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Abstract: Extensive research has been published on the nature of classroom mathematical discourse
and on the impact of technology tools, such as virtual manipulatives (VM), on students’ learning,
while less research has focused on how technology tools facilitate that mathematical discourse.
This paper presents an emerging construct, the Techno-Mathematical Discourse (TMD) framework,
as a means for analyzing and interpreting aspects of learning when students use technological
representations to mediate mathematical discussions. The framework focuses on three main
components: classroom discourse, technology tools, and mathematical tasks. This paper examines
each of these components, and then illustrates the framework using examples of students’ exchanges
while interacting with virtual manipulatives. The TMD Framework has applications relevant to
teachers, teacher educators, and researchers concerning how technology tools contribute to discourse
in mathematics classrooms. The TMD framework addresses a critical issue in mathematics education,
in that classroom teachers and researchers need to understand how technology facilitates classroom
interactions and how to best leverage technology tools to enhance students’ learning of mathematics.
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1. Introduction

As part of recent reform efforts in mathematics education, mathematical discourse and use of
technology have emerged as key characteristics of high-quality instruction and engaging mathematics.
Mathematical discourse enables students to think about “what it means to know mathematics, what
makes something true or reasonable, and what doing mathematics entails. It is central to both what
students learn about mathematics and how they learn it” [1] (p. 54). When students have opportunities
to articulate and discuss mathematical concepts, they develop a deep understanding of those concepts.
With its roots in Vygotskian social learning theories, the study of the structure and flow of mathematical
discourse in the classroom has generally taken a socio-cultural or socio-linguistic perspective, and
many researchers have developed different ways to conceptualize and classify how discourse occurs
in classrooms and its impact on learning [2–18].

Technology offers a variety of tools that enhance the learning of mathematics concepts by
expanding representational possibilities and amplifying and reorganizing students’ approaches to
problem solving [19]. For example, virtual manipulatives (VM) [20,21], and gaming applications
available on a variety of platforms (e.g., calculators, personal computers, tablets) have the potential to
significantly influence the depth to which students understand important mathematics concepts [22].
Due to a variety of factors, implementation of technologies in education settings tends to lag behind
the pace at which the technologies are developed [23]. The need to advance technology applications in
education by focusing on how the technologies are used in the classroom, and not just on identifying
what technologies are available presents a critical issue in mathematics education [24]. To this end,
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the purposes of this paper are: (a) to introduce the Techno-Mathematical Discourse (TMD) conceptual
framework, which models how technology can interact with discourse-rich learning environments;
(b) to apply the framework to students’ interactions when using technology to learn mathematics;
and (c) to discuss implications and suggest further applications of the framework.

2. Techno-Mathematical Discourse Conceptual Framework

The TMD framework considers three components of the learning environment that impact
mathematical discussion: classroom discourse, technology tools, and mathematical tasks (see Figure 1).
In essence, the TMD framework describes how students use technological representations to mediate
discussion while engaging in worthwhile mathematical tasks. Learning takes place in complex and
dynamic environments, and many factors influence how students learn, especially when working with
technology. What are the classroom expectations for discourse? What affordances for learning are
offered by the technology tool in use? What is the nature of the mathematical task in which students
are engaged? The TMD framework presents a structure to think about these questions. It emerges
from a synthesis of empirical and theoretical research involving these components [25]. The following
sections describe how each component contributes to the nature of students’ mathematical discourse
when using technology.
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2.1. Classroom Discourse

Effective classroom interactions are key to successful learning [26]. Vygotskian notions of learning
emphasize discourse and communication as a means to learn new concepts. Describing learning as a
socially constructed phenomenon, sociocultural learning theory asserts three major tenets: (a) higher
mental processes are determined by how and when they occur; (b) higher mental processes first
occur on the social plane (i.e., between people), and then occur on the individual psychological plane;
and (c) higher mental processes are mediated by cultural tools and signs (e.g., symbols, speech, and
writing). Therefore, students develop understanding as they interact with other individuals through
verbal or nonverbal communications or written words [27].

The socially constructed phenomenon of learning is also referred to as commognition—a
combination of communication and cognition. In this sense thinking is defined as “the individualized
form of the activity of communicating, that is, as communication with oneself” [28] (p. 569). Therefore,
in order to deeply understand complex concepts, some form of discussion must take place—even if that
conversation occurs within one individual. When considered in the classroom context, rich meaningful
communication consists of “interactive and sustained discourses of a dialogic nature between teachers
and students aligned to the content of the lesson that addresses specific student issues” [11] (p. 378).
In other words, meaningful classroom discourse contributes to students’ understanding by promoting
effective communication and articulation of thought.

