
Citation: Gutierrez-Pachas, D.A.;

Garcia-Zanabria, G.; Cuadros-Vargas,

E.; Camara-Chavez, G.; Gomez-Nieto,

E. Supporting Decision-Making

Process on Higher Education

Dropout by Analyzing Academic,

Socioeconomic, and Equity Factors

through Machine Learning and

Survival Analysis Methods in the

Latin American Context. Educ. Sci.

2022, 13, 154. https://doi.org/

10.3390/educsci13020154

Academic Editor: Diego Vergara

Received: 25 October 2022

Revised: 12 January 2023

Accepted: 28 January 2023

Published: 1 February 2023

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

education 
sciences

Article

Supporting Decision-Making Process on Higher Education
Dropout by Analyzing Academic, Socioeconomic, and Equity
Factors through Machine Learning and Survival Analysis
Methods in the Latin American Context
Daniel A. Gutierrez-Pachas 1,* , Germain Garcia-Zanabria 1 , Ernesto Cuadros-Vargas 1 ,
Guillermo Camara-Chavez 1,2 and Erick Gomez-Nieto 1

1 Department of Computer Science, Universidad Católica San Pablo, Arequipa 04001, Peru
2 Computer Science Department, Federal University of Ouro Preto, Ouro Preto 35400000, Brazil
* Correspondence: dgutierrezp@ucsp.edu.pe

Abstract: The prediction of university dropout is a complex problem, given the number and diversity
of variables involved. Therefore, different strategies are applied to understand this educational
phenomenon, although the most outstanding derive from the joint application of statistical approaches
and computational techniques based on machine learning. Student Dropout Prediction (SDP) is a
challenging problem that can be addressed following various strategies. On the one hand, machine
learning approaches formulate it as a classification task whose objective is to compute the probability
of belonging to a class based on a specific feature vector that will help us to predict who will drop
out. Alternatively, survival analysis techniques are applied in a time-varying context to predict when
abandonment will occur. This work considered analytical mechanisms for supporting the decision-
making process on higher education dropout. We evaluated different computational methods from
both approaches for predicting who and when the dropout occurs and sought those with the most-
consistent results. Moreover, our research employed a longitudinal dataset including demographic,
socioeconomic, and academic information from six academic departments of a Latin American
university over thirteen years. Finally, this study carried out an in-depth analysis, discusses how
such variables influence estimating the level of risk of dropping out, and questions whether it occurs
at the same magnitude or not according to the academic department, gender, socioeconomic group,
and other variables.

Keywords: student dropout prediction; machine learning models; survival analysis

1. Introduction

Student dropout is one of the most-complex and -adverse events for students and
institutions. Possible reasons that lead a student to abandon his/her studies are diverse
and may be due to academic, demographic, or socioeconomic factors related to the familiar,
affective, or university environment [1]. Addressing this problem is challenging for any ed-
ucational institution since we seek to prevent it while maintaining high academic standards
in student training. Some first attempts to solve this educational phenomenon employed
theoretical models by creating and managing student support services, as formulated by
Tinto [2]. Tinto’s model mirrors the iterative process an undergraduate student experiences
throughout the academic years, pondering a possible decision between dropout or per-
severing. Although quite simple, several educational institutions use Tinto’s model as a
reference [3]. The evolution of machine learning techniques has been essential and decisive
in addressing different educational phenomena such as the impact of curricular changes [4],
academic performance [5], retention [6], and dropout [5–7].

Predicting the early dropout of students using data is a relevant problem in education
analyzed in different forms and teaching–learning environments. Initially, the SDP problem
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employed classification algorithms, which were successfully implemented in [8–10]. How-
ever, this problem is enough to predict the abandonment or not of students but requires a
deeper analysis to estimate the permanence time. Generally, a student is likelier to drop
out during the first years since there is a direct relationship between the permanence time
at university and the probability of dropping out, as mentioned by Aulck et al. [11].

