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Abstract: Spatial ability (SA) refers to the ability to generate, retain and manipulate abstract visual
images in one’s head. Research of this ability conducted during the last few decades had shown
that SA is an essential ability to the development of mathematical skills in children. Later studies
addressed adult SA development and accordingly found that SA was a predictor of success in Science,
Technology, Engineering and Mathematics (STEM) fields of academic studies. Recently, focus has
also been directed to another related field which is architecture. This group has not been extensively
researched in relation to its spatial thinking abilities. The current research examines the efficiency
of a new training program aimed at improving engineering and architecture student’s SA abilities.
This program was based on previous intervention programs but was innovative in its combination
of both traditional and computer-based teaching methods and combining frontal learning, hands
on model building and augmented reality (AR) tools, all in a short program of 20 h. We asked
whether the training program will be effective in improving student’s SA ability and whether this
improvement will remain across different factors such as gender, faculty and math level. The results
showed a significant improvement in SA abilities among the students who took the training program,
compared with the control group. These results were true for both engineering and architecture
students. Moreover, the results showed the training program to be efficient regardless of gender or
prior math level.

Keywords: spatial ability; spatial training; engineering education; architecture; higher education;
gender; test performance; STEM; mental cutting; mental rotation

1. Introduction

Research in science has extensively explored human abilities, their development and
their impact on performance [1]. Gardner [2], in his model of multiple intelligences, saw SA
as one of the intelligences. According to his definition, SA is the ability to create a mental
image of a spatial world and to imagine the motion of bodies or changes and processes
occurring in them. This ability makes it possible to grasp the visual world accurately,
change it and process it in the imagination.

Maier [3] further refined Gardner’s multiple intelligences model and theory when he
distinguished between five types of SA and intelligence: Spatial perception is the horizontal
and the vertical fixation of the direction regardless of disturbing information; Visualization
is the ability to describe situations when the components are pleasant to each other; Mental
rotation is the mental rotation of three-dimensional solids; Spatial relations is the ability to
identify the relations between the parts of a solid and Spatial orientation is the ability to enter
a given spatial state. Nowadays, the term spatial ability (SA) is commonly used, referring
to spatial perception or visualization.

Buckley et al. [4] explored the origins and evolution of SA in the broader context
of human intelligence, aiming to provide a refined contemporary definition. One of its
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main discussions is the Cattell–Horn–Carroll (CHC) theory [5,6]. The CHC theory is
currently recognized as the principal framework describing individual differences in the
structure of human intelligence. As the CHC theory suggests a contemporary framework of
cognitive factors, it is most appropriate to define SA based on its factor structure within this
framework. The hierarchical structure contains one third-order factor, general intelligence
(g), and 16 s-order factors representing the primary mental abilities. SA is represented
as a second-order factor; however, it is referred to as the Gv factor or visual processing.
While these two terms both describe the same factor, SA is its more commonly used name.
The Gv factor is defined as the ability to leverage mental imagery to address problems [6].
The CHC theory further breaks down SA into 11 first-order factors, which can be grouped
into spatial skills, perceptual factors and memory factors. These first-order factors are
described in Table 1. Sorby [7] offers a nuanced perspective, differentiating between innate
spatial skills and learned spatial ability, a distinction that holds implications for educational
strategies aiming to enhance SA.

Table 1. Spatial factors and their definitions from the CHC theory [4] (p. 7).

Factor Definition [6]

Visualization (Vz)
The ability to perceive complex patterns and mentally
simulate how they might look when transformed (e.g.,
rotated, changed in size or partially obscured).

Speeded rotation
(spatial relations) (SP)

The ability to solve problems quickly by using mental rotation
of simple images.

Closure speed (CS)

The ability to quickly identify a familiar and meaningful
visual object from incomplete (e.g., vague, partially obscured
or disconnected) visual stimuli, without knowing in advance
what the object is.

Flexibility of closure (CF)
The ability to identify a visual figure or pattern embedded in a
complex, distracting or disguised visual pattern or array,
when one knows in advance what the pattern is.

Visual memory (MV) The ability to remember complex images over short periods of
time (less than 30 s).

Spatial scanning (SS) The ability to visualize a path out of a maze or a field with
many obstacles.

Serial perceptual integration (PI) The ability to recognize an object after only parts of it are
shown in rapid succession.

Length estimation (LE) The ability to visually estimate the length of objects.

Perceptual illusions (IL) The ability to not be fooled by visual illusions.