The culture of a classroom and the discourse practices established by the teacher also play
considerable roles in shaping classroom mathematical discourse. Sociomathematical norms develop
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within a classroom and constitute what interactions are valued and what counts as an acceptable
mathematical explanation [29]. Through these interactions, students analyze and evaluate the
mathematical thinking and strategies of others and deepen their own mathematical understanding.
Students must organize and consolidate their mathematical thinking in order to communicate
effectively with their classmates and with the teacher [7,11,30–32]. Teachers’ discourse practices
also influence the nature of classroom discussions. For example, dialogic discourse—involving teacher
and students in active communication—tends to be associated with lessons in which students build
meaning, explore, and generate hypotheses. On the other hand, univocal discourse—involving teacher
communications that require minimal student response—tends to be associated with lessons in which
teachers transmit meaning to students, present definitions and procedures, and make applications to
individual problems [15]. This idea of teacher- versus student-centrality in whole-class discourse is a
common underlying theme in research on classroom discourse [5,8,33–37].

Impact of Classroom Discourse on TMD

It naturally follows that classroom cultures that promote active communication through
student-centered discourse will also promote positive TMD. Students are more likely to discuss
mathematics concepts when using technology if they are already situated in a classroom with
expectations for mathematical discussion. In fact, classroom mathematical discourse is enhanced
by the introduction of certain technologies. Discourses associated with technology tools (as described
in the following section) tend to be more collaborative, perhaps because students are focused on a
common display or screen [2,37,38].

The teacher’s role in facilitating mathematical discourse shifts slightly with the introduction of
technology. During whole-class discussions, the teacher becomes responsible for orchestrating students’
interactions with the technology as well as interactions with each other. Furthermore, the teacher
needs to model appropriate discourse practices as students work in small-group collaborations on the
computers [13,37]. The dynamic nature of the technology introduces additional elements of interaction
beyond those found in tasks not involving the technology. Thus, during these small-group collaboration
sessions, the teacher’s roles of intervening when necessary, and questioning to extend students’
thinking become even more imperative as students work with dynamic technological representations.

2.2. Technology Tools

Over the past few decades, technology has developed new ways to think about and to represent
mathematics [39]. These cognitive technology tools enhance the learning of mathematics concepts by
expanding representational possibilities and by amplifying and reorganizing students’ approaches to
problem solving [19,40].

With the advancement of computer capabilities, virtual manipulatives have emerged as
cognitive technology tools for use in mathematics classrooms. A virtual manipulative is defined
as “an interactive, technology-enabled visual representation of a dynamic mathematical object,
including all of the programmable features that allow it to be manipulated, that presents opportunities
for constructing mathematical knowledge” [20] (p. 13). Based on this dynamic nature, virtual
manipulatives seem to be a combination of manipulative models (e.g., base-ten blocks, fraction bars,
counting bears), which allow for concrete examples of mathematical relationships and operations
and static pictures, which provide an image for a learner to internalize [41]. These “computer based
renditions of common mathematics manipulatives and tools” [42] (p. 329) provide teachers and
students with expanded tools for thinking about mathematics concepts. Recent research supports
the use of virtual manipulatives as effective instructional tools [43–47]. Emerging research also
indicates that virtual manipulatives on touch-screen platforms, such as iPads may have instructional
benefits [48–51].

Computer-based representations vary in their level of cognitive fidelity [52]. Some representations
offer manipulative tools that truly reflect the user’s actions and choices without dictating solution paths.
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Other representations include concept tutorials (with or without manipulative tools) to guide students
to a conceptual or procedural understanding of the mathematics. Still, others present an electronic
figure, either static or in motion, very similar to a textbook or worksheet. A recent meta-analysis of
research on virtual manipulatives [21] identified five affordances offered by specific design features and
elements of different virtual manipulatives: focused constraint, creative variation, simultaneous linking,
efficient precision, and motivation. Focused constraint describes features of virtual manipulatives that
focus students’ attention on particular aspects of mathematical objects—aspects that they otherwise
may not have paid attention to. The affordance of creative variation “allows students to generate their
own representations, encourages creativity and novelty, and prompts experimentation” [21] (p. 43).
Simultaneous linking describes the features of many virtual manipulatives that dynamically link
different forms of mathematical representation (e.g., graphical, pictorial, symbolic, abstract). Efficient
precision refers to features of virtual manipulatives that “provide precise mathematical examples, and
create multiple copies of dynamic objects efficiently” [21] (p. 44). Lastly, motivation was identified as
an affordance, in that virtual manipulatives have the potential to make learning more enjoyable and to
encourage students to persist in problem solving. These affordances, along with varying features of
virtual manipulatives, have implications for instructional use.

