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Abstract: Extant literature on education research focuses on evaluating schools’ academic perfor-
mance rather than the performance of educational institutions. Moreover, the State of Louisiana
public school system always performs poorly in education outcomes compared to other school sys-
tems in the U.S. One of the limiting factors is the stringent standards applied among heterogeneous
schools, steaming from the fit-for-all policies. We use a pairwise controlled manifold approximation
technique and gradient boosting machine algorithm to typify Louisiana public schools into homoge-
nous clusters and then characterize each identified group. The analyses uncover critical features
of failing and high-performing school systems. Results confirm the heterogeneity of the school
system, and each school needs tailored support to buoy its performance. Short-term interventions
should focus on customized administrative and academic protocols with malleable interpositions
addressing individual school shortcomings such as truancy. Long-term policies must discourse
authentic economic development programs to foster community engagement and creativity while
allocating strategic resources that cultivate resilience at the school and community levels.
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1. Introduction

Two reports published in 1983 by National Commission on Excellence in Education
and Carnegie Forum on Education and the Economy painted a grim picture regarding
education outcomes in the U.S. As a result, states and school districts have implemented
policies and regulations to foster high academic standards, improve accountability, and
achieve excellence while administering rules and laws to maintain school disciplinary
conduct. However, according to [1–3], the U.S. still has one of the highest high school
dropout rates in developed countries, and among students who complete high school and
go on to college, half require remedial courses, and half never graduate [4,5].

For the U.S. youth to compete for rewarding careers against other brilliant young
people from across the globe, a college degree or advanced certificate is necessary. As
the World Economic Forum reports [6], three-quarters of the fastest-growing occupations
require education beyond a high school diploma, with science, technology, engineering,
and mathematics (STEM) careers prominent on the list. To reignite U.S. education competi-
tiveness, relight economic growth, and create a thriving middle class, the U.S. requires an
inclusive education system that prepares all students for college and STEM careers and
implements innovative public policies to ensure every child receives a quality education.

The extant literature related to quantitative (behavioral and cognitive) education
analyses focuses on determining factors influencing student achievements and school
performance using academic growth models and other econometric tools summarized
by [7,8]. These models assume that schools or school systems are homogenous. What arises
from these studies are fit-for-all public policies that do not necessarily impact education
outcomes, as no one policy guarantees success [6]. Due to location and neighborhood effects,
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schools exhibit heterogeneous characteristics and face different challenges and constraints
across districts and time; therefore, they demand tailored and diversified support.

Most education studies rely on academic growth models [9] to measure students’
progress or schools’ performance on standardized test scores concerning academically
similar students from one point to the subsequent and students’ progress toward proficiency
standards. These models provide a general framework for interventions to revivify failing
students or schools or rally high-achieving students or schools. However, results from these
models are not helpful when the objective is deriving tailored recommendations for specific
students or schools with distinctive features and characteristics that differ from others.
Moreover, the statistical methods for controlling student background and other extraneous
variables in these models make it impossible to determine the impact of covariate variables
on student or school performance [9,10].

This study deviates from these studies by focusing on whether there is a non-random
structure in the Louisiana public school system and pinpointing critical features that dif-
ferentiate Schools’ performance. In this study, we used pairwise controlled manifold
approximation (PaCMAP) as an unsupervised machine learning tool for multidimensional-
ity reduction and visualizing the created school clusters [11] and applied different internal
statistical tools to determine optimal numbers of clusters and validate the created groups
as reported elsewhere [12]. Further analysis using visualization tools and multiclass classi-
fication, specifically random forest and gradient boosting machine method [13], identifies
critical features of failing and performing schools. The results are vital in suggesting
tailored interventions to improve Louisiana’s public school system’s performance.

Figure 1 presents the steps taken for data collection and analysis, and the study has
two main contributions. First, the unsupervised clustering technique illustrated in Figure 1
below helped build a multiclass classification model based on historical data to predict
which schools belong to what cluster and what features are essential in each homogenous
group. Therefore, school administrators and policymakers can respond appropriately to
target certain shortcomings at the school level.

Figure 1. Machine learning steps to typify the schools and identify critical features.

The analysis illustrated in Figure 1 allowed a simultaneous utilization of unlabeled
and labeled data and enabled tracking of the effects of distinctive features on cluster pro-
jection. Second, combining unsupervised and supervised clustering tools allowed us to
compare features across clusters that uncover connections between school characteristics
and performance and critical differences among schools. The results provide evidence-
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based decision-making tools for selecting and implementing interventions to improve
school outcomes. As illustrated in Figure 1, we use unsupervised machine learning tech-
niques [14]; explicitly, we cluster schools into sub-homogenous groups using PaCMAP [11]
and identify critical features of each cluster using multiclass classification [13,15]. Data
points in clusters should be as similar as possible and dissimilar to teams in other groups.
The main advantage of clustering is its adaptability to changes, which helps single out
valuable features that distinguish distinct groups. Moreover, grouping schools by com-
monalities or differences is essential in exploring the factors that explain differences in
achievement and performance. Clustering also helps to understand existing challenges and
opportunities that influence change.

While the best clustering process maximizes inter-cluster distances, it should also min-
imize intra-cluster distances [16] (Bailey, 1989). The inter-cluster distance (global structure)
is the distance between two data points belonging to different clusters, and the intra-cluster
distance (local structure) is the distance between two data points belonging to the same
group. A superior clustering algorithm makes clusters so that the inter-cluster distance
between different clusters is prominent and the intra-cluster space of the same group
is conservative. Popular methods for clustering social data through multidimensional
reduction techniques include fuzzy clustering [17], t-distributed stochastic neighbor em-
bedding (t-SNE) [18,19], uniform manifold approximation and projection (UMAP) [20],
dimensionality reduction using triplet constraint (TriMap) [21]. The primary limitations
of these methods are that they either preserve local or global structures, and hyperpa-
rameters of the models are difficult to interpret [11]. The PaCMAP is an ideal tool for
clustering through dimensionality reduction as it depends on a founded mathematical
formulation. Moreover, PaCMAP uncovers strong connections among variables by safe-
guarding local and global structures, an essential aspect of the geometric visualization of
multidimensional datasets [11,22].

Evaluating the dimensionality reduction and cluster analysis includes quantitative
and objective ways through cluster validation measures. The process has four main com-
ponents: determining whether there is non-random structure in the data; determining
the optimal number of clusters; evaluating how well a clustering solution fits the given
data when the data is the only information available; and assessing how well a cluster-
ing solution agrees with partitions obtained based on other data sources. The first step
involved evaluating the clustering tendency before applying the dimensionality reduction
and clustering algorithms to determine whether the data contains any inherent grouping
structure using the Hopkins statistic [23]. The statistic evaluates the null hypothesis that
the data follows a uniform distribution (spatial randomness). In the second step, we used
clustering validation measures [24,25] to determine the goodness of a clustering structure
without respect to external information.

We organize the remaining part of the paper into four sections. The following section
is the literature review that focuses on popular clustering techniques, their limitations,
and the fundamentals of multiclass classification using machine learning. The data source,
descriptions, and rationale of variables used to cluster the school systems and specific em-
pirical techniques for data analysis are in Section 2, followed by the results and discussion
section and the last section on implications for short- and long-term policies.

2. Background Information and Literature Review
2.1. Louisiana Schools Accountability System

According to the Louisiana Department of Education [26,27], the accountability system
of the Louisiana school system aims to inform and focus educators through clear expec-
tations for student outcomes; and provide objective information about school quality to
parents, community members, and other stakeholders. Annually, public schools and early
childhood centers in Louisiana receive a performance report that measures how well they
prepare their children for the next phase of schooling. Since 1999, the state has issued public
school performance scores (SPS) based on student achievement data. To communicate
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the quality of school performance to families and the public, Louisiana adopted letter
grades (A–F). In 2014, the Department recalibrated its school performance score scale from
a 200-point scale to a 150-point scale.

Under the previous 200-point scale, the letter grade was: A (120–200), B (105–119.9), C
(90–104.9), D (75–89.9, F (0–74.9), and T (turnaround school). Under the 150-point scale, the
groups of SPS are as follows: A (100–150), B (85–99.9), C (70–84.9), D (50–69.9), F (0–49.9),
and T (turnaround school). The SPS for elementary is estimated based on these subindices:
assessment (70%), growth (25%), and interest and opportunities (5%). The assessment
subindex includes student assessments in student learning in English language arts (ELA),
math, science, and social studies to measure student proficiency in the knowledge and
skills reflected in the standards of each grade and subject. The SPS includes the points
assigned to achievement levels by students for each subject assessed and progress made
toward English language proficiency.

The calculation of the growth index accounts for changes in schools’ performance
based on the previous year and the current year’s scores on each assessment result. Assess-
ing student growth is done by answering two questions. If students are not yet achieving
proficiency, are they on track to do so? If a student reaches the target, the school earns
150 points. Otherwise, if the students are growing at a rate comparable to their peers,
schools earn points based on students’ growth percentile as compared to peers (i.e.,
80th –99th percentile (150 points), 60th–79th percentile (115 points), 40th–59th percentile
(85 points), 20th–39th percentile (25 points), and 1st–19th percentile (0 points). In addi-
tion, the interest and opportunities subindex constitutes a 5-point scale on various metrics
reflecting the schools’ effort to make services available to all children.

Based on the Louisiana Department of Education [28], the SPS for elementary/middle
schools with grade 8 is an aggregation of these subindices: assessment (65%), achievement
and growth (25%), interest and opportunities (5%), and dropout credit accumulation (5%).
For the high schools, the SPS is also an aggregation of the following subindices: assess-
ment (25%), ACT/WorkKeys (25%), the strength of diploma (25%), cohort graduation rate
(20%), and interest and opportunities (5%). The assessment subindex for the high schools
includes the end-of-course (EOC) exams that assess whether students have mastered the
standards of core high school subjects. EOC exams include algebra I, geometry, English I
(beginning in 2017–2018), English II, biology, and U.S. History. Except for students who
participate in LEAP alternative assessment 1, all high school students must take an ELA
and math EOC exam by their 3rd cohort year, regardless of graduation pathways. The final
scores do not include high school students retaking an EOC. Final student scores are on
five levels: unsatisfactory (0 points), approaching basic (50 points), basic (80 points), mastery
(100 points), or advanced (150 points). The mastery and above are considered proficient for
the next grade level.