Survival analysis methods emerge as an alternative to formulate the SDP problem
more comprehensively and profoundly. These methods not only predict the occurrence
of the student dropping out or not, but it is also possible to estimate the probability that
the dropout would occur at a certain time [12]. With the rise of machine learning, new
variants of survival models have been developed and applied in various areas, mainly in
biomedical areas [13,14]. The Cox Proportional Hazards regression model (CPH) is the
best-known and most-applied model in multiple contexts. Ameri et al. [12] developed a
survival analysis framework for early attrition prediction using CPH and variants such
as Time-Dependent regression Cox (TDCox). In addition, a variation to CPH based on
deep neural networks was introduced by Katzman et al. [15]. The literature also includes
variants of survival analysis derived from machine learning, such as Multitask logistic
regression [16,17], and Random survival forests [18,19]. Pan et al. [20] explored various
survival analysis techniques and compared them with their proposal. They introduced
a deep learning model assuming dispersion and volatility, which they named SAVSNet.
Furthermore, transformer variants for survival analysis were implemented by [21,22]. For
example, S. Hu [22] validated these variants with data from cancer patients.

Although many works address the computational techniques of machine learning
and survival analysis, just a few compare these models jointly. Gutierrez Pachas et al. [23]
presented a methodology to determine who would drop out and when the drop would be in
a real dataset from 655 students of one program at a Peruvian university and evaluated the
influence of predictor variables using statistical inference tools. Garcia-Zanabria et al. [24]
developed a visual and interactive tool that allowed construction situations from counter-
factuals and prevented the dropout of students at risk.

Our work evaluated multiple machine learning algorithms and survival analysis
methods and their deep variants on a dataset of students from six academic departments
of a Latin American university. We documented the appropriate treatment of the predictor
variables to apply both approaches together. Our analysis aimed to use these techniques as
computational support to help academic managers efficiently identify those students at
risk and interpret the impact of academic, socioeconomic, and equity variables in the Latin
American context. In addition, we present an in-depth review of diverse techniques for the
SDP problem. Finally, we performed a deep analysis of academic variables’ influence when
estimating the level of risk of dropping out and questioned whether it occurs in the same
magnitude or not.

2. Formulation of the SDP Problem

Given a dataset of N observations, we introduce basic notations to formulate the SDP
problem. For each student i, ∀ i = 1, . . . , N,

• ~Xi is the n-dimensional vector of attributes.
• Yi is the output variable.
• Ei is the event variable such that Ei = 1, if the dropout happens, otherwise Ei = 0.
• Ti is the time variable, i.e., Ti represents the permanence time at the university.

First, we define the SDP problem as a classification task and then as a survival analysis
model. The main difference between these approaches is representing the output variable
Yi. Furthermore, we denote Ŷi to represent the estimated value of Yi. Similar notations are
used for Êi and T̂i.
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2.1. SDP Problem as a Classification Model

The goal is to predict whether a student will drop out or not, given a fixed set of
features. The probability that the student drops out is:

pc
i (X) = Prob(Ei = 1 |X = ~Xi). (1)

Generally, if pc
i (X) > 0.5, then he/she is a dropout student, otherwise she/he is not.

However, the computation of pc
i is time-invariant. For this reason, we must be careful

when choosing the predictor variables to avoid calculating pc
i in a biased mode. Therefore,

according to this approach, we write Yi = Ei.

2.2. SDP Problem as a Survival Analysis Model

Survival analysis models seek to estimate the time until they precede to abandonment.
We define the probability that the student drops out at the time t, given his/her permanence
before t, as follows:

ps
i (X, t) = Prob(Ti = t |Ti > t− 1 , X = ~Xi). (2)

Therefore, the survival probability Si(X, t) is defined by

Si(X, t) =
t

∏
τ=0

(
1− ps

i (X, τ)
)
. (3)

In general, the survival probability is a monotone non-increasing function. Nevertheless,
we denominate censored information when the student’s dropout (that is, Ei = 0) does
not occur during the time interval under analysis. Survival time has two components that
must be clearly defined: a beginning point and an endpoint that is reached either when the
event occurs or when the follow-up time has ended. One fundamental concept needed to
understand survival analysis is censoring:

(a) The dropout occurred, and we can measure when it occurred (Ti).
(b) The dropout did not occur when we observed the student; we only know the number

of semesters in which it did not occur (Ci), named censoring time.