Impact of Technology Tools on TMD

Through techno-mathematical discourse, technology enhances the communication of
mathematical ideas and supports students’ learning of mathematics concepts. When learning
mathematics concepts with technology in a discourse community, students have access to multiple
modalities of mathematical representations. First, technology tools, such as virtual manipulatives,
provide dynamic pictorial and symbolic representations of mathematics concepts. Second, the
dynamic visual displays serve as common experiences about which students can engage in meaningful
classroom discussions incorporating both verbal and gestural (i.e., embodied) interactions [13,53,54].
Students’ understanding of mathematical concepts is strengthened when they make connections
among representations in pictorial, symbolic, verbal, and embodied modalities [55]. Of course, the
strength of TMD is influenced by the affordances of the available technology tools. Technology tools
that present students with multiple representations and that have high levels of cognitive fidelity
tend to promote students’ TMD. Technology tools that guide students step-by-step to pre-determined
formulas or representations tend to hinder students’ TMD [25].

2.3. Mathematical Tasks

“Worthwhile mathematical tasks”, as defined by the National Council of Teachers of
Mathematics (NCTM) [1], promote communication, engage students’ intellect, develop mathematical
understandings and skills, represent mathematics as an ongoing human activity, and embed
mathematics in meaningful contexts. For example, instead of having students simply memorize
multiplication facts or mathematical vocabulary, worthwhile tasks embed the multiplication facts and
vocabulary in “meaningful contexts that help students see the need for definitions and terms as they
learn new concepts” [1] (p. 33).

A worthwhile mathematical task is one that engages students’ intellect and calls for problem
solving and mathematical reasoning. According to Smith and Stein [56], tasks vary in their level of
cognitive demand. Tasks with lower levels of cognitive demand involve reproduction of memorized
facts and algorithmic procedures with no connection to the concepts underlying the procedures.
They have clear solution paths and require no explanation of mathematical thinking beyond a
description of the procedure used. Tasks with higher levels of cognitive demand (i.e., worthwhile
mathematical tasks) involve multiple solution paths and/or multiple possible solutions. Students
must analyze the task and present solutions in multiple representational forms. Smith and Stein note
that tasks with higher levels of cognitive demand likely produce anxiety for some students due to the
uncertain and unpredictable nature of the problem. This anxiety is a sign of cognitive disequilibrium
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experienced by students as they come to understand new concepts [57]. The mathematical content and
tasks presented in a lesson significantly affect the amount of learning that occurs [58]. By presenting
non-routine problems that require students to actively engage in mathematics (as opposed to
mindlessly following procedures), worthwhile mathematical tasks represent mathematics as an
“ongoing human activity” [1] (p. 33) and provide opportunities for students to make deep connections
between mathematical ideas.

Impact of Mathematical Tasks on TMD

In order for rich discussions to take place, students must be presented with tasks that are
worth talking about [6,8,12,59]. Therefore, even though a task may incorporate technology tools,
if it is not a worthwhile mathematical task, it will not produce the desired TMD, regardless of the
affordances offered by technological tools. When worthwhile mathematical tasks make explicit use of
the technology tools, the opportunity for rich TMD increases [51–54].

2.4. Links Among Mathematical Discourse, Technology Tools, and Mathematical Tasks

Technological developments constantly emerge presenting opportunities to improve classroom
practices and learning. A great deal of research has been conducted in an attempt to verify the
usefulness of such technologies. However, research on the role of discourse in technology-based
learning settings is less plentiful. From the research that has been conducted, two major themes emerge:
(a) the impact of dynamic representations on the content and nature of mathematical discourse; and
(b) the impact of computer feedback on student collaborations. These themes are discussed in the
following sections.

2.4.1. Impact of Dynamic Representations on Classroom Discourse

Technology has the potential to produce dynamic representations of mathematics concepts.
The dynamic nature of these representations has a profound impact on the level of classroom
mathematical discourse. For example, Ares, Stroup, and Schademan [53] describe a lesson using
networked classroom technology—a wireless network of graphing calculators that collects students’
solutions and displays them collectively on a screen at the front of the room. In this particular lesson,
students used their calculators to “maneuver an elevator” by determining how many levels it would
move up or down in one-second intervals. The collective resulting position-time graphs were then
displayed on the front screen. Different tasks throughout the lesson gave specific parameters causing
the students to focus on different mathematical relationships (e.g., end on the −2 floor using any
combination of movements, the fourth movement must be to go up three floors). The researchers noted
that the collective representation encouraged students to interact with each other and comment on the
various solutions. Students focused on the mathematics represented dynamically on the visual display
and used it as a basis for their mathematical discussions. Additionally, the visual display mediated a
shift in the discourse from conceptual to more formal language (e.g., “they all go up at the same time”
to “each line has the same slope, so they are all parallel to each other”).

