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Abstract: In this study we have attempted, firstly, to describe programming protocols developed for
the teaching of an Electromagnetism course in the university degrees of Electrical Engineering and
Energy Engineering, and secondly, to evaluate students’ satisfaction with the simulation practices
through MATLAB®programming. The main objective of the protocols is to allow students to model
and visualize the electric field and magnetic field (both static) and understand the approximation that
is made when considering certain distributions of electric charges and electric currents. To evaluate
the usefulness of this computational methodology, eighteen students from the two engineering
degrees answered a questionnaire with seven questions related to the Electromagnetism course
and to the benefits of using computer programming. Their answers are measured by a Likert scale.
From the analysis of the results, we can conclude, in a general way, that the use of this methodology
has positive effects in the learning of Electromagnetism in these two degrees.
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1. Introduction

The emergence of personal computers paved the way for a significant change in the form of
Teaching, particularly for Science & Technology Teaching, as illustrated by Papert’s book on the use of
computers in Teaching [1]. The use of computers in education comes from the 1960s, as Teodoro points
out in his PhD thesis on mathematical modelling applied to the teaching of physics [2]. From the point
of view of the use of the computer in Teaching, two approaches are confronted [2]: as a machine to
provide information, and as an auxiliary tool of knowledge construction. In the first case, the computer
is used for projections of films or animations, as an aid in searching for information on the internet,
among many other applications. This approach is increasingly present in schools, accompanying an
increasing accessibility to the internet either from schools, with computer rooms and a growing number
of computers, either from students and teachers, with the new generations of mobile phones with fast
internet access. As an auxiliary knowledge-building tool, the computer can be used in simulation and
modelling activities that require interaction between the students, teachers, and the models involved.
In this perspective, the computer is a complementary object of cognition—“object-to-think-with” [1].

One of the areas of teaching in which simulation and modulation have developed the most in
recent years is that of physics [3], seeking to overcome the learning difficulties inherent in this discipline.
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There are many works developed in this decade [4–12]. With the increasing development of the graphic
potentialities associated with the various programming languages, simulation and modelling activities
for the teaching of physics become increasingly appealing, enhancing the understanding/visualization
of the physical phenomena. In this sense, the work developed by Chabay and Sherwood [13],
which consisted in the application of a Python programming project for the teaching of Physics in an
introductory engineering course, emphasizes the positive and negative aspects of the introduction
of programming in the introductory Physics courses. On the positive side, writing programs can
stimulate the universality of fundamental principles of physics. The main negative aspect pointed
out by the authors is that the students do not have programming bases before the physics discipline,
and this leads to a significant loss of time to teach the many subjects of this discipline. In the case,
we studied the students already had a programming discipline.

In this study we analyzed the opinion of 18 students from the module of ‘Electromagnetism
I’ (third semester) of the undergraduate degrees in Electrical Engineering and Energy Engineering,
from the Faculty of Engineering at ‘Universidade Lusófona de Humanidades e Tecnologias’ (www.
ulusofona.pt) (Lisbon, Portugal), regarding the use of computer programming in MATLAB®to simulate
electric charge and current distributions, as well as to solve practical problems. We describe here
two of the practical works developed by students in laboratory classes. In the first one, students
start from the definition of electric field of a point charge, and from the superposition principle,
they obtain the electric field and the potential of a system of charges. They are then able to visualize
the electric field lines and the equipotential lines. Also, students simulate the field of a parallel plate
capacitor. In the second work, using Ampère’s Law students represent the field lines of a magnetic
dipole and from there simulate the field inside a solenoid. In both works, the students are made
aware of the approximations committed with the use of infinite distributions of electric charges and
currents. The students’ opinion analysis is based on a Likert scale applied to a questionnaire with
seven questions, essentially related to the use of this methodology.

2. Methods and Results

2.1. Laboratory Projects

The set of physical situations in Electromagnetism (configurations of electric charges or
currents, for instance) that can be studied by the students using pen and paper, in a few minutes,
is reduced. The use of programming environments such as MATLAB® or OCTAVE extends this set
of situations allowing computational calculations that without the use of these tools would be slow
and repetitive, and thus allowing students to deepen their understanding of more complex problems.
OCTAVE (which is open source) is indeed a very good alternative to MATLAB®in the teaching of
many laboratory teaching projects in Physics. However, the specific teaching projects presented in this
paper need commands which are not yet available in OCTAVE (such as ‘streamslice’).