The dropout credit accumulation subindex is for schools that include grade 8 in the
prior year, based on the number of Carnegie credits earned through the end of 9th grade
(and transitional 9th, where applicable) and/or dropout status. The dropout credit accu-
mulation encourages the successful transition to high school and access to Carnegie credits
in middle school. The ACT/WorkKeys (ACT WorkKeys assessments are the cornerstone
of ACT workforce solutions and measure foundational skills required for success in the
workplace and help measure the workplace skills that can affect job performance) subindex
measures student readiness for postsecondary learning, and all grade 11 take the ACT, a
nationally recognized college and career readiness measure. Schools earn points for the
highest composite score made by a student through the spring testing date of their senior
year or a student who graduates at the end of grade 11. WorkKeys scores were included in
the ACT subindex for accountability when the WorkKeys score yielded more index points
than the ACT score beginning in 2015–2016.

Louisiana Department of Education report [27] indicates that the Strength of Diploma
subindex measures the quality of the diploma earned by each 12th grader. The high school
diploma plus awards points (110–150)) to schools for students who graduate on time and
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meet requirements for one or more of the following: advanced placement, International
Baccalaureate (IB), JumpStart credentials, CLEP, TOPS-aligned dual enrollment course
completion, and an associate degree. The system awards schools with four-year graduate
students (100 points) with career diplomas or a regional Jump Start credential, as well as
those who earned a diploma assessed on an alternate certification. Moreover, the system
awards 50–75 points to schools with five-year graduates that have any certificate, five-year
graduates who earn an A.P. score of 3 or higher, an IB score of 4 or higher, and a college-level
examination program (CLEP) of 50 or higher. Other awards are for graduates with high
school equivalency test (HiSET)/GED + JumpStart credential (40 points), and HiSET/GED
earned no later than October 1 following the last exit record (25). The cohort gradua-
tion rate subindex measures the percentage of students who enter grade 9 and graduate
four years later, adjusted for students who transfer in or out. All 9th-grade students who
enter a graduation cohort are included in the cohort graduation rate calculations, regardless
of diploma pathway, unless they are legitimate leavers. Legitimate leavers are students
removed from the cohort and exited enrollment for one or more reasons: death, transfer
out of state, transfer to an approved nonpublic school or a Board of Elementary Education
and Secondary Education)-approved home study program, and transfer to early college.

After the calculation of SPS, the Louisiana Department of Education [27,28] categorize
school that needs interventions into three groups: urgent intervention is necessary, urgent
intervention is required, and comprehensive intervention is required. For schools in the first
category, the subgroup performance equals D or F in the current year. For the second and
third categories, the subgroups’ performance equal to F for two years and or out-of-school
suspension rates more than double the national average for three years, and the overall
performance of D or F for three years (or two years for a new school) and or graduation
rate less than 67 percent in most recent year, respectively. For accountability purposes,
Comprehensive Intervention Required labels will appear on the “Overall Performance”
page in the Louisiana School Finder, while Urgent Intervention Needed and Required
labels will appear on the “Discipline and Attendance” and or “Breakdown by Student
Groups” pages. As part of Louisiana’s Every Student Succeeds Act (ESSA) plan, any school
identified under one of the labels must submit an improvement plan to the Department
and an application for funding to support its implementation (See details on how to
calculate the SPS at: https://www.louisianabelieves.com/measuringresults/school-and-
center-performance (accessed on 17 October 2022)).

2.2. An Overview of Empirical Clustering Techniques and Application in Education

Louisiana’s SPS is an aggregation indicating Schools’ overtime achievement and
growth. Analyzing SPS data would allow identifying required changes to improve Schools’
performance. Standard education models used to measure achievement and growth range
from subtracting last year’s test score from this year’s test score (called a gain score) to
complex statistical models that account for differences in student academic and demo-
graphic characteristics [7,8]. The five standard growth models for measuring performance
or progress: value-added, value table, trajectory, projection, and student growth percentile.
The primary limitations of these models emanate from their inability to account for un-
observed characteristics, and there is also a need to specify the mathematical relationship
among variables explicitly. However, the education assessment literature (such as [29])
shows no consensus on the best methods and models for evaluating academic achievement
and growth at the student and school systems level.

Clustering is a critical technique in data mining with applications in image processing,
diagnosis systems, classification, missing value management and imputation, optimization,
bioinformatics, and machine learning [30]. Moreover, dimensionality reduction is a funda-
mental step for clustering algorithms due to the curse of dimensionality and non-linearity
of most observational data. As the number of dimensions increases, data points tend to
be similar, and there is no clear structure to follow when grouping these pairs [31]. Since
cluster analysis is just a statistical process of grouping related units into sets, the groups in
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the dataset may be genuinely related or related by chance. Different clustering techniques
might give different results if the relationship is just by chance [32].

Conventional clustering algorithms such as the k-means clustering technique [33,34]
assign a set of observations to a limited number of clusters such that pairs belonging to the
same group are more like each other than those in other groups. The method assigns each
observation to one and only one cluster. However, the assignment might often be too strict,
leading to unfeasible partitions [35,36]. Fuzzy sets manage the challenges by assigning
data points to more than one cluster [17]; therefore, each data point has a likelihood or
probability score of belonging to a given cluster [37–39]. Extensions of the fuzzy c-means
clustering algorithm (including [40–42]) improve the standard method by reducing errors
during the segmentation process.

Education studies (including [43,44]) apply fuzzy clustering to analyze e-learning
behavior by creating clusters with common characteristics, typifying schools across cul-
tures [45], or combining learning and knowledge objects based on metadata attributes
mapped with various learning styles to create personalized and more authentic learning
experiences [46]. Others applied the technique to compare e-learning behaviors [47], predict
and identify significant variables that affect undergraduate schools’ performance [48,49],
allocate new students to homogenous groups of specified maximum capacity, and analyze
the effects of such allocations on students’ academic performance [50], and creating per-
formance profiles in reading, mathematics, and science [51]. Fuzzy clustering techniques
perform poorly on data sets containing clusters with unequal sizes or densities, and the
method is sensitive to outliers [52]

The t-distributed stochastic neighbor embedding (t-SNE) is a dimension reduction
technique that tries to preserve the local structure and make clusters discernible in a two-or
three-dimensional visualization [18,53]. The t-SNE algorithm preserves the local structure
of the data using a heavy-tailed Student-t distribution to compute the similarity between
two points in the low-dimensional space rather than a Gaussian distribution. A heavy-
tailed Student-t distribution helps address crowding and optimization problems. The
t-SNE algorithm takes a set of points in a high-dimensional space and finds an optimal
representation of those points in a lower-dimensional space. The first objective is to
preserve as much significant structure or information present in the high-dimensional data
as possible in the low-dimensional representation. The second objective is to increase the
data’s interpretability in the lower dimension space by minimizing information loss due to
dimensionality reduction [54].

Education-related studies use the t-SNE algorithm to predict schools’ academic perfor-
mance and evaluate the impact of different attributes on performance to identify at-risk
students [54] or visualize clusters with unique features that correlate with success in med-
ical school [55] to uncover success potential after accounting for inherent heterogeneity
within the student population. Other studies [55] combine convolutional neural networks
to identify critical features influencing academic performance and predicting future educa-
tional outcomes by visually distinguishing homogenous groups with fully connected layers
of the networks [56] and highlighting prominent features influencing education outcomes
and predicting future performances [57].

There are two primary limitations when using t-SNE for multidimensionality reduction
and clustering. The technique requires calculating joint probability among all data points
(at high and lower dimensions), which imposes a high computational burden [11,58].
Therefore, the t-SNE algorithm does not scale well for rapidly increasing sample sizes
outside the computer cluster. Also, the algorithm does not preserve global data structure
at high dimensions, meaning that only intra-cluster distances are meaningful and do not
guarantee inter-cluster similarities [59,60].

Uniform manifold approximation and projection (UMAP) is a non-linear dimension
reduction technique used for visualization like t-SNE, with the capacity to preserve local and
global structures for non-noisy data [11]. Specifically, UMAP is highly informative when
visualizing multidimensional data [61] and performs better in keeping global structure
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than t-SNE. The UMAP algorithm efficiently approximates k-nearest-neighbor via the
nearest-neighbor-descent algorithm [20,62,63]. The application of the UMAP algorithm
in education studies identifies community conditions that best support universal access
and improved outcomes in the initial stages of childhood development or captures the
neighborhoods that behave similarly at a particular time and explains the social-economic
effects that bring communities together [22,64,65].

Dimensionality reduction using triplet constraint (TriMap) uses triplet (sets of three
observations) constraints to form a low-dimensional embedding of a set of points [11,63].
The algorithm samples the triplets from the high-dimensional representation of the data
points, and a weighting scheme reflects each triplet’s importance. The main idea is to
capture higher orders of structure with triplet information (instead of pairwise information
used by t-SNE and UMAP) and minimize a robust loss function for satisfying the chosen
triplets, thereby providing a better global view of the data [63]. Theoretically, this method
can preserve local and global structures; however, the inter-cluster distances are uncertain
for large datasets with outliers [11,64].

Likewise, PaCMAP is a dimensionality reduction method that preserves local and
global data structures [11,29]. The critical steps with the PaCMAP algorithm are graph
construction, initialization of the solution, and iterative optimization using a custom
gradient descent algorithm PaCMAP. The algorithm uses edges as graph components and
distinguishes between three edges: neighbor pairs, mid-near pairs, and further-apart pairs.
The first group consists of neighbors from each observation in the high-dimensional space.
The second group consists of mid-near teams randomly sampling from additional data
points and using the second smallest for the mid-near pair. The third group consists of a
random selection of further data points from each observation. Parameters that specify
the ratio of these quantities to the number of nearest neighbors determine the number
of mid-near and further-apart point pairs. The PaCMAP algorithm is robust and works
well on a large dataset, significantly faster than t-SNE, UMAP, and TriMap [65]. We could
not find publications related to Education Research that use TriMap and PaCMAP as the
primary data analysis tools.