Similarly, Sinclair [13] and González and Herbst [54] each report on studies with dynamic
interactive geometry software (Geometer’s Sketchpad and Cabri Geometry, respectively). In Sinclair’s
study, students worked in pairs with Geometer’s Sketchpad to complete a sequence of tasks on proving
congruency (e.g., applications of reflection and rotation). The dynamic nature of the software enabled
the students to test conjectures and receive immediate feedback. Just as observed by Ares et al. [53],
the students in Sinclair’s study used the visual representations to fuel their mathematical discussions.
However, these students displayed varying degrees of effectiveness in their discussions. As noted
above, they engaged in productive discourse by explaining their thinking and asking thoughtful
questions. But at other times, students’ discourse actually hindered the development of mathematical
ideas. Due to this variation in productivity, Sinclair emphasizes the need for follow-up classroom
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sessions after time spent in the computer lab to solidify understanding and to ensure that all students
have appropriate opportunities to learn the content.

González and Herbst [54] report a more positive view of student discourse when working with
dynamic interactive geometry software. Students in this study also completed a sequence of tasks
to investigate congruency. However, instead of applying transformations (as in Sinclair’s [13] study)
these tasks required them to experiment with midpoints and angles. The measuring and dragging
features of the Cabri Geometry software enabled students to quickly and accurately assess the results
of their experiments. The interactive features of the software tools supported all students’ learning
in the lesson. In whole-class discussions, advanced students described how they used the tools to
prove their conjectures and pointed out new ideas. At the same time, other students who did not fully
understand the technical terms for the geometrical relationships could still participate in discussions
because of the support of the technological representations. Therefore, this study confirms previous
findings that interacting with dynamic representations enables and encourages students to talk deeply
about mathematics.

2.4.2. Impact of Computer Feedback on Student Collaborations

The ability for technology to give dynamic feedback to students, either verbally or nonverbally,
contributes to the level of classroom mathematical discourse. Studies have shown that valuable visual
feedback provided by graphing software programs, among other technologies, prompt productive
problem-solving student discourse. For example, Gibbs [38] documented students’ attempts to
graph particular quadratic functions with varying scales. When the computer-produced graph did
not visually match the graphs that students had previously drawn, discussions ensued regarding
the discrepancies and how to reconcile them. Likewise, other studies report positive effects on
problem-solving discussions as a result of feedback from dynamic computer diagrams [37,54].

Evans et al. [2] conducted a study comparing effects of virtual and physical tangram puzzles
on student discourse. Using a multimodal approach (speech, gesture, gaze, and actions) to analyze
the discourse of 7- to 8-year-old children, the researchers identified more co-references (i.e., shared
reference points) among the students when using the virtual manipulative tangrams. They determined
that discourses associated with the virtual manipulatives tended to be of a more collaborative nature,
perhaps due to a forced focus on a common screen and having to negotiate control of the mouse.
On the other hand, students using the physical tangram pieces had the option to handle the pieces
individually without permission from the rest of the group. The focus on a common display to promote
active mathematical discourse aligns with previous findings [37,53].

More recently, Anderson-Pence [25] documented differences in fifth-graders’ student-student
discourse associated with various types of virtual manipulatives. Using a mixed methods multiple
case study design, the researcher reported that students’ discussions reflected the most robust levels of
generalization, justification, and collaboration when using virtual manipulatives that linked multiple
mathematical representations and that allowed students to problem solve. This study builds upon
previous research by indicating features of virtual manipulatives that encourage quality discourse
among students.

3. Applying the TMD Framework

The TMD framework, when applied to the classroom, offers teachers a way to consider different
aspects of mathematics instruction integrated with technology. As a teacher makes instructional
decisions, he or she may reflect on any of the following questions: Does the technology tool address
the target objective of my lesson? What technology tool will best help my students to develop
understanding of this target objective? What feedback features of the technology tool are likely to
motivate my students to learn and to discuss mathematical ideas? Will the technology tool engage
the students in an open-ended task or in a task with one way to arrive at the correct answer?
How will the technology tool and/or discussion help students to build fluency with procedures
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and/or develop understanding of concepts? Does the technology tool and task engage students in
meaningful mathematics? Can the technology tool assist in orchestrating mathematical discussion so
that students are able to share their thinking? These questions (and many more) influence how teachers
design mathematics instruction. Teachers can make effective instructional choices by considering
curriculum standards, their own knowledge of their students’ academic and personal background,
and the components of the TMD framework.