Perceptual alternations (PN) Consistency in the rate of alternating between different visual
perceptions.

Imagery (IM) The ability to mentally produce very vivid images.

Over the years, research shows SA to play a key role in the proper function of the
environment in which we live and develop. Researchers and experts note that SA is not
merely intuitive or genetically dictated, but is flexible and can be learned, acquired and
improved [8].

In another aspect, recent studies have shown the neurological basis of SA, exploring
how different regions of the brain are activated during spatial tasks [9,10]. This neurological
perspective provides a deeper understanding of why certain training methods might be
more effective than others. Another dimension of SA research has been the exploration of
gender differences. There is a growing body of research examining gender differences in
spatial abilities, which is crucial for creating inclusive training programs [11,12].
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The influence of digital technology on SA has also been a topic of interest. With the
rise of digital technology, researchers have been examining how interaction with digital
devices might be influencing our inherent spatial abilities [13,14] and even reduces gender
differences in spatial cognition [15]. Furthermore, with the immersive nature of virtual real-
ity (VR) and augmented reality (AR), both are being explored as potent tools for enhancing
spatial abilities, especially in educational settings. While VR provides a fully immersive
environment, AR overlays digital information on the real world, offering a unique perspec-
tive that can be particularly beneficial for spatial tasks. Both technologies offer interactive
experiences that can significantly aid in the understanding and manipulation of spatial
constructs and improve learning immersion [16–18].

The research on SA began from studying the relationship between SA and children’s
mathematical achievements and capabilities. These studies have shown that SA plays a
major role in mathematical thinking [8,19,20]. Later studies have shown similar correlation
in college students, showing SA to be among the cognitive factors that were identified
as predictors of success in STEM fields [20,21]. Furthermore, large-scale studies show
that SA can predict long term achievements in STEM, better than verbal and quantitative
abilities [22]. One of the common theories about the way this effect occurs explains that
mathematical thinking is supported by spatial–mental representations [23]. Thus, for
example, some people create schematic representations of mathematical problems that
include the spatial relationships described in the problems. Studies indicate that the
solutions offered by these people are more correct on average [24].

Recent research mentioned the significant role of SA in the field of architecture [25].
Architects need good mathematical competence. It is essential for architects to possess
strong mathematical skills, such as calculating the robustness of a structure or finding
the optimal way of stabilizing a structure, and so on [26]. Furthermore, the architectural
design process involves multistep stages and processes of spatial adjustments, switching
between perspectives and so on [27]. Thus, the ability to visualize space is an integral
skill in architecture [25]. Having said that, there were no studies found to show similar
correlations between better SA and success in architecture studies. Some recent studies
have shown that architecture students, as engineering students, get better at SA after
the first year of academic studies [25]. Others found improved performance on SA tests
among first-year students both in engineering and architecture after taking introductory
engineering graphics course [28–31].

Although SA is a well-studied concept, there are but a few studies that have inves-
tigated the way training and improvement of the SA among students can enhance their
performance in the field they have chosen. Maier, who introduced the five different types
of SA, wrote the following: “The relevance of spatial ability leads to the following thesis
as the approach for teaching: Based on psychological research findings, all five elements
of spatial ability have to be specifically trained. The present conception of teaching space
geometry does not come up to its cultural expectations.” [3]. The same author further
introduced a modular construction system based on the traditional system where polygons
were joined with rubber bands. Maier used real models, because in his view those were the
most successful in improving students SA [3]. Although effective, this intervention is costly
since it requires an expert teacher; it is also long and needs a lot of models if the students
work individually [32].

Later there have been some computer-based suggested training programs [32–34] that
seek to improve student’s spatial geometry ability and, according to the results, did so
with success. Nevertheless, these interventions were mostly preliminary and limited in
the kind of ability tested to improve geometry and in the number of subjects. Sorby [7]
reports on a study conducted among engineering students, and examined what develops
their spatial imagery ability. It was found that in courses where students were required
to draw models by hand (rather than using a computer) and work with tangible models
(rather than models on a computer monitor), there was a development in their spatial
performance. More recently there were attempts to use virtual reality (VR), augmented
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reality (AR) and mixed reality (MR) training programs to help improve student’s SA; they
also yielded some success but were only tried on a few of the SA subtypes (mental rotation,
spatial visualization and spatial orientation) and on a very small group of subjects [35,36].