Before clustering, it is critical to determine if the data are clusterable by applying
the Hopkins statistic [66] that tests the spatial randomness of the data by measuring the
probability that a given data set is from a uniform distribution. The Null hypothesis is that
there are no meaningful clusters, and the alternative hypothesis is that the data set contains
significant clusters. In addition, while the multidimensional reduction results help identify
optimal numbers of clusters through visualizations, the analysis must be augmented by
statistical tools such as the Elbow Method [67], the Silhouette Coefficient [68], Gap statistic
methods [69], and other statistical measures (summarized by [70]) to ascertain the results.
After determining the optimal number of clusters, clustering validation is also vital in
deciding group quality [71]. Internal clustering validation aims to establish if the average
distance within-cluster is small and the average distance between clusters is as significant
as possible [25]. Internal clustering measures reflect connectedness, compactness, and the
separation of the created clusters [72].

The connectivity has a value between zero and infinity. Minimizing the connectedness
relates to what extent data points are in the same cluster (cohesion) as their nearest neigh-
bors in the data space as determined by the K-nearest neighbors [73]. The compactness
index assesses cluster homogeneity using the intra-cluster variance. It measures how closely
related the data points in a cluster are. The index is estimable based on variance or distance.
Lower variance indicates better compactness [25]. Separation quantifies the degree of
separation between clusters by measuring the distance between cluster centroids [38,68].
Compactness and separation demonstrate opposing trends. While compactness increases
with clusters, separation decreases with the number of clusters. Most measures of internal
cluster validation, such as the Dunn Index and Silhouette width, combine compactness and
separation into a single score [25,73]. The Dunn Index is the ratio of minimum average dis-
similarity between two clusters and maximum average within-cluster dissimilarity. Given
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the formula for estimating the Silhouette [68], a Silhouette width for each data point can
be positive or negative. Datapoints with a Silhouette close to one are close to the cluster’s
center, and data points with a negative Silhouette value mean that the data points are on
the boundaries and are more relative to the neighboring groups or clusters [74,75].

2.3. Multiclass Classification to Augment Clustering Results

After unsupervised clustering, the second interest is determining which features/variables
significantly impacted each cluster using the original data. The most prominent impact
features must differentiate the groups most strongly. Statistically, it is possible to perform
a series of analyses of variance and select the attributes/variables with large t-values or
smaller p-values [76]. It is also possible to distinguish critical features by calculating the av-
erage similarity of each data point based on intra- and inter-cluster distances of the centroid
of each cluster [77]. However, a substitution effect occurs when two or more explanatory
variables share information or predictive power. The analysis of variance and similarity
analysis may not robustly determine which variables are critical [78]. Specifically, multiclass
classification is a problem with more than two classes or clusters, where each data point
belongs to one category [79]. The technique includes binary classification, discriminant
analysis [80,81], tree algorithms extendable to manage multiclass problems, and nearest
neighbors’ approach [82]. Discriminant analysis [83] is a versatile statistical method often
used to assign data points to one group among known groups. The discriminant analysis
aims to discriminate or classify the datasets based on more than two groups, clusters, or
classes available priori. The process places new data points into a general category based on
measured characteristics. Standard tools for noisy and high-dimensional data are penalized
linear discriminant [84], high dimensional discriminant analysis [85], and stabilized linear
discriminant analysis [86].

The tree-based algorithms are primary tools for supervised learning methods that
empower predictive models with high accuracy, stability, and ease of interpretation. The
most popular tree-based algorithms are decision trees [87,88], random forest [89], and
gradient-boosting machines [90], as applied by [91–93]. Unlike other machine learning
models, the algorithm has the quickest way to identify the most significant relationships
between variables. Since it is a non-parametric method, it has no assumptions about space
distributions and classifier structure [87]. The nearest neighbors’ classification algorithm as-
sumes that similar objects exist in proximity or near each other, and the standard algorithms
are the k-nearest neighbors [94] and the nearest shrunken centroids [95]. The objective is to
find a group of k data points in the training dataset closest to the test dataset point and label
assignments on the predominance of a particular class in this neighborhood. The output is
a class membership, assigning each data point to a specific cluster by a plurality vote of its
neighbors [94] or earmarked to the class most common among its nearest neighbors.

There are different metrics for comparing the performance of multiclass models and
analyzing the behavior of the same model by tuning various parameters. The metrics
are based on the confusion matrix since it encloses all the relevant information about the
algorithm and classification rule performance [96]. The confusion matrix is a cross table
that records the number of occurrences between observed classification (e.g., unsupervised
machine learning) and the predicted classification (e.g., from supervised machine learning).
Estimable metrics from the confusion matrix dictating more is better (should be maximized)
include accuracy, kappa, mean Specificity, and mean recall, and the standard metrics
for lower is better (should be minimized) are the logloss and mean detection rate [97].
Generally, the standard accuracy metric returns an overall measure of how much the
model correctly predicts the class based on the entire dataset. Therefore, the metric is very
intuitive and easy to understand. Balanced accuracy (mean recall) is another critical metric
in multiclass classification and is an average of recalls. For details on various metrics used
in machine learning model evaluations, see [97–99].

After determining the best model, the next step is estimating the relative importance
of input variables through k-fold validation [100]. The process identifies the relative
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importance of explanatory variables by deconstructing the model weights and determining
the relative importance or strength of association between the dependent and explanatory
variables. For decision tree-based models, the connecting weights are tallied for each node
and scaled close to all other inputs. Note that the model weights that connect variables in
decision tree-based models are partially analogous to parameter coefficients in a standard
regression. The model weights dictate the relative influence of information processed in
the network by suppressing irrelevant input variables in their correlation with a response
variable. Since no multiclass method outperforms others, the model choice depends on
the desired precision and the nature of the classification problems. Therefore, a feature
importance score ensures the interpretability of complex models as it quantifies information
a variable contributes when building the model and ranks the relative influence of the
variable in predicting a specific cluster [101–103].

3. Materials and Methods
3.1. Source of Data

This study used data from the 2015/16, 2016/17, and 2017/18 school years. While
most data are available up to 2019/20, the financial data was not available when finalizing
this paper. All data are from the Louisiana Department of Education Data Center. The
link https://www.louisianabelieves.com/resources/library/student-attributes (accessed
on 17 October 2022) provides data on schools’ attributes, including the total numbers of
students and the percentage of students by gender and race (i.e., American Indian, Asian,
Black, Hispanic, Hawaiian/Pacific Islander, and White). Other information is on English
proficiency (e.g., percent of fully proficient students), the number of students in different
grades, and the percentage in free and reduced lunch programs.

The annual financial report at https://www.louisianabelieves.com/data/310/ (ac-
cessed on 17 October 2022) summarizes financial activities for the school year. The vari-
ables in the dataset are current expenditures per pupil on instructors, pupil/instructional
support, school administration, transportation, and other supports. Other information
is on school-level student counts and school-level staff full-time equivalent (FTE) for
teachers, administrators, other instructors, and other support staff. There is also infor-
mation on staff salaries, education levels and average years of experience. The link https:
//www.louisianabelieves.com/resources/library/fiscal-data (accessed on 17 October 2022)
has other financial data summarized by expenditure in each group (e.g., wages, trans-
portation). The link https://www.louisianabelieves.com/resources/library/performance-
scores (accessed on 17 October 2022) provides information on school-level performance
scores. At the beginning of this study, the scores were available from 1998/1999 to the
2017/18 school year. The full dataset with all variables is available for public schools gov-
erned by a school district. School districts with high numbers of private and charter schools
that are publicly funded but operated by independent groups, such as in New Orleans
Parish, are underrepresented. The New Orleans School District follows the all-charter sys-
tem with very few schools run by public school systems, and the district is represented by
14 individual schools in the data set. For data analysis purposes, the dataset is in three
groups: elementary/middle (elementary after that), combination (with elementary, middle,
and high schools), and high schools’ system. The available data are pre-COVID-19 pan-
demic. Further analysis is needed when the data collected during the pandemic is available,
as there is a lag of three years.

3.2. Variables That Influence School Performance and Empirical Model

For definitions and examples of variables that influence school performance,
see [104–106] on the critical school characteristics and roles of past achievement. Since
Schools’ performance depends on schools’ performance, variables influencing school per-
formance are in six groups [107]: schools’ socioeconomic status, past achievement, school
attributes, faculty education, per-pupil expenditure, and variables defining the affluence of
the communities in school catchment areas. Studies examining the importance of teacher

https://www.louisianabelieves.com/resources/library/student-attributes
https://www.louisianabelieves.com/data/310/
https://www.louisianabelieves.com/resources/library/fiscal-data
https://www.louisianabelieves.com/resources/library/fiscal-data
https://www.louisianabelieves.com/resources/library/performance-scores
https://www.louisianabelieves.com/resources/library/performance-scores
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training, teacher certification, and teachers’ professional development programs all con-
clude that students with certified teachers performed better ([for example, see [108–111]).
Education studies link teachers’ effectiveness to positive student behavior, such as student
attendance, which improves schools’ performance [112–114]. Other studies examine a
constellation of teacher-related effects such as classroom effectiveness, collective teaching
quality, and school academic organization that increase student performance and academic
growth [115–118]. Studies (including [119–123]) focus on the influence of class size on
student performance with varying conclusions.

Financial expenditure is another variable purported to influence school
performance [120,124–127]; however, the conclusions from these studies are indeterminant.
In addition, meta-analysis reviews of quantitative research documenting the association be-
tween neighborhoods and educational outcomes all concluded that individual academic re-
sults were significantly associated with neighborhood characteristics such as poverty, a poor
educational climate, the proportion of ethnic/migrant groups, and social disorganization
and other built environment that promotes parental engagement and participation [128].