3.1. Examples of TMD in Action

The following excerpts provide evidence of the TMD framework in a classroom setting.
These excerpts are drawn from a study in which Anderson-Pence examined students’ mathematical
discourse while working with the virtual manipulatives [25]. The focus of the study was to examine
student-student discourse associated with various types of virtual manipulatives. Three pairs
of fifth-grade students participated in nine lessons each. The discussions were video-recorded,
transcribed, coded, and analyzed. For each lesson, the classroom teacher began by activating students’
prior knowledge, posing intriguing questions, and orienting the students to the virtual manipulative
that they would be using in the lesson. After the students had spent some time working with the
virtual manipulatives, the teacher facilitated a whole-class discussion focused on students’ solutions
and what was learned as a result of the activities with the virtual manipulatives. In the three examples
presented here, one of the pairs, Colton and Callie (psydonyms), discuss and solve mathematical
problems while working with various virtual manipulatives.

3.1.1. Filling Boxes

In the first example, Colton and Callie use a virtual manipulative, Cubes [60], in which they can
specify the dimensions of a rectangular prism (see Figure 2). The virtual manipulative then generates a
net of that prism, and the students use representations of cubes to “fill the box”. In preparation for the
students’ work with Cubes, the teacher activated students’ prior knowledge of length, width, height,
and volume and showed a concrete model of a rectangular prism made of cubes. She asked questions
such as, “How might we find the volume of this prism? What would be a quick and/or efficient
way to count the number of cubes in this prism?” Because this was the students’ first experience
with Cubes, the teacher also instructed the students on key features and aspects of this particular
virtual manipulative (e.g., how to place cubes on the workspace, various ways to clear cubes from
the workspace). Finally, the teacher oriented the students to the task sheet that they would use while
working with the virtual manipulative and communicated the expectation that students were to work
with a partner and solve the problems together. In this exchange, the students use Cubes to look for
patterns while determining the volumes of a 3 × 5 × 7 box, of a 5 × 7 × 3 box, and of a 7 × 3 × 5 box
(see Table 1).
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Table 1. Transcript of Colton and Callie’s exchange using Cubes.

Line Student Speaking Turn

65 Callie Ok, so how many unit blocks to fill the box?

66 Colton 20 . . .

67 Callie . . . So 6, no that’s 5 blocks . . .

68 Colton (using the mouse pointer to count the “blue” height of the box) 1, 2, 3, 4, 5, 6, 7. 20 times 7 is 140.
So it should be 140 blocks.

69 Callie . . . For the whole thing, yeah. 140 blocks.

70 Colton 20 times 7 is 140. I’ll just write 140 blocks . . . So change it to 5. What’s the next number?

71 Callie Width 5, depth 7, height 3. (Colton types second set of dimensions into the virtual manipulatives
(VM)) So 3 times . . .

72 Colton Wait. Hold on. Just a second. Let’s go back to that one. It didn’t have 20 on the bottom.
We need to go back (Colton types previous set of dimensions into the VM).

73 Callie Yeah it did.

74 Colton 3 . . . 5 . . . 7. Look, (using mouse pointer to count the dimensions of the base of the first box) 1, 2,
3, 4, 5 times 3. So it’s . . .

75 Both . . . 15 . . .

76 Colton . . . times 7 . . . Not 20.

77 Callie 15 . . . 105.

78 Colton Ok. All right. Now we do this . . . (Types second set of dimensions into the VM).

79 Callie So the next one is width 5, depth 7, height 3. So . . .

80 Both (Colton uses mouse pointer as both count aloud the dimensions of the base of the second box) 1, 2, 3,
4, 5, 6, 7 . . .

81 Callie . . . times 5.

82 Colton . . . times (using mouse pointer to count) 1, 2, 3, 4, 5. Yep.

83 Callie So 35 times . . .

84 Colton (makes a sweeping motion with the mouse across the “blue” height of the box) . . . 3. I got . . .

85 Both . . . 105.

86 Callie Again! . . . Ok (reading task) “What is the volume of a box with width 7, depth 3, . . . ”

87 Colton (types third set of dimensions into the VM) It’s just changing the numbers up. So I think it
will be 105.

88 Callie (reading task) “ . . . height, 5.” Let’s double check to see if it is 105 blocks. So . . .

89 Colton (Colton makes sweeping motion with the mouse pointer over the dimensions of the base of the third
box) 1, 2, 3.