The current study describes the efficiency of a new training program aimed to develop
student’s SA. It was designed to be a short, interactive and experiential program that would
incorporate both traditional and technology-based teaching methods and thus would
attract and engage students and facilitate learning.

Research hypothesis:

1. Students who will attend the intervention program will significantly improve their
SA scores compared to students who will not attend it;

2. Improvements in SA scores will be gained across different factors, including faculty
affiliation, gender and previous mathematical abilities;

3. Exploratory analysis: will gender, math level or math grades affect the level of
effectiveness of the intervention.

2. Materials and Methods
2.1. Intervention Program

Through a series of practical and interactive activities, integrated with digital tools
and collaborative learning experiences, the program aimed to develop and train student’s
spatial thinking, visualization skills and spatial-problem-solving abilities. The training
program extended over 20 academic hours within one month. It encompassed four sessions,
each spanning four academic hours, along with two supplementary sessions, consisting of
two academic hours each, dedicated to pre- and postprogram tests. The first session pri-
marily involved traditional teaching methods, serving as a cornerstone for the intervention
program by laying the groundwork for acquiring the fundamental knowledge and theory of
SA. The other three sessions were composed of a combination of several teaching methods
incorporating hands on model building, frontal teaching, computer-based learning (with
SketchUp 2022 and GeoGebra programs) [37], augmented reality (AR) training and group
work and discussions among teacher and students.

2.2. Participants

Sample: This study was conducted at Shenkar college in Israel, an academic institution
for education and research in engineering, design and art. The sampling method employed
the purposive/judgmental approach, by selecting students from Shenkar college who were
in their first year of undergraduate study. These participants comprised two distinct groups:
The first group included students beginning their studies in the faculty of engineering, from
the departments of electrical and electronic engineering, software engineering and chemical
engineering. The second group consisted of students beginning their studies in the faculty
of design, specifically in the department of interior, structural and environmental design,
and represents one of the research groups exemplifying architecture students.

Participation Criteria: To qualify for the research, participants needed to fulfill some
specific requirements. They should be in their first year of engineering or architecture
studies, be highly proficient in Hebrew, and they should not have learned any previous
academic courses. Additionally, they must have finished 12 years of secondary schooling
and been evaluated in mathematics and English according to Israel’s educational bench-
marks. Respecting ethical guidelines, each participant was briefed on the research goals
and provided their agreement to participate.

Sample Size: A total of 154 engineering and architecture students in their first year of
study participated in this research, consisting of 79 engineering students and 75 architecture
students. Among the engineering group, 47 students participated in the SA training
program, while 32 others constituted the engineering control group who did not undergo
the training and practice program. In architecture, the same program was delivered to
42 students and 33 architecture students were part of the control group that also did not
undergo the program.
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It should be noted that every student who participated in the program, whether from
engineering or architecture, and regardless of whether they were in the group that was
trained and practiced the intervention or in the control group, was tested in the SA test
twice: SA pretest and post-test, under the same examination conditions and in an identical
timeframe. The focus in this paper is mainly on the examination of its effectiveness while
all the training program with its hybrid transfer methods are detailed in a separate article,
now in press [38].

2.3. Measures

In order to assess SA among students, we used an SA test developed and tested by
Berkowitz [25] to adjust the classical SA tests to the population of architecture students.
This test was based on previous SA tests and on Maier’s five types of SA. The reliability
(Alpha Cronbach), or construct validity, as mentioned by Berkowitz, of the 31-item scale
was α = 0.71. The five SA tests were positively and moderately correlated, indicating a
partial overlap in the measured abilities. Thus, each test has captured some unique skills,
whereas other elements were common across the tests. A confirmatory factor analysis
(CFA) on the five SA tests indicated that one-factor best fitted the data, thus confirming
their validity as tests of SA (χ2 = 6.60, df = 5, p = 0.25; RMSEA = 0.02, 90% CI = 0.00–0.07;
CFI = 0.997; SRMR = 0.02).

In our study, we relied on the exact SA test, adhering to its precise methodology,
scoring system and allocated time for each subtest [25]. Since Berkowitz’s SA test is
composed of both old and new subtests, measuring different aspects of SA, and this test
was exclusively administered to students in their first year of undergraduate studies with
no background knowledge, we decided it would fit both architecture and engineering
students as a global tool for the measurement of SA. The SA test consists of five subtests.
The two older subtests are the Mental Rotations Test (MRT) [39,40] and the Mental Cutting
Test (MCT) [41]. Both established SA tests have been associated with achievements in
STEM fields and have later been administered to architecture students. They are recognized
measures of SA essential for various STEM disciplines. The three more recent subtests
include the Urban Layout Test (ULT), the Indoor Perspective Test (IPT) and the Packing
Test, which is further divided into two categories: ‘whole-to-parts’ (Packing-1) and ‘parts-
to-whole’ (Packing-2). Figure 1 presents some examples from these five subtests.