The variables that capture community affluence are from the five-year American
Community Survey (According to the U.S. Bureau of Census, the American Community
Survey (ACS) helps local officials, community leaders, and businesses understand the
changes in their communities. It is the premier source for detailed population and housing
information about the U.S.) at the unified school district level. The data are available from
2009 to 2019 and match the schools’ data. All analyses were in R Environment [129]. To
conduct PaCMAP while preserving the local and global structures, we follow a two-step
cluster analysis [63] that allows variability among the created clusters [130]. The first
step involved calculating Gower’s distance matrix in separating schools into (dis)similar
groups using the daisy function in the cluster package [131] (see [132,133] regarding the
advantages of Gower’s distance matrix). For PaCMAP, we recreated and executed Python’s
pacmap function [11] using a reticulate package [134] in the R environment, the input being
the Gowers distance of each school system. Fine-tuning the pacmap function requires
specifying the size of the local neighborhood or the number of neighboring sample points
(n-neighbors) used for manifold approximation. Larger values result in more global views
of the manifold, while smaller values preserve local data. The number of neighbors should
range from 2 to 100, but we set it to “NULL” to let the algorithm determine the optimal
number of neighbors. Principal component analysis initialized the lower-dimensional
embedding at the default levels.

We also used PaCMAP results to identify the medoids of the original data set using
the partitioning around medoids (PAM) algorithm that partitions (cluster) based on the
specified number of groups, as PAM is less sensitive to outliers [1]. The number represents
the resampling iterations; repeats are the number of complete sets of folds to compute,
and classProbs is a logical function telling the algorithm to compute class probabilities for
classification models (along with predicted values) in each resample. After these two steps,
we combined the PaCMAP results with the original dataset that added three variables
to the new dataset (i.e., a cluster variable, location of medoids, and the two-dimension
variable from the PaCMAP. The third step involved multiclass classification, where the de-
pendent variable was the created cluster indicator variable, and the independent variables
included scaled and centered demographic, social, and community variables. The caret
package [80] was the primary tool for multiclass classification analysis using the different
methods discussed in the multiclass classification section. To be consistent, the features
of all models for the train control function (trainControl) were: method = “repeatedcv”,
number = 10, repeats = 3, classProbs = TRUE, summaryFunction = multiClassSummary,
and returnResamp = “all”. The repeating cross-validation with precisely the same splitting
yields the same result for every repetition. The summaryFunction calculates performance
metrics across samples, in this case, a multiclass function, and returnResamp is a character
string indicating what to save regarding the resampled summary metrics, which can be
all metrics. After selecting the best model by referencing the metrics discussed above, we
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identified and visualized the critical features of each cluster using a VIP package [135]. The
package is a general framework for constructing variable importance plots from various
machine learning models. We arbitrarily extracted 15 features for each best model using
the variance-based methods [135,136].

4. Results and Discussion
4.1. Results from Unsupervised Learning Analyses

Because of space, the summary statistics of all variables for each school system are in
Appendix A, and the entire dataset is available upon reasonable request. The summary
statistics on the SPS are in Table 1. As stated before, the five broad categories of SPS are
100–150 (exceeds expectations), 85–99.9 (meets expectation), 70–84.9 (needs improvement),
50–69.9 (at risk), and 0–49.9 (Fail). The results in Table 1 show that the school performance
scores are within the meets expectation and needs improvement category for all school
systems and three school years. However, there is high variability in school performance,
as exhibited by significant standard deviation, range, and coefficient of variation. The
variability in SPS varied by the school system and by year. For example, it was low in
2017/18 for the elementary and combination school systems and high in 2016/17 for the
high school system.

Table 1. Summary statistics of school performance score by period.

School Type Period Mean Standard Deviation Minimum Maximum Coefficient of Variation

Elementary/Middle School 2015/16 82.6 20.4 24.4 135.0 24.7
2016/17 79.5 21.4 21.6 137.0 26.9
2017/18 70.0 15.5 26.9 124.0 22.2

Combination School 2015/16 87.6 23.2 8.0 138.0 26.5
2016/17 87.8 22.9 1.8 141.0 26.0
2017/18 77.5 19.2 13.1 132.0 24.8

High School 2015/16 89.6 20.7 12.8 136.0 23.1
2016/17 89.9 23.9 2.5 138.0 26.5
2017/18 80.1 21.0 13.8 132.0 26.3

Before clustering, the estimated Hopkins statistics to measure the clustering tendency
were 0.870, 0.842, and 0.823 for elementary, combination, and high school systems. Note
that when Hopkins’ statistic is equal to 0.5, the dataset reveals no clustering structure; when
the statistic is close to 1.0, imply significant evidence that the data might be cluster-able
and a value close to 0, in this case, the test is indecisive, and data are neither clustered
nor random [23,137]. Based on the above results, we can reject the null hypothesis and
conclude that the Louisiana education dataset has sufficient structures in the data to justify
cluster analysis.

As shown in Figure 2, the manifold approximation and projection (PaCMAP) turn
the whole dataset into a two-dimension scale, giving each data point a location on a map,
thereby avoiding crowding them in the center of the map, and there are clear boundaries
between clusters. After dimensionality reduction, we use visual inspection and other
statistical measures to identify optimal numbers of clusters on the two-dimensional data,
and the results are in Figure 2. As discussed in the literature review, the Elbow and the
Silhouette methods in Figure 2 measure a global clustering characteristic. The Gap statistic
formalizes the elbow/silhouette heuristic to estimate the optimal number of clusters.

The majority rule in Figure 2 measures the appropriateness of clusters using vari-
ous indices [138]. Most statistical techniques for the elementary school system support
five optimal clusters that provide the best visualization results with few outliers and mini-
mal overlaps. For the combination and high school systems, visualization and statistical
measures proposed four optimal clusters for each school system. Notice the two outliers
for the high school system. The elementary school system’s inflection points for the Elbow,
Silhouette, and G-Statistics methods are at five clusters. Indices in the majority rule also
identify five optimal clusters, likewise the PaCMAP visualization. For the combination
school’s system, whereas the Elbow, Silhouette, majority rule, and PaCMAP methods
propose four clusters, the first inflection point for the G-Statistics method is five. While
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the Elbow and Silhouette methods suggest four clusters, the G-Statistics methods suggest
five, the majority rule proposes four and six clusters for the high schools’ system, and the
PaCMAP identifies six clusters with two outliers.

Figure 2. Potential optimal numbers of clusters.

The results of internal clustering validation measures (i.e., connectivity index, Dunn
Index, and Silhouette width) based on the Gowers distance of the original data and PAM are
in Figure 3. The optimum value of the connectivity index should be minimum; Silhouette
should be maximum; likewise, the Dunn index. In Figure 3, the three measures suggest
three, six, and four optimal clusters for the elementary school system. Analogous results
from the three measures are four, six, or seven for the combination school system and
four, six, or seven for the secondary school system. The results from the three measures
are as expected due to heterogeneity in the data. In Figure 2, each index has limitations,
especially for a large dataset with outliers, and the results rely heavily on properties
intrinsic to the dataset [12,74]. However, the Silhouette width is a widely used index
for internal clustering validation and determining the quality of clusters and the entire
classification [139]. The index provides enough information about clustering quality for
unlabeled data and, therefore, suggests more accurate results regarding optimal numbers
of clusters existing in the dataset.
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Figure 3. Internal clustering validation measures.

To get the best and most consistent results, we use the Silhouette width results
and modify the measure to determine the best-bet numbers of groups by comparing
the weighted proportions of data points at the boundaries of each created cluster using
the following formula (Wk = ∑K

i=1

[
Zi
n

][
NSi
Zi

]
=

[
NSi

n

]
, where Wk is the weighted negative

Silhouette proportion, K is the number of clusters, Zi, is the size of the cluster (number of
observations in the cluster), n is the sample size (observations in the dataset), and NSi is
the number of data points with negative Silhouette width in each cluster. The weight can
evaluate results produced by similar or different algorithms on equal or different numbers
of clusters). The results from the proposed formula are such that the weighted ratio is zero
for perfect partitioning and one for random data points with no visible groups.

The first panel of Figure 4 presents the reference points, suggested optimal clusters
identified in Figures 2 and 3, and potential optimal clusters using the proposed weighted
formula for the elementary schools’ system; comparable results for the combination and
high school systems are in Appendix B. In Figure 4, regarding the elementary schools’
system, the average Silhouette width and the weighted proportion for the width under
three clusters were 0.26 and 0.129, compared to 0.26 and 0.093 for four clusters, 0.26 and
0.115 for five clusters, 0.27 and 0.041 for six clusters. In Figure 4, the elementary school
system reference point is five clusters, and the results show that 11.5 percent of data points
were on the boundaries compared to 12.9, 9.3, and 4.1 percent when portioned into three,
four, and six, respectively. Notice that 13 and 39 percent of data points in clusters one
and two under the four cluster assumptions were on the cluster boundaries. Analogous
numbers are 2 (cluster 1), 17 (cluster 2), and 13 (cluster 4) under the six clusters assumption.
Six clusters partition the elementary school’s system data better by positioning a few (per
cluster) data points on the cluster’s boundaries. Moreover, the second panel of Figure 4 is
the box plot of the average Silhouette of the referenced clusters. For the elementary school
system, the results from six clusters show few outliers compared to the remaining clusters.
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Figure 4. Proportional data points on cluster boundaries and their distributions for the elementary
school system.

The equivalent results for the combination and high school systems are in Appendix B.
The weighted proportion for negative Silhouette width from the combination schools’
system suggests selecting among three, four, and seven clusters that indicate that 5.8, 6.0,
and 6.4 percent of the data points were on boundaries. For six clusters, 12.8 percent of
data points are on the borders. Partitioning the combination schools’ system into four
groups produced better results. For example, 14 and 33 percent of clusters 1 and 3 are on
boundaries compared to 7 and 25 data points in clusters 1 and 2 when the data is portioned
into four clusters. The results for the high school system imply retaining seven groups that
position only 5.3 percent of the data point on the boundaries of the created clusters, and
only cluster one has 11 percent of the data points on the edge of the group. Also, the data
points with a negative Silhouette are less than one percent among all seven clusters for the
high school system.