90 Callie So 7 times 3. 21 times . . .

91 Colton (examining image without counting with the mouse pointer) . . . 5?

92 Callie 5 . . . . So . . . 105.

93 Colton Yep . . . Ok.

This exchange demonstrates how the technology tool supported Colton and Callie in visualizing
a single box orientated in three different ways. Instead of just asking them to calculate the volume of
each box, this mathematical task required the students to make connections among the three boxes.
Therefore, the worthwhile mathematical task provided something worth talking about and the virtual
manipulative aided in the communication of their ideas. The technology tool provided a precise and
accurate representation of volume that the students used to test ideas and problem solving strategies.
As shown in this example, the discourse between Colton and Callie was characterized by collaboration
and were efficient problem-solving strategies. Their language (e.g., let’s, we, etc.) reflected a joint effort
(lines 72, 78, 88). They quickly recognized errors in their work and made the necessary adjustments
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(line 76). They frequently referred back to the visual display of the virtual manipulative to catch
mistakes, verify solutions, and justify their thinking (lines 72, 74, 80, 89). Figure 3 illustrates the TMD
framework as applied to this exchange.Educ. Sci. 2017, 7, 40  9 of 17 
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3.1.2. Sorting Triangles

In the second example, Colton and Callie use a virtual manipulative, Shape Sorter [61], which
presents multiple shapes that can be sorted by various attributes using a Venn diagram (see Figure 4).
Students then “drag and drop” the shapes into the appropriate section of the Venn diagram. A “check
answers” feature allows students to verify their answers. In preparation for the students’ work with
Shape Sorter, the teacher activated students’ prior knowledge by having the class identify obtuse, acute,
and right angles. She defined key vocabulary words that the students would be using in this lesson (e.g.,
congruent, adjacent, acute triangle, right triangle, obtuse triangle, isosceles triangle, scalene triangle,
equilateral triangle). She invited students to consider questions such as, “What are the characteristics
of an acute/right/obtuse triangle? What are the characteristics of an isosceles/equilateral/scalene
triangle?” Because this was the students’ first experience with Shape Sorter, the teacher also instructed
the students on key features and aspects of this particular virtual manipulative (e.g., how to select a
rule, how to drag shapes onto the workspace, and how to check and clear their solutions). Finally, the
teacher oriented the students to the task sheet that they would use while working with the virtual
manipulative and communicated the expectation that students were to work with a partner and solve
the problems together. In this exchange, the students use Shape Sorter to identify triangles that fit one
or both of two rules: (a) all angles are acute, and (b) all angles are congruent (see Table 2).
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Table 2. Transcript of Colton and Callie’s exchange using Shape Sorter.

Line Student Speaking Turn

90 Callie
So all angles are acute (selects “All angles are acute” on VM). All angles are congruent (selects
“All angles are congruent” on VM). Ok. So all 7 triangles . . . So this triangle... (hovers mouse
pointer over the first triangle in the set).

91 Colton . . . has 2 acute.

92 Callie All angles are congruent—that’s not true. All of the angles are not the same length.

93 Colton Well it doesn’t have all angles acute. So . . . it wouldn’t be . . .

94 Callie
So it wouldn’t go in either. (moves the first triangle into the space outside of the Venn diagram)
This one. (hovers mouse pointer over the next triangle in the set) It definitely has all acute
angles. (makes a sweeping pointing motion toward the computer screen) But . . .

95 Colton Are all the angles congruent?

96 Callie No. Wait.

97 Colton No, they’re not. Like the acute angles. Like one of them is like bigger and the other ones
are smaller (demonstrating larger and smaller angles with hands and forearms).

98 Callie Oh, yeah. ‘Cause on this shape . . . (circles mouse pointer over the triangle in question).

99 Colton That would just be in the red.

100 Callie (moves the triangle into the left-hand section of the Venn diagram) This one?

101 Colton Yeah.

102 Callie Then next shape. This one . . . (hovers mouse over the next triangle in the set).

103 Colton That’s a right angle, (pointing to triangle on screen with finger) so . . .

104 Callie
Yeah, so it’s not all acute. And it’s not congruent. (moves the triangle to the space outside of
the Venn diagram) So . . . ok. (hovers mouse pointer over the next triangle in the set) This one.
It definitely does not have all acute angles . . .

105 Colton Not all acute angles.

106 Callie

(pointing to screen) and it’s a huge line. It doesn’t match up with anything else. (Colton
moves the triangle into the space outside of the Venn diagram) So it’s neither. Next one. (Colton
hovers mouse pointer over the next triangle in the set) That’s an obtuse angle, (pointing to
triangle on screen with finger) so it’s not all acute and it’s not all congruent. (Colton moves the
triangle into the space outside of the Venn diagram).