2.4. Procedure

This study and its measures were approved by the Research, Development and Cre-
ation department of Shenkar college and were conducted under its authorization. All partic-
ipating students gave their informed consent before engaging in the test and study. Testing
took place in group settings within Shenkar classrooms. Test materials were presented in
a paper-and-pencil format. Each test started with written instructions, complemented by
examples. A trained experimenter provided general oral instructions prior to the begin-
ning of the testing session. The MRT and MCT were administered following the standard
procedures established for these tests and had received the necessary approvals from their
respective owners. Students worked individually, and the order of tests remained the same
for all participants.



Educ. Sci. 2024, 14, 400 6 of 16
Educ. Sci. 2024, 14, x FOR PEER REVIEW 6 of 17 
 

 
Figure 1. Example items from each subtest: (a) MRT; (b) ULT; (c) MCT; (d) IPT; (e) Packing-1 and (f) 
Packing-2. 

2.4. Procedure 
This study and its measures were approved by the Research, Development and Cre-

ation department of Shenkar college and were conducted under its authorization. All par-
ticipating students gave their informed consent before engaging in the test and study. 
Testing took place in group settings within Shenkar classrooms. Test materials were pre-
sented in a paper-and-pencil format. Each test started with written instructions, comple-
mented by examples. A trained experimenter provided general oral instructions prior to 
the beginning of the testing session. The MRT and MCT were administered following the 
standard procedures established for these tests and had received the necessary approvals 
from their respective owners. Students worked individually, and the order of tests re-
mained the same for all participants. 

3. Results 
3.1. Sample and Descriptive Statistics 

Table 2 summarizes sample size across study groups, age and gender. This study’s 
sample consisted of participants from two academic disciplines: architecture and engi-
neering, each divided into control and intervention groups. In total, the architecture dis-
cipline comprised 75 participants, with 33 (44%) in the control group and 42 (56%) in the 

Figure 1. Example items from each subtest: (a) MRT; (b) ULT; (c) MCT; (d) IPT; (e) Packing-1 and
(f) Packing-2.

3. Results
3.1. Sample and Descriptive Statistics

Table 2 summarizes sample size across study groups, age and gender. This study’s
sample consisted of participants from two academic disciplines: architecture and engineer-
ing, each divided into control and intervention groups. In total, the architecture discipline
comprised 75 participants, with 33 (44%) in the control group and 42 (56%) in the inter-
vention group. The engineering discipline included 79 participants, with 32 (41%) in the
control group and 47 (59%) in the intervention group. The average ages of participants were
22.7 years (SD = 2.5) and 22.2 years (SD = 2.9) in the architecture control and intervention
groups, respectively, and 22.9 years (SD = 2.3) and 23.7 years (SD = 2.4) in the engineering
control and intervention groups, respectively. The age range extended from 18 to 30 years
in architecture and 19 to 28 years in engineering, indicating a predominantly young adult
cohort. Notably, the proportion of women in the groups varied significantly, with the
architecture discipline showing a higher female representation at 83% in the control group
and 76% in the intervention group, compared to 47% in the engineering control group and
45% in the intervention group.
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Table 2. Sample size across study groups, age and gender.

Architecture Engineering

Control Intervention Control Intervention

Total Sample 75 79

Groups 33
(44%)

42
(56%)

32
(41%)

47
(59%)

Average Age
(SD)

22.7
(2.5)

22.2
(2.9)

22.9
(2.3)

23.7
(2.4)

Min(max) Age 18 (30) 18 (29) 19 (28) 19 (28)

Women (%) 28
(83%)

32
(76%)

15
(47%)

21
(45%)

Table 3 summarizes and reflects the math background of incoming undergraduates
in architecture and engineering, divided into control and intervention groups, to evaluate
their foundational math skills. In architecture, fewer students had high-level math (5 units)
experience, with 9% in the control and 5% in the intervention groups, while in engineering,
this was more common, with 19% in the control and 17% in the intervention groups.
Medium-level math (4 units) was studied by 36% and 31% in the architecture groups
and by a majority of 53% in both engineering groups, indicating stronger initial math
level in engineering. Low-level math (3 units) was predominant in architecture, with 55%
in the control and 64% in the intervention groups, versus 28% and 30% in engineering,
respectively.

