysis has been reported to be more
accurate than its recommendation based on the mean [61]. Therefore, the second analysis was run
with a fixed one-factor solution of the model.

Table 3. Parallel analysis—minimum rank factor analysis (MRFA) results based on the polychoric
correlation matrix.

Variable Real-Data % of Variance Mean of R.andom % 95 Percentile' Random %
of Variance of Variance
1 50.09 ** 17.00 19.33
2 17.04* 15.25 17.18
3 6.46 13.75 15.24
4 5.47 12.15 13.33
5 5.27 10.51 11.84
6 4.25 8.81 10.19
7 4.18 7.37 8.79
8 2.92 5.99 7.26
9 2.17 4.60 5.83
10 1.23 3.24 4.38

** Advised number of dimensions when 95 percentile is considered: 1. * Advised number of dimensions when
mean is considered: 2.
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The second analysis column of Table 2 presents unrotated factor loadings and item communalities
of a one-factor solution of the model with the exclusion of Item 09. This solution contains a Heywood
case in form of the communality of Item 01 equals 1. This means that all the variance of Item 01 is
shared with other items in the model and that this item has no unique variance at all [51]. Item 01 was
removed from the model for this reason and the third analysis was run. The third analysis column of
Table 2 presents unrotated factor loadings and item communalities of a one-factor solution of the model
excluding Items 01 and 09. All factor loadings were greater than 0.42 and the average communality
(0.74) was greater than the widely recommended 0.70, which are suggestive of a good model solution
for the sample data [65]. The extracted eigenvalues accounted for a total of 62.55% common variance
as depicted in Table 4. This can be interpreted to mean that the one-factor model explained 62.55% of
common variance of the factor solution which can be used to justify goodness of fit of the model.

Table 4. Eigenvalues and proportion of explained variance.

. . Proportion of Cumulative Proportion Cumulative Percentage
Variable Eigenvalue . . .
Common Variance of Variance of Variance

1 5.9848 0.6255 0.6255 62.55

2 1.2650 0.1322

3 0.7748 0.0810

4 0.4287 0.0448

5 0.3477 0.0363

6 0.3258 0.0341

7 0.1981 0.0207

8 0.1438 0.0150

9 0.0911 0.0095

10 0.0087 0.0009

11 0.0001 0.0000

12 0.0000 0.0000

13 0.0000 0.0000

4.2. Reliability of the Instrument

There have been heated debates among methodologists on the appropriateness of using Cronbach’s
alpha coefficients in estimating reliability of ordinal scale data. Some of these debates have been
provoked by gross misuses and misinterpretations of Cronbach’s alpha especially in the presence of
excess kurtosis and skewness, violations of the normality assumption, non-continuous item level of
measurement, etc., inherent in ordinal data [66,67]. To circumvent this problem, alternative indices
have been proposed for estimating the reliability of ordinal scales (e.g., [68,69]).

A widely used alternative estimate of reliability is the ordinal coefficient alpha proposed by Zumbo,
Gadermann, and Zeisser [70]. Ordinal coefficient alpha is similar to Cronbach’s alpha coefficient in
that they are both computed using the McDonald’s [71] formula (Equation (1)) for a one-factor factor
analysis model. However, the former is based on polychoric correlation matrix estimates that are
theoretically different from the Pearson correlation matrix estimates used in the latter. It has been
shown both through simulation and raw data studies that ordinal coefficient alpha outperforms the
Cronbach’s alpha coefficient in estimating reliability of scales measured using the Likert format of
fewer than six-point categories (e.g., [70,72]).

-2 _

*A —c

P11, 7

prl +
In Equation (1),  is the ordinal coefficient, p is the number of items in the instrument, and A, cand u
(where u = 1 - ¢) are the average factor loading, average communality, and average unique variance,
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respectively. Using the values of these parameters as presented in Table 5, the ordinal coefficient alpha
can be calculated as follows:

[24

13 [ 13%.672-74
© 13-1[13%.672+0 .26

] =091. @)

Table 5. Ordinal coefficient alpha reliability parameters.