The first project that we have described is related to the question of the electric field usually
assigned to students of Electromagnetism: how to determine the electric field created by a set of
point charges?

Theoretically, the electric field of a point charge distribution (e.g., Figure 1) is the superposition of
the fields created by each of the charges, and it is given by [14]:

→
E =

1
4πε0

N

∑
i=1

qi

r2
i

r̂i (1)

where qi is the value of the charge i (including the sign), ri is the distance between the charge i and
the point where the field is determined, r̂i the unit vector pointing from the charge i to that point (for
a single charge, it will point from a positive charge to infinity or from infinity to a negative charge),
and 1/(4πε0) a constant (with value 8.99 × 109 N·m2/C2 in SI units).
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Figure 1. Representation of the electric field and the equipotential lines of a single point charge (see 
Appendix A for code). 
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to solve several exercises typically with two (or three) point charges before the theoretical-practical 
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However, these exercises generally only allow the electric field to be calculated at specific points in 
space, which greatly limits the comprehension of the electric field. Although graphing the electric 
field generated in all space is trivial for a single point charge, the degree of difficulty increases 
disproportionately for systems with two or more charges. To obtain the electric field at all points of 
space, or drawing the lines of it, requires more effort from the students, when the tools used are paper 
and pen. On the contrary, in laboratory classes, students can obtain representations of the electric 
field in a systematic way and for any finite distribution of point charges if they are challenged to 
elaborate computational routines in MATLAB®. In their simplest formulation, these routines begin 
by creating a grid of equally spaced points on a plane (x,y), and then calculate the electric potential 
at the points of that grid, having previously been given a distribution of charges qi in points (xi,yi) 
[14]: 

   𝑉 = 14𝜋𝜀 𝑞𝑥 − 𝑥 + 𝑦 − 𝑦  (2) 

Then, it is enough to use equation 𝐸 = −∇⃗V (3) 

to obtain the electric field. The visual result is that of Figure 2 for an electric dipole (two charges of 
equal modulus but opposite sign) and Figure 3 for an electric quadrupole (four charges of equal 
modulus but opposite sign). Both equipotential lines and electric field lines are included. Students 
are led to consider other charge distributions by always obtaining field lines and equipotential lines. 

Figure 1. Representation of the electric field and the equipotential lines of a single point charge
(see Appendix A for code).

The students attend to the application of this principle in theoretical classes and are encouraged
to solve several exercises typically with two (or three) point charges before the theoretical-practical
class (in which they can check their results or watch again the application of the general principle).
However, these exercises generally only allow the electric field to be calculated at specific points in
space, which greatly limits the comprehension of the electric field. Although graphing the electric
field generated in all space is trivial for a single point charge, the degree of difficulty increases
disproportionately for systems with two or more charges. To obtain the electric field at all points of
space, or drawing the lines of it, requires more effort from the students, when the tools used are paper
and pen. On the contrary, in laboratory classes, students can obtain representations of the electric field
in a systematic way and for any finite distribution of point charges if they are challenged to elaborate
computational routines in MATLAB®. In their simplest formulation, these routines begin by creating a
grid of equally spaced points on a plane (x,y), and then calculate the electric potential at the points of
that grid, having previously been given a distribution of charges qi in points (xi,yi) [14]:

V =
1

4πε0

N

∑
i=1

qi√
(x− xi)

2 + (y− yi)
2

(2)

Then, it is enough to use equation
→
E = −

→
∇V (3)

to obtain the electric field. The visual result is that of Figure 2 for an electric dipole (two charges
of equal modulus but opposite sign) and Figure 3 for an electric quadrupole (four charges of equal
modulus but opposite sign). Both equipotential lines and electric field lines are included. Students are
led to consider other charge distributions by always obtaining field lines and equipotential lines.
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signs aligned face to face, which allows to illustrate the superposition principle in a powerful way: a 
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Figure 3. Representation of the electric field and the equipotential lines of an electric quadrupole.

Afterwards, students are challenged to adapt the previous design in order to obtain (in a plane)
the electric field of a parallel plate capacitor (Figure 4), placing two rows of charges with opposite
signs aligned face to face, which allows to illustrate the superposition principle in a powerful way:
a sum of electric dipoles (with charges of the same modulus and at the same distance) approximates in
the plane the field of a capacitor, one of the most important circuit elements.
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Figure 4. Representation of the electric field and equipotential lines for a parallel plate capacitor.