Table 3. Mathematical background and previous grades among study groups.

Architecture Engineering

Control Intervention Control Intervention

Math
5 units *

(Advanced)

N
(%)

3 2 6 8
(9%) (5%) (19%) (17%)

Grades
Level

90–100 2 1 2 3

80–90 0 1 4 5

70–80 1 0 0 0

60–70 0 0 0 0

Math
4 units *

(Intermediate)

N
(%)

12 13 17 25
(36%) (31%) (53%) (53%)

Grades
Level

90–100 2 7 5 8

80–90 6 4 10 12

70–80 2 2 2 4

60–70 2 0 0 1

Math
3 units *
(Basic)

N
(%)

18 27 9 14
(55%) (64%) (28%) (30%)

Grades
Level

90–100 5 4 3 5

80–90 3 13 4 8

70–80 5 7 2 1

60–70 5 3 0 0

* Based on Israeli math grades on high school final exams called “Bagrut”, essential for academic eligibility. Math
final grades are at 3 (basic), 4 (intermediate) or 5 (advanced) units.
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Table 4 presents descriptive statistics of the SA tests which were taken by the students
before and after the intervention (i.e., dependent variable), employing subtests such as ULT,
Packing-1, Packing-2, IPT, MCT and MRT.

Table 4. Pre- and postintervention scores on SA tests in study groups.

Test
Scale

Range Meas.

Architecture Engineering

Control Intervention Control Intervention

Pre Post Pre Post Pre Post Pre Post

ULT 0–16
Mean 9.09 8.79 9.29 10.71 9.94 10.03 9.96 10.49
(SD) (3.01) (2.93) (2.48) (2.41) (3.15) (2.78) (3.16) (3.12)

Packing-1 0–4
Mean 2.00 2.00 2.02 2.50 2.34 2.44 1.96 2.36
(SD) (1.12) (1.06) (1.09) (0.80) (0.97) (1.01) (0.95) (0.94)

Packing-2 0–4
Mean 1.52 1.94 1.88 2.52 1.75 2.25 2.11 2.30
(SD) (0.87) (0.97) (0.94) (0.92) (1.05) (0.88) (1.13) (1.10)

IPT 0–8
Mean 3.58 3.58 3.79 4.90 4.06 4.19 4.09 4.77
(SD) (1.62) (1.50) (1.85) (1.83) (1.85) (1.57) (2.38) (2.19)

MCT 0–10
Mean 4.18 4.52 3.60 5.12 3.72 4.53 4.00 4.76
(SD) (1.72) (1.66) (2.05) (2.09) (2.48) (2.06) (2.39) (2.39)

MRT 0–48
Mean 30.76 30.73 31.12 35.52 32.66 31.78 32.83 37.94
(SD) (7.23) (6.83) (7.65) (7.81) (7.85) (6.91) (7.98) (8.72)

Total Score 0–90
Mean 51.12 51.55 51.69 61.29 54.47 55.22 54.91 62.55
(SD) (11.62) (11.53) (12.48) (12.61) (13.18) (11.69) (13.32) (14.86)

In the architecture discipline, the control group’s ULT scores showed a slight decrease
from pre- (Mean = 9.09, SD = 3.01) to postintervention (Mean = 8.79, SD = 2.93), while
the intervention group demonstrated significant improvement, with scores rising from a
preintervention mean of 9.29 (SD = 2.48) to a postintervention mean of 10.71 (SD = 2.41).
The engineering discipline mirrored this positive trend, with the control group’s ULT scores
marginally increasing from 9.94 (SD = 3.15) to 10.03 (SD = 2.78), and the intervention
group’s scores improving from 9.96 (SD = 3.16) to 10.49 (SD = 3.12).

Packing tests further elucidated cognitive and spatial gains. For Packing-1, both
control and intervention groups in architecture maintained or improved their scores slightly,
with the intervention group notably advancing from a mean of 2.02 (SD = 1.09) to 2.50
(SD = 0.80). Engineering students also showed progress, especially in the intervention
group, where scores increased from 1.96 (SD = 0.95) to 2.36 (SD = 0.94). Packing-2 results
exhibited similar trends, with notable increases in the architecture intervention group from
1.88 (SD = 0.94) to 2.52 (SD = 0.92) and in the engineering intervention group from 2.11
(SD = 1.13) to 2.30 (SD = 1.10).