CSEI A c u
Item 02 0.43 0.42 0.58
Item 03 0.78 0.83 0.17
Item 04 0.64 0.70 0.30
Item 05 0.51 0.50 0.50
Item 06 0.60 0.89 0.11
Item 07 0.65 0.55 0.45
Item 08 0.73 0.75 0.25
Item 10 0.65 0.74 0.26
Item 11 0.76 0.96 0.04
Item 12 0.85 0.91 0.09
Item 13 0.72 0.90 0.10
Item 14 0.72 0.77 0.23
Item 15 0.68 0.66 0.34
Average 0.67 0.74 0.26

This is suggestive of a highly reliable unidimensional instrument with an appropriate internal
item consistency.

4.3. Correlation of Calculus Self-Efficacy with Approaches to Learning

In an effort to examine the predictive validity of the CSEI, a correlation between students’ scores
on the inventory and their respective scores on the R-SPQ-2F was investigated. Scoring of the CSEI was
accomplished by adding item scores on the final 13-item inventory while that of R-SPQ-2F was in line
with the procedure described in [54]. Each of the 95 engineering students had scores on self-efficacy
and deep and surface approaches to learning. These scores were explored using descriptive statistics
and tested for normality assumptions before the correlation analysis. As shown in Table 6 and Figure 1,
scores on both deep and surface approaches are normally distributed while scores on CSEI are not.

Table 6. Descriptive statistics and Shapiro-Wilk’s test of normality results.

Descriptive Statistics Test of Normality

Std. Skewness Kurtosis Shapiro-Wilk
Dev.  Gtat.  Std. Er.  Stat.  Std. Er.  Stat.  df  Sig.

Deep approach 95 1.20 4.70 2.82 0.68 0.03 0.25 0.10 0.49 0.99 95 0.82
Surface approach 95 1.00 4.00 2.42 0.63 0.15 0.25 -0.49 0.49 0.99 95 0.65
CSEI 95 13.00 65.00 46.07 11.43 -0.92 -0.25 0.86 0.49 0.94 95  0.00*

N Min. Max. Mean

* Significant, p < 0.05.

The non-normal distribution of scores in the CSEI is evident from the significance level of
Shapiro-Wilk’s test statistic (N = 95, df = 95) = 0.94, p < 0.05, as shown in Table 6. Furthermore,
the CSEI scores also exhibited a negatively skewed distribution as shown in the last diagram of Figure 1.
For these reasons, a nonparametric bivariate Spearman rank correlation was used instead of the
Pearson correlation to check the relationship between the CSEI and the R-SPQ-2F scores. The results
revealed a significant positive correlation p(95) = 0.27, p < 0.05 (2-tailed) between the deep approach
to learning and calculus self-efficacy and a significant negative correlation p(95) = —0.26, p < 0.05
(2-tailed) between the surface approach to learning and calculus self-efficacy. These results could be
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interpreted to mean, at the group level, that students who adopt the deep approach to learning are
usually confident in dealing with calculus exam problems while those who adopt the surface approach
to learning are less confident to successfully solve calculus exam problems. This finding confirms the
hypothesis of the Bandura’s self-efficacy theory [4,6] and also corroborates the mediating role played
by self-efficacy between learning strategies and performance reported in [16].

Deep_Approach Surface_Approach

20 Mean = 2.42
v =

Frequency
Frequency

Deep_Approach Surface_Approach

CSEl

40 Wean = 4607
Std_Dev. =11.433
=95

Frequency

10 20 30 0 E &0 b
CSEl

Figure 1. Normal distribution of scores on CSEI and R-SPQ-2F scales.

5. Conclusions

Despite the abundant empirical evidence of the high predictive power of task-specific mathematics
self-efficacy in the literature, an instrument for its measure is still lacking [4,50]. The current study
was framed within a quantitative research methodology to develop a concise measure of calculus
self-efficacy with high psychometric properties among year-one university students. Bandura’s
self-efficacy theory provided a theoretical framework for the conceptualization and operationalization
of items on the developed calculus self-efficacy inventory (CSEI). This theory posits that all psychological
and behavioral changes occur as a result of modifications in the sense of efficacy or personal mastery
of an individual [19,25]. On this basis, the accompanied guidelines and recommendations of this
theory [50] were followed in constructing the CSEI items.