Figure 5 presents the annotated clusters with school performance scores and ellipses
created using the Khachiyan algorithm (Gács and Lovász, 1981); the distance between the
centroid and the furthest point in the cluster defines the radius of the circle. In Figure 5,
SPS is the cluster medoid regarding SPS. In Figure 5, the pairwise controlled manifold ap-
proximation preserves both inter-cluster (global structure) and intra-cluster distance (local
structure) distances (data geometry), the position of each cluster determines relatedness
between clusters, and the size and spread of each cluster are proportional to the variance of
the group and cluster membership. Figure 5 shows four unique groups of school clusters
under the elementary schools system, denoted as extremely at-risk schools (the medoid SPS
is 50.0), high-at-risk schools (the medoid SPS is 54.70), at-risk schools (the medoid SPS is
58.4, and exceeds expectations (the medoid SPS is 106.5). The meet-expectation cluster has
a medoid score of 79.7, intersecting with exceeds expectations cluster with a medoid score
of 92.3. Specific features for intersecting clusters are similar or share comparable attributes.
The intersections or overlaps imply that the data points on the boundaries of these clusters
are closer to data points in the neighboring cluster than to data points in its cluster.
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Figure 5. School systems optimal clusters annotated with school performance scores.

Figure 5 also shows one unique cluster under the combination schools’ system; the
remaining three are interrelated. The cluster with the failing schools had a medoid score of
48.0 and intersected with the at-risk Schools’ cluster with a medoid score of 59.3 and meets
expectation schools with medoid scores of 89.9. The unique “exceed expectation schools
cluster” had a medoid score of 120.8. For the high school system, one of the seven clusters
is unique, that is, the needs improvement cluster with a medoid SPS of 79.6. This unique
cluster contained two outliers; therefore, they were removed for further analysis. Three
groups, each with two clusters, are interrelated. The first two interconnected clusters are
extremely failing schools (the medoid SPS is 33.7) and lower- at-risk cluster (medoid SPS is
68.9). While the upper-at-risk Schools’ cluster interconnects with meet expectation clusters
with the medoid SPS of 65.0 and 89.7, respectively, the exceeds expectation cluster (medoid
SPS is 98.9) intersects with exceeds expectation cluster with a medoid of 101.3. The results
in Figure 5 suggest that the organization of school performance in the State of Louisiana is
not along a single dimension of indicators but meaningfully organized into heterogeneous
clusters with unique and interconnected features.

4.2. Results from Supervised Learning Analyses

Reporting and comparing performance metrics is customary when evaluating machine
learning models. Each metric has advantages and disadvantages; each reflects a differ-
ent aspect of predictive performance. We used the holdout method to determine how
statistical analysis can transform into a dataset, as explained in Sections 2.2 and 2.3. The
experimental part of the research covers the design of the test environment plus the
formation of each model by splinting the datasets into training (80%) and validation
(20%) sets. The algorithms used in this study include decision trees (DST), k-nearest
neighbor (KKNN), stabilized linear discriminant analysis (SLDA), NSC (nearest shrunken
centroids (NSC), penalized discriminant analysis (PDA), HDDA (high dimensional dis-
criminant analysis (HDDA), random forest (RF), and gradient boosting machine (GBM).
These are popular algorithms for multiclass classification. The summary statistics of each
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model’s performance metrics are in Table 2, and the relative distributions of the metrics are
in Appendix C.

Table 2. Metrics of machine learning models.

Model More-Is Better Low-Is-Better

Accuracy Kappa Recall Specificity Detection Rate Log Loss

Mean SDV Mean SDV Mean SDV Mean SDV Mean SDV Mean SDV

Elementary school system
RF 0.9950 0.0049 0.9936 0.0063 0.9882 0.0114 0.999 0.001 0.1658 0.0008 0.2268 0.0111

GBM 0.9934 0.0052 0.9916 0.0067 0.9864 0.0118 0.9987 0.001 0.1656 0.0009 0.0448 0.0395
p-Value 0.246 0.2459 0.538 0.26 0.282 0.0001 ***

PDA 0.9845 0.0056 0.9802 0.0072 0.9736 0.0119 0.9966 0.0012 0.1641 0.0009 0.0916 0.0481
SLDA 0.9832 0.0066 0.9786 0.0084 0.9739 0.011 0.9965 0.0013 0.1639 0.0011 0.0796 0.0375
HDDA 0.982 0.0065 0.977 0.0083 0.9719 0.0126 0.9963 0.0014 0.1637 0.0011 0.2464 0.1592

NSC 0.9753 0.0059 0.9685 0.0076 0.948 0.0139 0.9948 0.0013 0.1626 0.001 0.1261 0.0121
KKNN 0.8477 0.0176 0.8037 0.023 0.8063 0.0267 0.9663 0.0039 0.1413 0.0029 0.6249 0.1548

DS 0.7683 0.0516 0.6906 0.073 0.5792 0.0806 0.9483 0.0123 0.1281 0.0086 0.499 0.0982

Combination school system
GBM 0.9817 0.0143 0.9745 0.0199 0.9717 0.0237 0.9938 0.005 0.2454 0.0036 0.1259 0.1436

RF 0.9787 0.0152 0.9704 0.0211 0.9696 0.0212 0.9932 0.0049 0.2447 0.0038 0.3021 0.0316
p-Value 0.431 0.4309 0.713 0.616 0.431 0.0001 ***
HDDA 0.9635 0.0236 0.9497 0.0324 0.9605 0.0276 0.9889 0.0074 0.2409 0.0059 0.83 0.6379

PDA 0.9507 0.025 0.9307 0.0355 0.915 0.0435 0.9822 0.0092 0.2377 0.0062 0.4915 0.3308
SLDA 0.9263 0.0234 0.896 0.0334 0.8733 0.0415 0.9735 0.0086 0.2316 0.0059 0.4824 0.2917
NSC 0.9189 0.026 0.8852 0.0374 0.8594 0.046 0.9705 0.0093 0.2297 0.0065 0.2554 0.1087
DS 0.8614 0.0131 0.8017 0.0191 0.7644 0.0175 0.9494 0.0053 0.2154 0.0033 0.4403 0.2287

KKNN 0.795 0.0572 0.7096 0.082 0.7676 0.0622 0.9251 0.021 0.1987 0.0143 0.7143 0.298

High school system
RF 0.9885 0.0116 0.986 0.0142 0.9861 0.0155 0.9976 0.0024 0.1647 0.0019 0.3651 0.0282

GBM 0.9827 0.0177 0.979 0.0215 0.9817 0.0196 0.9965 0.0035 0.1638 0.003 0.1485 0.242
p-Value 0.144 0.1458 0.34 0.176 0.144 0.0001 ***
HDDA 0.9583 0.0241 0.9495 0.0292 0.9612 0.0227 0.9918 0.0048 0.1597 0.004 0.366 0.2493

PDA 0.9342 0.0227 0.9196 0.0278 0.9081 0.0314 0.9864 0.0047 0.1557 0.0038 0.5944 0.388
NSC 0.9254 0.0203 0.9091 0.0248 0.8979 0.0274 0.9849 0.0041 0.1542 0.0034 0.302 0.0995

SLDA 0.9093 0.0267 0.889 0.033 0.8674 0.0403 0.9813 0.0055 0.1516 0.0044 0.656 0.3091
KKNN 0.812 0.0519 0.771 0.0633 0.8161 0.051 0.9614 0.0107 0.1353 0.0086 0.6454 0.1971

DS 0.6521 0.0421 0.5656 0.0552 0.5668 0.0535 0.9271 0.0092 0.1087 0.007 0.8002 0.0485

Note: *** Significant at 99% confidence level. SDV is standard deviation, DST (decision trees), (KKNN) k-nearest neighbor,
SLDA (stabilized linear discriminant analysis), NSC (nearest shrunken centroids), PDA (penalized discriminant analysis),
HDDA (high dimensional discriminant analysis), (R.F.) random forest, GBM (gradient boosting).

By comparing both “more-is-better” and “low-is-better” measures, the performance
metrics in Table 2 results indicate that the random forest (RF) and gradient boosting machine
(GBM) algorithms perform betters in predicting the created clusters for all school systems.
More-is-better implies a preference for higher scores, and less-is-better means lower scores
indicate better performance. Based on t-test results and more-is-better metrics, the RF
and GBM models have the highest but similar scores with low standard deviations. The
RF and GBM generated the best results related to the accuracy, kappa, recall, specificity,
and detection rates (more-is-better) performance measures, with relatively small standard
deviations compared to the results from other algorithms. The results imply that the
RF and GBM results are more accurate and stable than other models. Also, the mean
log losses for the RF and GBM are the lowest among all models. The mean log losses
are statistically significantly lower for the GBM under the elementary and high school
systems but higher for the combination school system. Therefore, we use the GBM results
to identify features for the elementary and high school systems and RF results for the
combination school system. Results in Table 2 show that the Decision Tree and K-nearest
neighbor performed poorly across the three school systems. The emphasis of more-is-better
performance measures is on avoiding “False Negative” or Type II errors. In statistics, type
II errors mean failing to reject the null hypothesis when it is false. For RF and GBM, better
measures are more than 0.95, implying that at least 95% of cluster members are in the
ideal groups. A relatively higher detection rate suggests that the two algorithms are more
likely to identify those members that do not belong in either cluster. In Table 2, the log-loss
also focuses on model prediction performance. A model with perfect prediction has a
log-loss score of 0; in other words, the model predicts each observation’s probability as the
actual value. Therefore, the log-loss indicates how good or bad the prediction results are by
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denoting how far the predictions are from the actual values; thus, lower is better. Based on
the results in Table 2, the RF and GBM models outperform all models for all school systems
using more-is-better and low-is-better performance metrics.

For the elementary school system, we used the GBM models to identify critical features
influencing school performance. Comparatively, in Table 2 (see also Appendix B), the mean
and standard deviation estimates of the more-is-better performance metrics from the RF and
GBM models are not statistically significantly different (p = 0.01) among the three Schools’
systems. However, while the mean values for the RF are consistently higher than those for
the GBM models under the elementary school systems, the GBM model log-loss is lower
(0.0448) and statistically different compared to the RF log-loss model (0.2268). Although not
statistically significant, for the combination school system, the more-is-better metrics from
the GBM are consistently higher and tighter (low standard deviation) compared to the RF
results. Moreover, the mean Log-loss of the GBM model (0.1259) is statistically significantly
lower (p = 0.01) than the mean log-loss for the RF model (0.3021). Therefore, the GBM is
slightly better at predicting and classifying combination school system datasets than the
RF model.