The IPT and MCT tests highlighted significant enhancements, particularly in the
intervention groups. In architecture, IPT scores surged from 3.79 (SD = 1.85) preintervention
to 4.90 (SD = 1.83) postintervention. Similarly, MCT scores in the same group improved
from 3.60 (SD = 2.05) to 5.12 (SD = 2.09). Engineering students also exhibited growth in
these areas, with IPT and MCT scores rising in the intervention group.

The MRT test showed substantial gains in the architecture intervention group, with
mean scores escalating from 31.12 (SD = 7.65) to 35.52 (SD = 7.81). The engineering
intervention group witnessed a remarkable increase from 32.83 (SD = 7.98) to 37.94
(SD = 8.72).

Overall, the total score, in line with the performance across tests, encapsulated the
cumulative academic advancements. The architecture intervention group’s total score
increased from a preintervention mean of 51.69 (SD = 12.48) to a postintervention mean of
61.29 (SD = 12.61). The engineering intervention group exhibited a similar trend, with the
total score increasing from 54.91 (SD = 13.32) to 62.55 (SD = 14.86).
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3.2. Intervention Effects

To assess the effect of intervention and compare pre–post group differences, we used
an analysis of variance (ANOVA), with time (pre/post) as a within-subject factor and
group (intervention/control) as a between-subject variable. Aggregated test scores (total
score) served as the dependent variable. The model included two main effects and a
time-by-group interaction. Results revealed significant effects for group (F(1,304) = 9.71,
p = 0.002) and time (F(1,304) = 12.6, p < 0.001) and a significant time*group interaction
(F(1,304) = 9.26, p = 0.007). To ensure the results’ robustness, we conducted an analysis of
co-variance (ANCOVA), which included the following covariates: age, sex, high school
major (arts/humanities/sciences), level of high-school math and English studies, final
high school scores in these subjects, academic field (architecture/engineering) and whether
the student works or not. Results remained significant after accounting for covariates,
with higher p-values (all p < 0.0025). Post hoc analyses revealed significant improvement
from pre to post among the intervention group (t(88) = 10.7, p < 0.0001, Cohen’s d = 1.14),
while no significant improvement was observed in the control group (p = 0.21). While no
group differences were observed preintervention (p = 0.76), the groups differed significantly
postintervention (t(152) = 4.08, p < 0.0001, Cohen’s d = 0.66) with the intervention group
presenting higher scores (mean ± SD = 61.96 ± 13.78 vs. 53.35 ± 11.67). The results are
shown in Figure 2.
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3.3. Intervention Effects among Architecture and Engineering Students

Next, we tested the intervention effects within the architecture and engineering student
groups separately. Architecture and engineering students did not differ in SA scores at
the pretest (mean score architecture: 51.4 + 12.0 and engineering: 54.7 + 13.2; t(152) = 1.62,
p = 0.11, Cohen’s d = 0.26).

The architecture students group demonstrated similar effects as the primary anal-
ysis, with main effects for time (F(1,146) = 7.88, p = 0.006) and group (F(1,146) = 6.68,
p = 0.011), and a significant time*group interaction (F(1,146) = 5.28, p = 0.022). Results
held when accounting for multiple covariates in an ANCOVA. Similarly, the intervention
group demonstrated significant improvement pre-to-post (t(41) = 8.04, p < 0.0001, Cohen’s
d = 1.26), while the control group did not improve following intervention (p = 0.47).

Contrariwise, the engineering group only demonstrated a significant effect for group
(F(1,154) = 5.12, p = 0.025) with only a marginal time effect (p = 0.08) and a nonsignificant
effect for the time*group interaction (p = 0.12). Noteworthy is that testing the groups
separately revealed similar patterns with significant improvement for the intervention
group (t(46) = 7.08, p < 0.0001, Cohen’s d = 1.04) and no effect for the control group (p = 0.32).
While these hypothesis-supporting effects did not translate into significant interactions
in the ANOVA, possibly due to lack of statistical power, ANCOVA revealed a significant



Educ. Sci. 2024, 14, 400 10 of 16

time*group interaction (F(1,137) = 4.41, p = 0.038), implying significant time-by-group
differences while accounting for multiple covariates (Figure 3).
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3.4. Intervention Effects on Subtests

Next, we tested whether time*group interactions existed in subtests using a similar
statistical approach, with subtests scores as the dependent variable in each analysis. Results
were controlled for multiple comparisons with Bonferroni correction. While descriptive
measures showed anticipated patterns for all subtests, the only significant interaction was
observed for the Mental Rotations Test (F(1,304) = 8.57, adjusted p = 0.022). The groups’
performance on subtests is depicted in Figure 4.