107 Colton This one . . . (hovers mouse pointer over the next triangle in the set).

108 Callie All acute, right? And then it’s all . . .

109 Colton . . . congruent.

110 Callie
It’s congruent, so . . . (Colton moves triangle into the center of the Venn diagram) and then . . .
(Colton hovers mouse pointer over the last triangle in the set) This one. (points to next triangle
with finger) All angles are acute.

111 Colton And . . . I don’t think they’re all congruent. (moves triangle into the left-hand section of the
Venn diagram) Check. (clicks on the checkmark to check solution. VM feedback: all correct).

112 Callie Yep. We got them all right.

The exchange illustrates how the technology tools can support students’ communication of
mathematical ideas. For example, Colton connected his own knowledge of acute and obtuse angles
to the angles of the triangles on the virtual manipulative by gesturing with his hands the relative
sizes of the angles (line 97). These gestures, in concert with the pictorial representations presented
by the virtual manipulative, provided a context through which the students could examine and
discuss the characteristics of triangles. By combining the images on the virtual manipulative (line 106)
with physical gestures, Colton and Callie effectively communicated their mathematical thinking.
This particular virtual manipulative also provided feedback to the students on the accuracy of their
solution (lines 111–112). Figure 5 illustrates the TMD framework as applied to this exchange.
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3.1.3. Decimal Division

In the third example, Colton and Callie use the virtual manipulative, Base Ten Blocks [62], in which
students can “drag and drop” images of ones-units, tens-rods, hundreds-flats, and thousands-cubes
onto a work space (see Figure 6). Each image (with the exception of the ones-units) can be broken up
visually into smaller pieces (e.g., a hundreds-flat can be broken up into 10 tens-rods). Likewise, images
of the same type may be snapped together. In preparation for the students’ work with Base Ten Blocks,
the teacher activated students’ prior knowledge by posing the problem 84 ÷ 3 and having the class
identify two different ways to solve the problem. She then asked the class, “What if we had 8.4 ÷ 3?
How does that change the problem? How is dividing decimals similar or different than dividing whole
numbers?” She invited a few students’ responses, but did not require full understanding at this point
of the lesson. Because this was the students’ first experience with Base Ten Blocks, the teacher also
instructed the students on key features and aspects of this particular virtual manipulative (e.g., how
to drag blocks onto the workspace, how to break apart or combine blocks, how to clear blocks from
the workspace). Finally, the teacher oriented the students to the task sheet that they would use while
working with the virtual manipulative and communicated the expectation that students were to work
with a partner and solve the problems together. In this exchange, the students use Base Ten Blocks
to solve a story problem involving division of a decimal fraction by a whole number (see Table 3).
The story problem that provided the context for this task was:

Nancy’s poster for the school council election covers a space of 6 point 4 square meters.
She wants to divide the poster into 4 equal sections for her slogan. How much space will be
in each section? Hint: one 10 by 10 square represents 1 square meter. Talk with your partner
about how to solve this problem. Write down your answer and explain your thinking.
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Table 3. Transcript of Colton and Callie’s exchange using Base Ten Blocks.

Line Student Speaking Turn

45 Colton So 64 divided by 4 equals what?

46 Callie

Yeah, so we know that we have 6 point 4 square meters. And a 10 by 10 equals one square
meter. So if we have six, then we need six 10 by 10s. (Colton moves 6 hundreds-flats onto the
workspace section with mouse) Ok, then it says, (reading task) “Talk with your partner about
. . . ” So we know that we have 6 whole pieces. But then what about the other 4 . . . ?

47 Colton We need point 4. So that would be the tens.

48 Callie Yeah. (Colton moves 2 tens-rods onto the workspace section with the mouse)

49 Colton So . . .

50 Callie
4 (points to the tens-rods with finger. Colton moves two more tens-rods on the workspace section
with the mouse) So ok, then it says, (reading task) “Write down your answer and explain
your thinking.”

51 Colton So we need to split it into 4 equal sections. So that’s . . .

52 Callie You can do . . .

53 Colton
(counting hundreds-flats while pointing with the mouse) 1, 2, 3 . . . One and a half . . . Wait.
One and a half [10 by 10 blocks]. Then add one of these (points to a 1x10 block with finger).
That’s 1 point 6 meters. And then . . . Yeah. It would be 1 . . . Wait.