The initial instrument contained 15 items, in which 234 respondents rated their confidence in
solving year-one calculus tasks on a 100-point rating scale. The results of the factor analysis using
MREFA for factor extraction, promin rotation, and parallel analysis for retaining factors revealed a
one-factor solution of the model. The final 13-item inventory was unidimensional with all eigenvalues
greater than 0.42, an average communality of 0.74, and a 62.55% variance of the items being accounted
for by the latent factor, i.e., calculus self-efficacy. These results can be interpreted as evidence of
construct validity in measuring students’ internal confidence in successfully solving some calculus tasks.
The CSEI has the following advantages over the mathematics self-efficacy scale (MSES) developed
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by Betz and Hackett [34] and its revisions (e.g., [48]): Its concise length, task specificity, higher factor
loadings, and communality.

Furthermore, the reliability coefficient of the CSEI was found to be 0.91 using the ordinal coefficient
alpha with the formula described in [70]. This coefficient portrays evidence of high internal consistency
of items in the inventory [63]. This reliability coefficient is higher than the coefficient of the mathematics
task subscale of the MSES reported in [2,34], and it is within the ranges of the revised MSES reported
in [14,48]. There are some misconceptions on the appropriate use of the ordinal coefficient alpha for
estimating scale reliability as can be found in [73]. These misconceptions are acknowledged. However,
the examples of the types of items provided in Chalmer’s own article are enough to justify the use of
the ordinal coefficient alpha in the current study.

The results of the current study also provided an insight into the correlation between approaches to
learning and calculus self-efficacy. The significant positive correlation between the deep approach and
self-efficacy as well the significant negative correlation between the surface approach and self-efficacy
are indications of the predictive validity of the CSEL This finding also confirms the hypothesis of
Bandura’s self-efficacy theory [4,6] as well as corroborates the mediating role played by self-efficacy
between learning strategies and performance reported in [16]. It is a crucial to remark that the causal
effect between calculus self-efficacy and approaches to learning is not claimed with this finding. Rather,
the results have only established a relationship between these constructs that can be explored further
in future studies. The final 13-item instrument is available in English and Norwegian upon request
from the corresponding author. This inventory is therefore recommended to university teachers in
order to assess students’ confidence in successfully solving calculus tasks.
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Appendix A

Standardized Variance/Covariance Matrix (Polychoric Correlation)

Variable
CSEI 01
CSEI 02
CSEI 03
CSEI 04
CSEI 05
CSEI 06
CSEI 07
CSEI 08
CSEI 09
CSEI 10
CSEI 11
CSEI 12
CSEI 13
CSEI 14
CSEI 15

01
1.000
0.642
0.682
0.255
0.365
0.099
0.502
0.665

-0.527
0.463
0.373
0.547
0.201
0.684
0.393

02

1.000
0.427
0.227
0.210
0.152
0.314
0.307
-0.136
0.328
0.253
0.301
0.220
0.346
0.331

03

1.000
0.501
0.409
0.377
0.543
0.602
-0.302
0.499
0.477
0.632
0.391
0.623
0.502

04

1.000
0.368
0.661
0.339
0.352
0.220
0.366
0.492
0.446
0.506
0.280
0.422

05

1.000
0.232
0.266
0.409
0.054
0.435
0.266
0.305
0.340
0.444
0.365

06

1.000
0.367
0.356
0.241
0.323
0.440
0.459
0.501
0.153
0.387

07

1.000
0.520
-0.064
0.383
0.517
0.543
0.401
0.502
0.433

08

1.000
-0.341
0.612
0.376
0.573
0.286
0.667
0.536

09

1.000
-0.026
0.200
-0.014
0.327
-0.405
0.030

10

1.000
0.398
0.459
0.333
0.480
0.361

11

1.000
0.756
0.826
0.400
0.375

12

1.000
0.709
0.609
0.555

13 14
1.000
0.355 1.000
0.395 0.601

11 of 14

15

1.000
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