3.5. Exploratory Analysis

Our final analyses were of an exploratory nature, aiming to assess whether sex and
math levels affected total score and whether these groups react differently to the interven-
tion.

We conducted a t-test and ANOVA to compare males and females on total score. T-test
revealed significant group differences (t(306) = 2.91, p = 0.004, Cohen’s d = 0.33), showing
that males scored significantly higher than females (mean ± sd = 58.62 ± 14.27 for males vs.
54.07 ± 12.58 for females). However, nonsignificant time*group*sex interaction in ANOVA
implied that both groups responded similarly to the intervention (Figure 5).

Finally, we conducted an ANOVA to test if math level affected total score. We con-
ducted a similar analysis to the main one and added two additional independent vari-
ables: math level in high school final exams (either 3, 4 or 5 units of study, corresponding
to the basic, intermediate and advanced levels of study appearing in the Israeli high-
school diploma) and math scores in high school final exams (stratified to the following
groups: 60–70, 71–80, 81–90 and 91–100, where 100 is the maximal score). We also included
all possible interaction terms. Math level was significantly associated with total score
(F(1,274) = 11.6, p = 0.0008), while only marginally significant effects emerged for math
scores (p = 0.059) and math level by math score’s interaction (p = 0.053). A marginally sig-
nificant effect also emerged for a quadruple time*group*math level*math scores interaction
(p = 0.07). A post hoc analysis showed that students with low 3-unit level of math studies
scored significantly lower on the test than students who had a 4-unit level math education
(t(266) = 3.76, p = 0.0002, Cohen’s d = 0.46) and students with a 5-unit level math education
(t(172) = 2.11, p = 0.036, Cohen’s d = 0.32). No significant differences were noted between
students with 4- and 5-unit levels of math education (p = 0.62). Results are depicted in
Figure 6.
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4. Discussion
4.1. Effectiveness of the Intervention Program

The results of this study provide strong evidence supporting the effectiveness of
the intervention program in enhancing SA among architecture and engineering students.
Students who completed the intervention demonstrated substantial enhancements in their
SA abilities compared to those who did not take the course.

The intervention program employed a range of teaching methods, including lectures,
hands-on activities and interactive exercises, using 3D and VR, which allowed students to
actively engage with spatial concepts and develop their skills. The concise, focused and
innovative nature of the program ensured that students received targeted and effective
instruction in spatial reasoning, enabling them to apply their newfound knowledge and
skills to real-world architectural and engineering tasks. The cost-efficiency of the program
made it accessible to a wide range of students, irrespective of their background. By offering
a diverse set of teaching methods, the program catered to the varied learning styles and
preferences of the students, ensuring maximum engagement and knowledge retention.

Overall, the intervention program successfully fulfilled its objectives of improving SA
in architecture and engineering students.

4.2. Consistency across Different Factors

An important aspect of this study was the examination of the consistency of improve-
ments in SA across different factors, including faculty affiliation, gender and previous
mathematical abilities. The intervention program proved to be effective regardless of the
participants’ background, indicating its potential applicability to a diverse student popula-
tion. Architecture and engineering students, despite their different educational paths and
curriculum content, both demonstrated significant improvements in SA. This suggests that
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the intervention program’s benefits extend beyond specific disciplines and can be adapted
to various academic contexts.

The consistency of improvements across different factors indicates that the program
targets foundational spatial reasoning skills that are crucial for success in architecture and
engineering fields. However, it is worth noting that architecture students displayed more
significant improvements in SA compared to their engineering counterparts. The reasons
behind this discrepancy could be attributed to various factors, such as variations in teaching
methods, curriculum content or the nature of spatial tasks encountered in each discipline.
Architecture programs often emphasize design thinking and spatial visualization skills
more explicitly, which could contribute to the observed differences. Furthermore, the
limited statistical power of the current study suggests the need for future research with a
larger sample size to provide a more comprehensive understanding of these differences and
explore potential factors contributing to the varying improvements between architecture
and engineering students.