Also, we define Yi = min(Ti, Ci). In Figure 1a, we visualize the permanence times of four
students. We notice that student B dropped out in the first semester, while Student D
dropped out of the university in the fourth semester. Furthermore, A and C correspond to
censored data. Figure 1b shows the survival curves for the students A, B, C, and D. Student
B has a very low probability of remaining in his/her studies after the second semester. The
opposite occurs with C, who has a high survival probability each time.

(a) (b)

Figure 1. Considering students A, B, C, and D, we illustrate the (a) permanence times and (b) survival
curves for each of them.



Educ. Sci. 2022, 13, 154 4 of 19

3. Related Work

This section presents a profound and detailed review of the related works that handle
the SDP problem according to the computational techniques employed.

3.1. Machine Learning Algorithms

Our literature review included the evaluation of various algorithms, such as Logistic
Regression (LR) [25,26], Gaussian Naive Bayes (GNB) [25], Support Vector Machine (SVM) [26],
Decision Trees (DTs) [25,26], K-Nearest Neighbors (KNNs) [27], Random Forest (RF) [28], Bayesian
Networks (BNs) [28], Artificial Neural Networks (ANNs) [29,30], and Convolutional Neural
Networks (CNNs) [31–33]. Vásquez Verdugo and Miranda [26] investigated a dataset of
students in a business program at a Chilean university and obtained that SVM had the
best predictive capacity in most cases; it was only inferior to LR when evaluating fifth- and
sixth-semester students.

Medina et al. [28] compared BNs with DTs from a dataset of 500 students from a pri-
vate university in Lima. They concluded that the BN was the best model when comparing
the precision, accuracy, and specificity metrics. In contrast, Mezzini et al. [31] analyzed
6000 students from the Education Department of Rome Tre University, implemented mul-
tiple CNN variants, and obtained an accuracy value of 67.1% for first-year and 90.9% for
second-year students. Furthermore, they mentioned that with more data, it is possible to
develop more accurate predictions. Also, Garcia-Zanabria et al. [24] presented a visual tool
that supports educational decisions based on counterfactual techniques.

The investigations described above illustrate case studies associated with face-to-face
education, as well as in the online format [8–10]. For example, Prenkaj et al. [9] presented
an extensive review of the various computational techniques and the SDP problem’s
modeling, including machine learning algorithms and deep variants. Also, they classified
the computational techniques according to the following aspects: field of study, gathered
data, student modeling, methods, and evaluation.

3.2. Survival Analysis Methods

The tools of survival analysis have been successfully applied in various real-world
domains such as health science [14], credit risk [34], and multiple applications that require
estimating the time until an event of interest occurs. Wang et al. [13] presented an exten-
sive review and detailed non-parametric methods that are traditionally used to analyze
how a population sample behaves, such as the Kaplan–Meier (KM) and Nelson–Aelen (NA)
estimators. These methods do not use attributes to estimate a student’s survival curve.
However, they can be used to perform a full/sampled statistical analysis [4,35,36]. In
contrast, parametric survival analysis models employ theoretical probability distributions.
Among the best known, we have the exponential, Weibull, and Gompertz distributions.

As a hybrid of the parametric and non-parametric approaches, semi-parametric models
can obtain a more robust estimator under a broader range of conditions. The Cox Proportional
Hazards model (CPH) is one of the most-used survival analysis methods. Cox [37] made
the assumption that covariates are independent of time. However, Time-Dependent Cox
regression (TD-Cox) captures time-varying factors and can leverage that information to
provide a more accurate prediction. To address the SDP problem, several works employed
CPH as part of their formulation [4,6,12,15,20,23,35,38]. Gutierrez-Pachas et al. [4] used the
KM estimator and CPH to analyze the impact of curricular design in a computer science
program. In contrast, Ameri et al. [12] used CPH and TD-Cox to detect early student
dropout. In contrast, survival analysis models based on machine learning, such as Multi-
Task Logistic Regression (MTLR) [16], Random Survival Forest (RSF) [18], and Conditional
Survival Forest (CSF) [19], are little used. Some applications of these techniques for the SDP
problem were reported by [14,15].
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3.3. Deep Learning Methods

Deep learning methods generally exploit a large volume of data to generate accurate
models in diverse contexts. Agrusti et al. [39] employed real data of about 6000 students
to train a CNN and predict whether the student would drop out. Mubarak et al. [33]
proposed a hyper-model of Convolutional Neural Networks and Long Short-Term Memory
(CONV-LSTM) to extract features from MOOCs’ raw data and predict whether each student
will drop out or complete his/her courses.