It must be noted that by changing the linear dimensions of the distribution, students are able to
perceive the changes in the field that are obtained with different relations between the width of the
plates of a capacitor and the distance between them.

The second project, which we will now describe, focuses on the question of the determination of
the magnetic field created by a set of filiform electric currents (e.g., Figures 5 and 6). The answer to this
question is trivial for a single filiform current: theoretically, the resulting magnetic field is obtained
from Ampère’s Law and it is given (in cylindrical coordinates) by [14]:

→
B =

µ0 I
2πr

θ̂ (4)

In which r is the distance from the current that creates the field to the point where the field is
determined, θ̂ is the unit vector that indicates the direction of any circle centered on the current, I is
the current that generates the field and µ0 is the magnetic permeability of the vacuum (which has the
value 4π × 10−7 H/m in SI units).

Students apply Ampère’s Law in a reduced set of situations in theoretical-practical classes, since
there are not many situations for which the determination of the magnetic field is attainable with
pen and paper. In laboratory classes one can expand these possibilities and develop the student’s
intuition of the magnetic field. Specifically, if we have two electrical currents with opposite directions,
with the same intensity, that intersect perpendicularly a plane (x,y) in positions (x′,y′), the magnetic
field generated by each current in this plane (in cartesian coordinates) will be [14]

→
B(x, y) =

µ0 I
2π

[
y′ − y

(x− x′)2 + (y− y′)2 î +
x− x′

(x− x′)2 + (y− y′)2 ĵ

]
(5)

The visual result for two currents with (x′,y′) = (±1.0) is that of Figure 6, and corresponds to the
magnetic field generated by a circular loop placed in the plane (x,z) (computationally, one possible
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embodiment is to generate a grid of points (x,y) in a region that includes the currents and then
calculating the two components Bx and By of the field).

Educ. Sci. 2019, 9, x FOR PEER REVIEW 6 of 10 

embodiment is to generate a grid of points (x,y) in a region that includes the currents and then 
calculating the two components Bx and By of the field). 

 
Figure 5. Representation of the magnetic field created by one filiform electric current (see Appendix 
A for code). 

 
Figure 6. Representation of the magnetic field created by two electrical currents with opposite 
directions. 

Figure 5. Representation of the magnetic field created by one filiform electric current (see Appendix A
for code).

Educ. Sci. 2019, 9, x FOR PEER REVIEW 6 of 10 

embodiment is to generate a grid of points (x,y) in a region that includes the currents and then 
calculating the two components Bx and By of the field). 

 
Figure 5. Representation of the magnetic field created by one filiform electric current (see Appendix 
A for code). 

 
Figure 6. Representation of the magnetic field created by two electrical currents with opposite 
directions. 

Figure 6. Representation of the magnetic field created by two electrical currents with opposite directions.



Educ. Sci. 2019, 9, 64 7 of 10

As in the previous problem, students are challenged to adapt the protocol to obtain the magnetic
field of a rectilinear solenoid by placing two rows of oppositely aligned chains of opposite directions,
illustrating once more the superposition principle and showing as the magnetic field of a set of very
close turns approximates the field of a solenoid (an important circuit element) in the plane (Figure 7).
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Also, in this case, changing the linear dimensions allows the student to observe the differences in
field lines for different relationships between the length of the solenoid and its radius.

2.2. Questionnaires

To evaluate the students’ opinions, a questionnaire was used in which we asked students to rate
seven questions on a Likert scale from 1 to 4 (1—I do not agree at all, 2—I do not agree, 3—I agree, 4—I
totally agree). The total number of students who answered this questionnaire was 18 (16 males and 2
females). Eleven were Portuguese, six from Angola and one from Brazil. There were 24 students in
this course (Electromagnetism I), 5 left it early in the semester, 18 out of the remaining 19 answered the
questionnaire, 10 were approved, all of which were in the group of 18 who answered the questionnaire.
The approved students had an average grade of 15.7 (out of 20) in the laboratory, and 13.3 (out of 20)
in the written evaluation. So, besides enhancing the student’s apprehension of the notion of field, the
students also have a motivation to attend laboratory classes as the laboratory grade improves the final
grade (30%).