The performance metrics of the k-folds validation analysis are not statistically signifi-
cant (p = 0.01) compared to the results from the training datasets. Similarly, Table 2 and
Appendix C show that the RF’s more-is-better performance metrics are consistently higher
but not statistically significantly different from the GBM model results. However, the mean
logloss of the GBM (0.1485) is lower and statistically significant compared to the RF mean
logloss (0.3651). Referring to these results, we also used GBM model results to identify the
critical features of combination and high school systems. The estimated GBM best “metrics”
using k-fold cross-validation were: accuracy (0.9927), kappa (0.9912), and logloss (0.012)
for the elementary school system, accuracy (0.9876), kappa (0.9801), and logloss (0.023) for
the combination school system and accuracy (0.9932), kappa (0.9911), and logloss (0.0165)
for the high school system.

Generally, importance provides a score indicating how useful or valuable each feature
was in constructing the boosted decision trees within the model. The more an attribute con-
tributes to making critical decisions with decision trees, the higher its relative importance.
Figure 6 shows the fifteen features (arbitrarily set) generated from the GBM (elementary
and high school systems) and RF (combination schools system).

In Figure 6, the critical features of the elementary school system are mainly related
to community socioeconomic variables and school characteristics. The community vari-
ables (with the order of importance) include the percentage of the population with a
bachelor’s degree (the dominant feature), dwelling median value, the total population in
the community, the percentage of poverty in the community, and the relative number of
minorities in the community. These variables are related to community affluence. The
education literature always confirms a causal relationship between school performance and
the socioeconomic status of communities. Socioeconomic status (SES) encompasses wealth,
educational attainment, financial security, social status, and social class perception. Poverty
is not a single factor but characterizes multiple physical and psychosocial stressors.

Further, SES is a consistent and reliable predictor of many life outcomes. Many studies
(such as [140–142]) indicate that schools in low-SES communities perform poorly com-
pared to schools in affluent neighborhoods, punctuated by the presence of minorities.
Often, schools in low-SES communities have lower performance scores because students
have poor cognitive development and lack language, memory, and socio-emotional pro-
cessing. Consequently, their performance in schools is flawed. Moreover, the school
systems in low-SES communities are often under-resourced, negatively affecting schools’
academic progress and outcomes, including inadequate education and increased dropout
rates [128,143–145]. The State of Louisiana can reduce these risk factors through early inter-
vention programs to improve the school systems with elevated identified critical features
at the community level.
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Figure 6. Relative importance scores of variables at the school system levels.

Solutions to improve the performance of Louisiana’s elementary school systems should
focus on reducing teachers’ workload and boosting their morale through increased pay
and other work-related incentives. The critical features related to school-level characteris-
tics include the salary of other non-academic instructors, truancy rate, teachers’ full-time
equivalent, total students in schools, salary expenditures and current expenditures per
pupil, and the number of teachers with a graduate degree. These variables determine
the workload, incentive, and morale of teachers and non-academic staff and the delivery
of quality education to individual students. Frequently, schoolteacher and staff morale
are associated with inequities from being overworked, lacking advancement, and low
salaries resulting in unproductive school culture, which affects the administration, teaching,
and learning [146,147]. Therefore, factors that cause low morale are from sources control-
lable by the school administrators and policymakers. Reducing teachers’ workload, class
preparation time through smaller classrooms, administrative support, recognition, and
opportunities for advancement offer administrators leverage to enhance or change the
school culture.

The first four significant critical feature of the combination school system is the median
dwelling values (the dominant feature), salary expenditure per pupil, support staff with
a degree, and percentage of the population with a degree. Except for the experience of
the support staff, although not in a similar order, other remaining variables appear as
critical features in the elementary school’s system. Apart from community affluence and
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teachers’ and staff morale, the support staff experience was also an essential feature of
the combination school system. Positive school culture thrives by including support staff
and all non-teaching teams who play a crucial role in ensuring students learn in a safe
and supportive learning environment. They can foster positive, trusting relationships with
students and improve the school climate by encouraging parent and family involvement
in their student’s education [148,149]. In Louisiana, schools rely on the professional input
and expertise of a range of staff; some work alongside teachers, and some work behind the
scenes to ensure an efficient infrastructure for effective teaching and learning. As the chief
executive officers, the school principals should initiate a consistent, compelling reward
system to motivate their job performance and general welfare. Often overlooked, legislators
should ensure that the combination school system has a pool of efficient and motivated
support staff to support learning in this diverse and complex school system.

The four dominant features of the high school system are total students (the most
predominant), dwelling median value, the population in the community, and full-time
equivalent per pupil. The second groups are variables related to workload (i.e., school
administrator, support staff, and teacher FTE) and incentives (i.e., the salary of support
staff). The remaining variables are allied to the experience and education of administrators
and teachers (i.e., the experience of administrators, administrators with a graduate degree,
and support staff with a degree) and a community-level variable (i.e., the percent of the
population with a degree). Apart from community affluence, the experience and education
of administrators and support staff were critical features within the high school systems. A
successful school is about much more than teaching. While good teaching and learning
are crucial, experienced administrators are vital in providing a well-rounded and effective
teaching environment. Experienced administrators and support staff allow academic
staff and teachers to focus on teaching. At the same time, they create robust systems
for accountability, policies, and procedures to ensure that teaching and learning flow as
smoothly as possible. An effective administration department can extract and analyze
critical data to inform schools’ strategic decisions around education provision [150–153].

In addition, employee retention does not have a one-size-fits-all solution. Each school
system and individual school must work purposefully to devise plans to retain its most
influential administrators and teachers [149,154]. The State of Louisiana can reduce admin-
istrators turnover through beneficial job contracts, the tenure system, and a higher salary
for administrators and teachers in the high school system. Additionally, creating a positive
disciplinary environment lowers the odds of principals moving to another school, espe-
cially in high concentrations of students of color. Moreover, allowing the administrators
to influence and determine teacher professional development and budgeting decrease the
likelihood of principal turnovers.

The ladder/spider plots in Appendix D illustrate the most prominent features within
each identified cluster in each school system relative to the average school system values.
The plotted variables are scaled (range standardized from 0 to 1) and represent lacking (0)
to abundant (1); therefore, the spokes radiate outwards from a central zero hub. The center
of the wheel or the x-axis represents a minimum value, which is zero; the mid-cycle and
the last cycles represent the average (0.5) and the maximum (1). The red color represents
the cluster’s average values, and the green color is the school system’s average value. The
denotation of the clusters is ordinal and consists of three groups: SPS below 60 (failing
schools, extremely at risk, highly at risk, and at risk), the SPS between 60 and 80 (lower
at risk and meet expectation), and SPS above 80 (exceed expectations and highly exceeds
expectations). Therefore, six clusters exist for the elementary school system (the 7th cluster
included only outliers), and four and six prominent groups exist for the combination and
high school systems. School-level attributes that distinguished the school system cluster
include truancy rate, availability of transportation services, teacher FTE per pupil, the
average salary of other support staff, the average wage of administrators, and the number
of support staff with undergraduate and number of instructors with graduate degrees.
Community-level attributes were the percentage of the population with degrees, median
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dwelling values, population size, the portion of the people in poverty, and population
median age.

The medoid SPS score for the elementary school system was 52.0 for the extremely
at-risk cluster. The cluster’s truancy rate, transportation services, and salaries for admin-
istrators and instructors are below the elementary school system average; likewise, the
number of support staff with graduate degrees. Also, the number of teachers and support
staff with graduate degrees was below the average for elementary schools. Most of the
schools in this cluster are in low-populated communities with a young population and
below-average wealth, measured by dwelling value. The poverty rate (based on income) in
these communities is relatively low, and the percentage of people with a degree is above
average, which signals the characteristics of working-class communities. Parents in these
communities (working class) drives their children to schools (low truancy rate) when going
to work. Although the FTE per pupil is above average, working parents might not have
enough time to support their students academically, such as helping them with homework
and other assignments. To increase performance, instituting effective mentoring, tutoring,
and after-school education programs that provide motivation, personal individual attention,
direct instruction, and access to textbooks and instructional materials to increase schools’
academic skills and support services [155–158]. Increasing the number of experienced
administrators, staff, and teachers through new hires would boost the performance of the
schools in the cluster.

Although transportation service in the “high-at-risk” cluster (medoid SPS of 54.7) is
average, there is an elevated truancy rate. In this cluster, the number of support staff with an
undergraduate degree is deficient, and teacher FTE per pupil is below the average. Schools
in the groups are in young, high-populated, and relatively affluent communities with low
poverty rates, but the population with the degree is below average. Low teacher FTE per
pupil might indicate instructor understaffing that limits the process of identifying students
with specific instructional needs. Increasing the number of instructors and collaborating
with parents to reduce truancy would improve school performance. There is a need for
intervention programs that dispel parental misbeliefs undervaluing the importance of
regular attendance and the number of school days their child misses classes [159,160].
Truancy reduction efforts need a differentiated approach that targets risk factors more
prevalent in a specific group of students and tailored concerted efforts to ensure chronic
absentee students can get back on track.

Except for the above-average numbers of instructors with an undergraduate degree
and slightly higher teacher FTE per pupil, the at-risk cluster with medoid SPS of 58.4 is like
the high-at-risk cluster discussed above. Schools in the cluster serve vulnerable populations
facing educational and economic barriers [161]. Besides mentoring, tutoring, and after-
school education programs, such schools need to be recognized and supported with more
physical, human, and financial resources. An increase in teacher FTE per pupil indicates
increased student support [162] with direct and positive effects on school performance.
Although the values of most attributes are below average, the teacher FTE per pupil for
the cluster that meets expectations (medoid SPS of 79.7) was above average. Except for the
number of support staff with a graduate degree, dwelling median value, and population
size, the two clusters that exceed expectation (medoid SPS of 92.3) and highly exceed
expectation (medoid SPS of 106.5), all other variables are within the elementary school
averages. The schools in these clusters are in communities with low populations, but the
percentage of the people with a degree is above average, and the population’s median
age is below average, implying that these schools are in large affluent communities with
resources to support the school systems.