4.3. Gender Differences in SA

Consistent with previous research conducted by Levine et al. [42], significant dif-
ferences in SA abilities were found between male and female participants, with males
generally outperforming females. These gender differences in SA have been observed
across various age groups and educational settings. However, despite these gender differ-
ences, no significant interaction effects were observed among time, group (intervention
vs. control) and gender in the present study. This suggests that the intervention program
equally benefited both male and female students in improving their SA abilities, potentially
contributing to the reduction of gender-based disparities in spatial cognition.

The findings indicate that targeted spatial intervention programs can provide a level
playing field for both genders, empowering female students to develop their SA and bridge
the existing gap. By addressing gender disparities in spatial cognition, the intervention
program has the potential to enhance diversity and inclusivity in architecture and engi-
neering fields. Educators and institutions can use these findings to design interventions
that support female students in developing their spatial skills and create a more equitable
learning environment.

4.4. Relationship between Math Level and SA Scores

This study also investigated the relationship between SA scores and math level (based
on the mathematics matriculation exam in Israel, commonly known as the math Bagrut
exam. The math Bagrut is the official certificate awarded to Israeli high school students
who successfully complete their secondary education).

The results revealed a significant association between math level and total SA scores,
indicating that students with a higher level of math education (4-unit level) during high
school achieved higher SA scores compared to those with a lower level of math education
(3-unit level). Mathematics and SA are closely intertwined, and proficiency in mathematics
may correlate with spatial thinking and problem-solving skills. Therefore, incorporating
spatial training alongside mathematics education could enhance students’ overall cognitive
abilities in disciplines that heavily rely on spatial skills. This highlights the importance of
integrating spatial reasoning tasks into mathematics curricula and providing opportunities
for students to apply mathematical concepts in spatial contexts. By recognizing the syner-
gistic relationship between mathematics and SA, educators can optimize the development
of students’ cognitive skills in architecture and engineering.

4.5. Implications for Educational Practice

The findings of this study have significant implications for educational practice in
architecture and engineering disciplines. The effectiveness of the intervention program in
enhancing SA abilities among students highlights the importance of implementing targeted
interventions to promote cognitive skill development.
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Institutions can incorporate similar intervention programs into their curriculum to
enhance SA among their students, fostering their problem-solving, design and visualization
skills.

The program’s success across different demographic groups, including both male and
female students, as well as individuals with varying mathematical backgrounds, highlights
its inclusive nature. Institutions can leverage these findings to create a supportive and
inclusive learning environment that values diversity and promotes equal opportunities for
all students.

Additionally, the results call for a more integrated approach to curriculum design
that recognizes the interplay between SA and mathematical proficiency. By incorporating
spatial training alongside mathematics education, institutions can enhance students’ overall
cognitive abilities and prepare them for the spatial demands of architecture and engineering
disciplines.

4.6. Future Directions

The findings of this study open avenues for future research in the field of SA and
education. Future research endeavors with larger sample sizes will enable a more compre-
hensive exploration of the factors contributing to the observed differential improvements
between architecture and engineering students. Further investigation into the specific
teaching methods, curriculum content and spatial tasks encountered in each discipline
can provide insights into the factors influencing the varying improvements. Longitudinal
studies assessing the long-term effects of the intervention program can shed light on the
sustainability and durability of the acquired SA. Additionally, exploring the adaptability
of the intervention program to diverse educational contexts and subgroups within the
architecture and engineering student populations will yield valuable insights for the devel-
opment of tailored interventions. Understanding the long-term effects and adaptability
of the intervention program will guide the refinement and optimization of educational
interventions targeting SA.

The discussion surrounding future directions regarding the expected correlation be-
tween SA scores in SA tests and students’ academic achievements is of great significance
in educational research and should be the next study’s focus. This future study aims to
uncover the potential relationship between students’ SA skills, as measured by the SA test,
and their overall academic performance. Exploring this correlation can provide valuable
insights into the role of SA competencies in students’ educational outcomes and pave the
way for targeted interventions and support systems.

Another crucial future direction lies in examining the generalizability of the correlation
between SA scores and academic achievements across diverse student populations and
cultural contexts. It is essential to explore potential variations in this correlation among
different demographics, including age groups, socioeconomic backgrounds, and cultural
contexts. Such analysis ensures that interventions and educational practices are tailored to
meet the unique needs and challenges of specific student groups. By acknowledging the
diversity of students’ backgrounds and experiences, researchers and educators can develop
more inclusive and effective strategies to support students’ social–emotional growth and
academic success.
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