The neutral response hypothesis was not given. In this questionnaire we sought in the first
question to gauge the level of difficulty felt by the student in relation to the course, in the second we
wanted to know if the students understood the importance of programming in their subject of study,
with the third and fourth questions we evaluated the level of students’ difficulty with programming
(in particular with MATLAB®), and finally with the last three we wanted to know if the activities
developed were useful to them. Thus, the questions posed to the students were the following:
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1. Electromagnetism is a difficult subject in my degree.
2. Computer programming is a useful tool for my future work.
3. is an accessible learning tool.
4. The programming concepts presented in the activities developed in the practical classes are

simple and easy to use.
5. The graphical interfaces used allow one to easily view field lines, either scalar or vector.
6. Using the computational programming activities was useful to simulate physical situations that I

could not visualize in the theoretical classes.
7. Computer programming activities allowed me to have a better understanding of the concept

of field.

The results obtained are represented in the bar charts presented in Figure 8. Regarding the
questions asked, we calculated the percentage of students that agree or totally agree with the statement,
and we calculated the average of the levels in order to have a notion of the deviation from the mean
value of the scale, 2.5 (we also indicate the most frequent value—mode): in question 1—89%, average
3.3 and modes 3 and 4; in question 2—94%, mean 3.5 and mode 4; in the question 3—67%, average
2.8 and mode 3; in question 4—56%, mean 2.7 and modes 2 and 3; in the question 5—94%, mean
3.4 and mode 4; in question 6—89%, mean 3.2 and mode 3; in question 7—89%, average 3.3 and
modes 3 and 4. With the exception of questions 3 and 4, they all show a significant agreement with the
statement presented.
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3. Final Remarks

Two of the problems presented to us in the teaching of electromagnetism are that of transmitting
the concept of field (electric and magnetic) and explaining why the linear dimensions of certain
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components (capacitors and solenoids) of theoretical view, as if they were infinite. In this sense,
the two laboratory projects that we presented sought to be a cognitive support for the students, as
mentioned by Azmi et al. [15]. From the analysis of the questionnaires, the answers to the last three
questions, suggest that the computational programming is, in the opinion of the students, a good
strategy to overcome the difficulties described above as expected [11,12]. This positive aspect of
programming strategies is more pronounced in the question of understanding the notion of field given
the mode and the mean deviation we obtained in questions 5 and 7. Questions three and four do,
however, reflect a significant number of students, with some resistance to programming, although they
are students of the 2nd year, already with a programming discipline (in C ++). This difficulty is usually
felt in this type of approach [13], but it has not been a sufficiently strong obstacle that has prevented
students from being able to carry out the proposed tasks. The answers to the first question give us
the indication that this course is considered difficult, which makes us consider important the use of
diversified strategies that deviate from the traditional teaching of the subject, as suggested by Heeg
et al. [16]. Regarding the answers to the second question, we find that they have a strong majority
opinion of the importance of programming for the continuation of their studies.

We also acknowledge that a current limitation of this study is the number of students that were
involved in the questionnaire, despite the efforts of the authors to receive more data. As an upcoming
study, we are planning further studies involving more students.

As future work, we intend to further develop the line of research followed so far by gauging
the student´s grasp of the approximations made in both the electric field of finite capacitors and the
magnetic field of finite solenoids, as compared to their infinite counterparts.

Funding: The APC was funded by DREAMS/COFAC.

Acknowledgments: Fundação para a Ciência e Tecnologia (FCT).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

MATLAB®’s code for Figure 1
linfx=-1;lsupx=+1;linfy=-1;lsupy=+1;
q=1;k=9*10ˆ9;inc=0.01;eps=inc/10;
[x,y]=meshgrid(linfx:inc:lsupx,linfy:inc:lsupy);

V=k*q./sqrt(x.ˆ2+y.ˆ2+eps);

[Ex,Ey]=gradient(-V,inc,inc);

h=streamslice(x,y,Ex,Ey);
set(h,‘color’,‘r’);
hold on
contour(x,y,V,45)
axis([linfx lsupx linfy lsupy]);box on; axisqual; axis tight;
xlabel(‘x’,‘FontSize’,14);ylabel(‘y’,‘FontSize’,14);

print -dpng -r300 CargaPontual

MATLAB®’s code for Figure 5

Esc=1;inc=0.005;cte=10ˆ(-7);
[x,y]=meshgrid(-Esc:inc:Esc,-Esc:inc:Esc);