For the combination school system, schools in the “failing Schools” cluster where
a medoid had an SPS of 48 are in large communities with medium wealth measured by
median dwelling values. Although the number of instructors with a graduate degree
is slightly above average, other schools’ and community-levels attributes are below the
school system averages. Excluding the population percentage with the degree variable, all
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other characteristics for the “at-risk” cluster (medoid SPS of 59.3) were below the average,
implying various interrelated variables influence Schools’ performances. For both clusters,
improvement in leadership will churn the interwoven network [163], resulting in positive
structural and administrative changes that improve school performance [164]. Some of the
attributes of the “meet expectation” cluster (medoid of SPS of 89.9) were above the school
system average. These variables include the number of instructors with a graduate degree,
dwelling medium values, population size, and average salary of school administrators. In
the extant education literature, these are critical factors influencing school performance. For
the “exceeded expectation” cluster where the medoid had an SPS of 120.8, the percentage of
the population with a graduate degree and the teacher FTE per student was above average,
and the truancy rate was below the school system average.

After dropping the outliers, the high school system had six clusters. The SPS for
the medoid of the “upper at risk” cluster was 58.4. The above-average attributes for the
group were the percentage of the population in poverty, the number of support staff
with a graduate degree, dwelling medium values, and population size. School-level and
community-level attributes within the cluster that was below average included the number
of support staff without a graduate degree and the percentage of the population with
graduate degrees. The schools in the cluster were in densely populated communities with
high poverty rates commonly associated with poor school performance. These schools
need active instruction that increases student engagement, a critical element of academic
achievement in schools with students from families in poverty and at risk for adverse
outcomes [165]. For the “lower-at-risk” cluster where the SPS for the medoid was 66.9,
the above-average attributes were percent of the population in poverty, percent of peo-
ple in poverty, and teacher FTE per pupil. Schools in the cluster were in relatively less
affluent small communities with high poverty rates. The truancy rate, the salary of admin-
istrators, and the number of support staff with an undergraduate degree were below the
cluster average.

Solid administrative leadership is a critical component of schools with high student
achievement. Students receive more individualized help, and attention from the support
staff; teachers receive specialist support and assistance with their administrative and
planning tasks, granting them more time for their core responsibilities [166]. The medoid
of the “highly needs improvement” cluster had an SPS of 71.3. The attributes representing
the number of support staff without a graduate degree, the number of support staff with a
degree, and percent of the population with a degree were above average. The schools in
this cluster were in moderately affluent and medium-sized communities with low poverty
rates that differentiate it from the “upper-at-risk” and “lower-at-risk” clusters. The medoid
of the “meet expectation” cluster had an SPS of 90.0, and the schools in the group were
in moderately affluent, medium-sized communities and relatively above-average median
age. The number of support staff with graduate degrees and the salary of administrators in
these schools was above average, boosting the overall school performance.

The “exceeds expectation” cluster attributes (SPS of 102.2) are almost like the “highly
needs improvement” cluster. They differ in two features: the percentage of the population
with a degree and support staff without an undergraduate degree. The medoid of SPS, the
“highly exceeds expectation cluster,” was 131.5. The schools were in moderately affluent
and low-populated communities, with above-average percent females in the population
and a percentage of people with a degree and support staff without an undergraduate
degree. In the cluster, the above-average unique attribute is the percentage of females in the
population. Education research has found that parents with high education significantly
influence their children’s educational and career aspirations through increased parent
involvement in student education activities [158]. Education studies (such as [157,167,168])
also report a strong correlation between single parents and reviewing student report
cards, as well as attending field trips and school activities, with a positive effect on
students’ performance.
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5. Summary and Conclusions

There are three main categories in Louisiana public schools: elementary/middle
school system (1–8 grade), combination school system (1–12 grade), and high school
system (9–12 grade). These schools persistently perform below the national average.
Louisiana public schools perform below the national average. The base of the analyses is
the data from 2015/16, 2016/17, and 2017/18 school years data available from the Louisiana
Department of Education Data Center. The data include school performance scores, student
characteristics, and school attributes combined with community-level variables from the
2019 American Community Survey (ACS). The ACS provides data annually and covers
a broad range of topics about the U.S. population’s social, economic, demographic, and
housing characteristics.

The objectives were to group the schools into homogenous clusters and identify
subgroups based on critical features influencing their performance. This study uses a
pairwise controlled manifold approximation technique as a multidimensional reduction
technique to visualize and create the base clusters. We also used gradient-boosting machine
learning to characterize the homogenous clusters at the school system and subgroup levels.
Results indicate that the elementary/middle school system is in six homogenous clusters,
the combination school system is in four groupings, and the high school system is in six
groups. Failing schools were generally in densely populated and low affluent communities,
with high truancy rates, below average teacher FTE per pupil, administrators’ salaries,
and the number of support staff. High-performing schools were in communities with
a high percentage of the population with a graduate degree, moderately affluent and
smaller communities, and administrators’ salaries and numbers of support staff were
relatively high.

Our results indicate that investing resources to increase the number of support staff
and hiring administrators with more experience (implying (higher pay) can be economically
more effective than simply increasing the per-pupil spending, at least in the short term. To
improve school performance, policymakers and administrators must first identify attributes
of persistently struggling schools and engage the community in developing evidence-based
plans to solve a specific problem. Funding for struggling schools must focus on the quality
of every school, from the excellence of the instruction to the rigor of the classes and equal
access to resources (such as adequate support staff) shown to be fundamental to quality
education and school performance. However, re-evaluating the results is necessary when
the post-COVID-19 pandemic data is available.
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Appendix A. Summary Statistics of the Covariate Variables

Variables 2015/16 2016/17 2017/18

Average Std.Dev Average Std.Dev Average Std.Dev

Elementary schools system
School performance score 82.94 20.33 79.96 21.28 70.41 15.46

Salary expenditure per pupil ($) 5322.00 1374.00 5421.00 1522.00 5518.00 1556.00
Current expenditure per pupil ($) 11,081.00 1435.00 11,259.00 1475.00 11,591.00 1593.00

Full-time equivalent certified teachers 32.13 12.87 32.37 13.1 32.34 13.32
Full-time equivalent other instructors 8.86 5.11 9.04 5.33 8.78 5.29

Full-time equivalent support staff 4.52 2.86 4.54 2.65 4.57 2.95
Full time Equivalent administrative staff 3.97 1.53 3.95 1.65 4 1.77

Full-time Equivalent transportation services 4.46 3.68 4.41 3.74 4.29 3.43
Full-time equivalent other staff 8.08 3.76 7.92 3.68 7.83 3.54

Salary of certified teachers 48,530.00 4079.00 49,036.00 3686.00 49,590.00 3978.00
Salary of other teachers 20,373.00 4112.00 20,539.00 4021.00 21,036.00 4248.00
Salary of administrators 49,408.00 8566.00 49,656.00 9607.00 50,632.00 9588.00
Salary of support staff 21,043.00 5625.00 21,214.00 5493.00 21,829.00 6074.00

Number of support instructors without bachelor’s degree 12.13 5.22 12.15 5.16 12.06 5.12
Percentage of instructors without bachelor’s degree 0.86 1.06 0.99 1.22 1.04 1.25
Percent of administrators without bachelor’s degree 2.93 1.36 2.88 1.4 2.87 1.33
Percent of Support Staff without bachelor’s degree 33.3 8.8 33.22 8.5 32.93 8.72
Percent of certified teachers with bachelor’s degree 37.77 8.7 37.58 8.48 37.8 8.54

Percent non-instruction teacher with bachelor’s degree 2.56 3.73 2.61 3.33 2.38 2.65
Percentage of uncertified teachers without bachelor’s degree 2.12 2.22 2.03 1.97 1.92 1.8

The percentage of Support Staff with bachelor’s degree 42.93 9.3 42.78 8.7 42.74 8.96
The percentage of certified teachers with a graduate degree 14.84 7 15.16 6.91 15.37 6.82

Percent of uncertified instructors with a graduate degree 4.43 2.22 4.36 2.21 4.39 2.16
Percent of administrators with a graduate degree 3.33 1.34 3.29 1.27 3.35 1.32
Percent of support staff with a graduate degree 22.7 7.62 22.92 7.59 23.2 7.58

Percent of support staff with specialized training 0.7 1.09 0.7 1.15 0.71 1.2
Years of experience as a certified teacher 12.48 3.23 12.56 3.18 12.46 3.24
Years of experience of other support staff 10.04 4.26 9.98 4.32 9.99 4.55
Years of experience of uncertified teachers 15.79 5.56 15.64 5.47 15.66 5.72

Years of experience as administrators 17 5.56 16.93 5.67 16.64 5.55
Years of experience support staff 12.26 2.48 12.31 2.46 12.21 2.56

Percent student attendance 93.57 8.17 93.03 8.45 93.79 5.33
Percent of classes with 21–26 students 35.15 20.64 33.29 20.93 33.05 20.64
Percent of classes with 27–33 students 9.07 11.42 8.86 11.32 8.8 11.06

Percent of classes with more than 34 students 2.7 3.44 2.14 2.1 2.43 3.2
School expulsion rate 0.48 0.92 0.44 0.7 0.47 0.81

Percentage of students retained 3.59 2.85 3.33 2.85 3.33 2.85
Percent truancy 28.9 13.91 33.67 14.96 49.36 16.11

Total number of students 486.7 205.1 481.8 219.1 489.2 215.6
Percentage of female students 47.77 5.31 47.51 6.39 48.39 3.24

Percent of fully proficient students 96.82 5.59 96.24 6.5 96.27 6.64
Percent of students with limited English proficiency 3.25 5.51 3.52 5.96 3.87 6.57

Percent of minority students 53.27 29.85 55.95 28.8 58.06 29.35
The median age in the population 36.49 2.39 36.42 2.32 36.44 2.41

Size of the population 170,995.00 140,173.00 169,249.00 138,958.00 171,784.00 140,807.00
Dwelling median value 139,167.00 38,976.00 138,039.00 38,840.00 138,188.00 37,209.00

Percent of the population in poverty 3.6 1 3.69 0.97 3.75 0.96
Percent of the population with a degree 86.04 5.3 86.07 5.33 86.01 5.25

Combination schools system
School Performance Score 87.45 23.25 88.75 22.35 78.51 19.11

Salary expenditure per pupil ($) 5887.00 2503.00 6027.00 3083.00 6051.00 2860.00
Current expenditure per pupil ($) 12,043.00 6220.00 12,529.00 8736.00 12,014.00 2748.00