54 Callie We need 1 point 1 if we take those two. (pointing to blocks on screen with finger)

55 Colton (moves the triangle into the left-hand section of the Venn diagram) This one?

56 Callie Yeah.

57 Colton And then 1 divided by 4 would be . . . No, 2 divided by 4 would be a half. So you would
add another point 5.

58 Callie So . . .

59 Colton That would be 1 point . . . 6.

60 Callie 6. Yeah.

61 Colton So it would be 1 point 6 square meters.

In this example, a worthwhile mathematical task presented students with a contextual word
problem and the technology tool provided a way for them to directly model a solution strategy [63].
As in the previous example, Colton and Callie used physical as well as mouse-driven gestures to
communicate and justify their ideas. They demonstrated effective problem solving skills (lines 54–57),
and worked together to clarify misconceptions and build on each other’s ideas. The task also included
an expectation that the students talk with each other and justify aloud their solution (lines 46, 50).
In this way, the task and tool complemented each other to support the students’ TMD. Figure 7
illustrates the TMD framework as applied to this exchange. These examples show that the TMD
framework models key factors that contribute to students’ discourse when using technology for
learning mathematics.
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4. TMD as a Framework for Classroom Implementation

The TMD framework has implications for classroom teachers and teacher educators. Classroom
teachers could consider the components of the framework as they design instructional activities for
their students. For example, when preparing to teach equivalent fractions, a teacher may choose to
incorporate the Equivalent Fractions virtual manipulative [64] to aid students in developing their
conceptual understanding of the topic. Per the TMD framework, this teacher would also need to
consider the specific mathematical tasks that he or she would present to the students so that the
technology tool may be utilized in an effective manner. Once the mathematical task is developed,
the teacher would then plan for specific teaching moves [30] to encourage student-student and
teacher-student discourse related to equivalent fractions. Additionally, teacher educators could use
the framework as a means to develop pre-service and/or in-service teachers’ understanding of how
technology, classroom discourse, and mathematical tasks can synergize to enhance mathematics
learning in the classroom. For example, after being introduced to the TMD framework, pre-service
and/or in-service teachers could watch a video-recorded lesson in which technology was used to
teach mathematics, and then identify how the three components of the framework worked together to
support students’ understanding of the mathematical concepts. Alternatively, teacher educators could
present a particular technology tool, such as a virtual manipulative or a calculator, and then have the
pre-service and/or in-service teachers develop a lesson plan, including a mathematical task and a plan
for facilitating mathematical discussion that could be implemented in the classroom.

5. TMD as a Framework for Research

The TMD framework also has applications for future research on classroom discourse and
technology tools. For example, future research can focus on factors related to technology tools, such as
students’ familiarity with the technology tools, students’ perceptions of the technology, differences in
platform (e.g., mouse-controlled versus touch-screen devices), or different technological affordances.
The examples provided in this paper have only addressed student-student discourse. Because the
teacher plays a critical role in classroom discourse, a natural next step for future research would be to
describe classroom mathematical discourse between students and teachers. Future research can also be
conducted on other classroom discourse factors, such as how TMD is affected by variations in culture,
or varying levels of student achievement. Another interesting line of research can examine the influence
on TMD of variations in mathematical tasks, such as procedural versus conceptual tasks, specific
mathematical domains (e.g., fractions, integers, or place value), or lesson formats (e.g., inquiry- versus
direct-instruction). The TMD framework can also be used to examine the assessment of students’
learning in technology-based settings. Perhaps, this framework can also enable us to effectively
analyze mathematical discourse in online mathematics courses and to develop technology-based
design strategies to nurture rich mathematical discourse among online learners. An examination
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of these factors will deepen the collective understanding of how students interact with each other
when engaging in mathematical tasks through the use of technology and how that discourse may be
developed effectively.

6. Conclusions

The TMD framework is a tool for examining how technology and mathematical tasks affect
discourse in mathematics learning environments. The TMD framework also has the potential to inform
teachers’ instructional decisions and to guide further research in the areas of classroom mathematical
discourse and instruction uses of technology in mathematics classrooms.

The examination of how technology influences classroom instruction and interactions among
students is a critical issue in mathematics education. Classrooms, schools, and school districts
implement a variety of technology applications in attempts to increase students’ mathematical
competencies. Applications range from websites accessed through classroom laptops or a computer
lab [65] to tablet-based applications [66] to full tutorial systems with built-in tracking and assessment
of student progress [67]. Each of these applications has value, but must be used appropriately
in order to result in effective learning of mathematics. Given the increasing usage of technology
applications in mathematics classrooms, it is critical that teachers, teacher educators, and researchers
become knowledgeable of effective and appropriate instructional uses of such technologies, and in
particular, how those technologies can be leveraged to enhance students’ learning of mathematics.
The TMD framework is offered as one way of examining students’ mathematical discourse given
today’s emphasis on technology application and integration. The application of the TMD framework in
future research will advance the literature surrounding the use of technology for classroom instruction.
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