Bx=-cte*y./(x.ˆ2 + y.ˆ2);
By=cte*x./(x.ˆ2 + y.ˆ2);

streamslice(x,y,Bx,By);
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axis([-Esc Esc -Esc Esc]); axis equal; axis tight; box on;
xlabel(‘x’,‘FontSize’,14);ylabel(‘y’,‘FontSize’,14);

print-dpng-r300 Corrente

References

1. Papert, S. Mindstorms: Children, Computers, and Powerful Ideas; Basic Books: New York, NY, USA, 1980.
2. Teodoro, V. Modellus: Learning Physics with Mathematical Modelling. Ph.D. Thesis, FCT—Universidade

Nova Lisboa, Almada, Portugal, 2002.
3. Lopez, S.; Veit, E.; Araujo, I. Una revisión de literatura sobre el uso de modelación y simulación computacional

para la enseñanza de la física en la educación básica y media. Rev. Bras. Ensino Física 2016, 38, e2401.
[CrossRef]

4. Neves, R.; Teodoro, V. Enhancing Science and Mathematics Education with Computational Modelling.
J. Math. Model. Appl. 2010, 1, 2–15.

5. Neves, R.; Teodoro, V. Modelação computacional, ambientes interactivos e o Ensino da Ciência, Tecnologia,
Engenharia e Matemática. Rev. Lusófona Educ. 2013, 25, 35–58.

6. Carvalho, P.S.; Christian, W.; Belloni, M. Physlets e Open Source Physics para professores e estudantes
portugueses. Rev. Lusófona De Educ. 2013, 25, 59–72.

7. Silva, S.; da Silva, R.L.; Junior, J.T.G.; Gonçalves, E.; Viana, E.R.; Wyatt, J.B.L. Animation with Algodoo:
A simple tool for teaching and learning physics. Exatas 2014, 5, 28.

8. Iwaniec, D.; Childers, D.L.; van Lehn, K.; Wiek, A. Studying, Teaching and Applying Sustainability Visions
Using Systems Modeling. Sustainability 2014, 6, 452–4469. [CrossRef]

9. Heidemann, L.; Araujo, L.; Veit, E. Atividades experimentais com enfoque no processo de modelagem
científica: Uma alternativa para a ressignificação das aulas de laboratório em cursos de graduação em física.
Rev. Bras. Ensino Físíca 2016, 38, 1504. [CrossRef]

10. Neves, R. Melhorar o ensino e a aprendizagem do electromagnetismo com modelação computacional
interactiva. Rev. Lusófona Educ. 2017, 35, 171–190.

11. Burke, C.J.; Atherton, T.J. Developing a project-based computational physics course grounded in expert
practice. Am. J. Phys. 2017, 85, 301–310. [CrossRef]

12. Caballero, M.D.; Burk, J.B.; Aiken, J.M.; Thoms, B.D.; Douglas, S.S.; Scanlon, E.M.; Schatz, M.F. Integrating
numerical computation into the modeling instruction curriculum. Phys. Teach. 2014, 52, 38–42. [CrossRef]

13. Chabay, R.; Sherwood, B. Computational physics in the introductory calculus-based course. Am. J. Phys.
2008, 76, 307–313. [CrossRef]

14. Alves, R.G. Introdução ao Electromagnetismo; Edições Universitárias Lusófonas: Lisboa, Portugal, 2005.
15. Azmi, N.A.; Mohd-Yusof, K.; Phang, F.A.; Hassan, S.A.H.S. Motivating engineering students to engage in

learning computer programming. Adv. Intell. Syst. Comput. 2018, 627, 143–157.
16. Heeg, J.J.; Flenar, K.; Ross, J.A.; Okel, T.; Deshpande, T.A.; Bucks, G.; Ossman, K.A. Effective educational

methods for teaching assistants in a first-year engineering MATLAB®course. In Proceedings of the 121st
ASEE Annual Conference and Exposition: 360 Degrees of Engineering Education, Indianapolis, IN, USA,
15–18 June 2014.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1590/1806-9126-RBEF-2015-0031
http://dx.doi.org/10.3390/su6074452
http://dx.doi.org/10.1590/S1806-11173812080
http://dx.doi.org/10.1119/1.4975381
http://dx.doi.org/10.1119/1.4849153
http://dx.doi.org/10.1119/1.2835054
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods and Results 
	Laboratory Projects 
	Questionnaires 

	Final Remarks 
	
	References