Full-time equivalent certified teachers 34.77 18.1 35.03 18.81 34.31 16.48
Full-time equivalent other instructors 6.68 4.66 6.53 4.7 6.52 4.56

Full-time equivalent support staff 4 3.14 4.32 3.85 4.05 3.27
Full-time equivalent administrative staff 4.53 2.45 4.6 2.4 4.56 2.55

Full-time equivalent transportation services 5.63 3.41 5.44 3.35 5.37 3.33
Full-time equivalent other staff 8.87 4.41 8.74 4.21 8.29 4.02

Salary of certified teachers 49,649.00 4694.00 49,790.00 4349.00 50,341.00 5140.00
Salary of other teachers 21,756.00 6325.00 21,925.00 6418.00 21,297.00 6499.00
Salary of administrators 47,902.00 11,992.00 49,319.00 9795.00 50,047.00 12,726.00
Salary of support staff 22,032.00 9419.00 22,707.00 10,844.00 22,311.00 9420.00

Number of support instructors without bachelor’s degree 9.03 5.15 8.74 5.6 9.11 5.24
Percentage of instructors without bachelor’s degree 0.97 1.53 1.03 1.44 1.12 1.61
Percent of administrators without bachelor’s degree 3.11 1.37 3.27 1.43 3.31 2.1
Percent of Support Staff without bachelor’s degree 34.17 10.61 33.69 9.53 33.91 10.15
Percent of certified teachers with bachelor’s degree 36.54 8.94 36.32 8.65 36.94 8.58

Percent non-instructional teachers with bachelor’s degree 1.78 2.98 1.79 3.41 1.56 2.45
Percentage of uncertified teachers without bachelor’s degree 1.91 1.68 2.03 1.81 2 1.82

Percent of Support Staff with bachelor’s degree 40.44 8.62 40.67 7.79 40.63 8.86
The percentage of certified teachers with a graduate degree 17.35 11.1 17.06 7.99 16.94 8.44

Percent of uncertified instructors with a graduate degree 3.49 2.22 3.5 2.05 3.47 1.96
Percent of administrators with a graduate degree 3.46 1.35 3.57 1.37 3.73 1.7
Percent of support staff with a graduate degree 24.46 11.52 24.43 9.43 24.3 9.86

Percent of support staff with specialized training 0.62 0.98 0.69 1.11 0.83 1.71
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Variables 2015/16 2016/17 2017/18

Average Std.Dev Average Std.Dev Average Std.Dev

Elementary schools system
Years of experience as a certified teacher 13.61 3.32 13.68 3.2 13.92 3.87
Years of experience of other support staff 10.64 4.65 11.06 4.66 10.74 4.62
Years of experience of uncertified teachers 15.94 7.04 16.27 7.03 17.02 7.49

Years of experience as administrators 17.1 4.85 16.34 5.21 17.21 5.28
Years of experience of support staff 13.1 2.78 13.07 2.46 13.44 2.84

Percent student attendance 92.42 7.83 91.78 8.12 93.08 2.94
Percent of classes with 21–26 students 15.63 10.64 16.53 11.26 16.73 10.87
Percent of classes with 27–33 students 7.82 8.24 7.4 7.98 7.87 9.35

Percent of classes with more than 34 students 2.07 2.72 2.06 4.79 2.49 5.41
School expulsion rate 0.64 1.15 0.67 1.47 0.7 1.66

Percentage of students retained 5.27 8.15 4.21 6.78 3.85 5.1
Percent truancy 26.96 14.97 33.73 17 53.69 16.63

Total number of students 499.2 285.8 525.3 351.1 510.4 326
Percentage of female students 46.67 8.34 47.17 7.1 47.52 6.51

Percent of fully proficient students 98.09 11.09 98.78 6.56 99.21 1.33
Percent of students with limited English proficiency 0.91 0.97 0.99 1.07 1.08 1.2

Percent of minority students 40.39 30.53 40.95 29.53 41.19 29.64
The median age in the population 37.47 3.32 37.49 3.25 37.54 3.26

Size of the population 89,843.00 115,074.00 84,773.00 115,033.00 79,577.00 110,879.00
Dwelling median value 113,667.00 35,055.00 110,891.00 32,344.00 108,294.00 31,221.00

Percent of the population in poverty 4.05 1.1 4.12 1.03 4.21 1.06
Percent of the population with a degree 88.93 4.1 89.36 4.03 89.33 3.8

High schools system
School performance score 89.65 20.68 90.17 23.64 80.29 21.14

Salary expenditure per pupil ($) 5423.00 1961.00 5595.00 2146.00 5737.00 2376.00
Current expenditure per pupil ($) 11,321.00 2540.00 11,557.00 2510.00 12,018.00 2724.00

Full-time equivalent certified teachers 53.4 29.58 54.24 31.22 56.04 30.33
Full-time equivalent other instructors 9.28 8.09 9.05 8.11 8.56 5.94

Full-time Equivalent Support Staff 6.84 4.52 6.91 4.33 7.03 4.65
Full-time equivalent administrative staff 7 3.5 6.96 3.53 7.21 3.7

Full-time equivalent transportation services 6.25 7 6.08 6.32 5.91 6.52
Full-time equivalent other staff 12.42 6.33 11.97 6.33 12.15 6.12

Salary of certified teachers 50,847.00 4171.00 51,111.00 3757.00 51,634.00 4203.00
Salary of other teachers 23,277.00 8017.00 24,138.00 11,237.00 24,273.00 9258.00
Salary of administrators 50,680.00 10,211.00 52,632.00 9440.00 54,377.00 11,818.00
Salary of support staff 21,891.00 8351.00 22,893.00 9232.00 22,990.00 7072.00

Number of support instructors without bachelor’s degree 6.62 3.3 6.83 3.39 6.9 3.09
Percentage of instructors without bachelor’s degree 1.08 1.25 1.08 1.2 1.09 1.19
Percent of administrators without bachelor’s degree 3.39 1.65 3.31 1.8 3.25 1.75
Percent of Support Staff without bachelor’s degree 29.24 9.57 29.05 10.1 28.62 9.95
Percent of certified teachers with bachelor’s degree 34.25 9.01 33.9 9.72 35.3 8.02

Percent noninstructional teacher with a bachelor’s degree 3.79 7.85 3.43 7.25 2.35 3.1
Percentage of uncertified teachers without bachelor’s degree 1.87 2.03 1.93 2.12 1.72 2.11

Percent of Support Staff with bachelor’s degree 40.27 8.76 39.93 9.16 40.15 9.16
Percentage of certified teachers with a graduate degree 20.16 7.19 20.43 7.91 20.46 7.59

Percent of uncertified instructors with a graduate degree 4.35 2.11 4.43 2.08 4.66 2.29
Percent of administrators with a graduate degree 3.55 1.37 3.51 1.41 3.73 1.47
Percent of support staff with a graduate degree 28.72 7.39 29.19 8.13 29.25 8.3

Percent of support staff with specialized training 0.6 0.83 0.63 0.9 0.61 0.88
Years of experience as a certified teacher 13.08 3.35 12.79 3.6 12.62 3.45
Years of experience of other support staff 10.28 4.01 10.61 4.72 10.66 5.04
Years of experience of uncertified teachers 17.06 5.7 16.65 6.03 16.45 6.02

Years of experience as administrators 17.56 5.44 17.17 5.33 16.76 5.29
Years of experience support staff 12.85 2.82 12.71 2.99 12.58 2.93

Percent student attendance 91.49 7.24 89.68 10.17 91 5.97
Percent of classes with 21–26 students 19.46 7.7 19.85 8.69 19.47 7.79
Percent of classes with 27–33 students 14.29 9.6 13.04 9.7 13.44 9.15

Percent of classes with more than 34 students 4.52 8.58 3 4.09 2.52 3.31
School expulsion rate 0.94 1.1 0.88 1.07 1.05 1.34

Percentage of students retained 6.62 8.08 6.09 8.46 5.93 8.93
Percent truancy 34.71 18.3 40.44 21.29 57.32 20.97

Total number of students 868.4 516.5 862.8 532.5 878 524
Percentage of female students 49.48 6.7 49.15 5.55 49.35 4.85

Percent of fully proficient students 97.33 7.72 97.84 4.24 97.45 4.69
Percent of students with limited English proficiency 2.04 3.79 2.2 4.2 2.69 4.63

Percent of minority students 53.55 28.77 56.65 27.51 59.15 28.53
The median age in the population 36.58 2.34 36.39 2.22 36.4 2.29

Size of the population 175,890.00 150,065.00 186,035.00 152,461.00 184,862.00 150,594.00
Dwelling median value 136,150.00 40,501.00 138,381.00 41,289.00 137,832.00 39,231.00

Percent of the population in poverty 3.74 1.12 3.82 1.01 3.87 1.02
Percent of the population with a degree 86.14 5.41 85.54 5.77 85.63 5.56
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Appendix B. Proportion Data Points on Cluster Boundaries and Their Distributions
for the Combination and High Schools Systems

Figure A1. Cont.
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Figure A1. Distribution of data points on cluster boundaries.
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Appendix C. Distribution of Performance Metrics of the Machine Learning Models

Figure A2. Performance metrics for the elementary schools’ system.

Figure A3. Performance metrics for the combination schools’ system.
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Figure A4. Performance metrics for the high schools’ system.

Appendix D. Important Features at the School Level

Figure A5. Important features of the elementary schools’ system (extremely and high at risk).
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Figure A6. Important features of the elementary schools’ system (at-risk and need improvement).

Figure A7. Important features of the elementary schools’ system (exceeds expectation and highly
exceeds expectation).



Educ. Sci. 2023, 13, 160 30 of 38

Figure A8. Important features of the combination schools’ system (failing schools and at-risk).

Figure A9. Important features of the combination schools’ system (meet the expectation and
exceeds expectation).
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Figure A10. Important features of the high schools’ system (extremely and lower at-risk schools).

Figure A11. Important features of the high schools’ system (higher-at-risk and meet-expectation schools).
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Figure A12. Important features of the high schools’ system (exceeds and highly-exceed-expectationschools).
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