In the context of survival analysis, deep learning variations have been introduced
and tested in biomedical areas such as Nonlinear Cox regression (DeepSurv) [15] and Neural
Multi-Task Logistic Regression (N-MTLR) [17]. For instance, Fotso [17] demonstrated that
N-MTLR consistently outperforms MTLR and yields similar or better results than CPH
when evaluating the concordance index in the Worcester Heart Attack Study dataset.

Recently, Pan et al. [20] introduced a Survival-Analysis-based Volatility and Sparsity
modeling Network (SAVSNet) into an end-to-end deep learning framework. The SAVSNet
smooths the volatile time series by a convolutional network while preserving the original
data information using a long short-term memory network. They compared the SAVSNet
with other survival analysis methods using the KDDCup 2015 and XuetangX datasets. Lee
et al. [21] proposed DeepHit, which uses a deep neural network to learn the distribution
of survival times directly. In contrast, S. Hu [22] proposed a transformer-based survival
analysis method that estimates the patient-specific survival distribution. In [22] used an
ordinal regression to optimize the survival probabilities over time and penalize randomized
discordant pairs.

Finally, we summarize the computational techniques mentioned in Sections 3.1–3.3
and group them in Table 1 according to the classification algorithms and survival analysis
methods. Mainly, our objective was to present both approaches and, in this manner,
make better predictions of the dropout occurring and the time at which it would happen.
Furthermore, our work addressed the techniques detailed in Table 1 employing a real
dataset from six departments of a Latin American university.

Table 1. Summary of references focused on the SDP problem and grouped according to classification
algorithms and survival analysis methods. Additionally, we detail if the method uses a traditional
approach (Trad) or a deep learning variant (Deep) in the column Type.

Family Type Method Reference
Logistic Regression (LR) [11,23,25,26]
K-Nearest Neighbor (KNN) [11,27]
Support Vector Machine (SVM) [11,23,26]

Classification Trad Gaussian Naive Bayes (GNB) [23,25,36]
Algorithms Decision Tree (DT) [23,25,26,28]

Random Forest (RF) [11,23]
Artificial Neural Networks (ANNs) [26,29,39]

Deep Convolutional Neural Networks (CNNs) [8–10,32,33]
Non-parametric methods (KM estimator) [23,35,36]
Parametric methods (Gompertz distribution) [20]

Survival Trad Cox Proportional Hazards regression (CPH) [4,6,12,15,20,23,35,38]
Analysis Time-Dependent Cox regression (TD-Cox) [12]
Methods Random Survival Forest (RSF) [14,15]

Conditional Survival Forest (CSF) [14,20]
Deep Nonlinear Cox regression (DeepSurv) [15,20]

4. Research Questions

To better understand our work, we present the research questions that help in applying
these techniques and support understanding various problems that educational managers
cannot identify:

• RQ1: How do we understand the impact of academic, socioeconomic, and equity
variables on the SDP problem?
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• RQ2: What is the most-efficient classification algorithm for the SDP problem?
• RQ3: What is the most-efficient survival analysis method for the SDP problem?
• RQ4: How influential is academic performance in estimating dropout risk?

5. Materials and Methods

This section describes the materials and methods used in this research. Initially, we
detail the population and the sample used, as well as the pre-processing of the variables
involved. Next, we perform a detailed exploratory analysis for each academic program.
Finally, we introduce the main metrics to evaluate the classification algorithms and survival
analysis methods.

5.1. Population and Sample

Our study population corresponds to the student demographic, socioeconomic, and
academic information of a Latin American university. The time horizon of these data is
thirteen years, including the first semesters of 2008 (2008-01) to the second semester of 2020
(2020-02). We obtained these data with the collaboration of the IT department, which was
responsible for masking this sensitive data. Thus, we did not have access to the student’s
name nor personal information, preserving the student’s identity. The personal masked
Identity (ID) is unique; however, the ID is different from the masked Student Identity (SID),
which is not necessarily unique for each person. A person has a unique ID, but can have
one or more SIDs. This situation occurs when a student withdraws from the university and
rejoins. However, in practice, we limited our dataset to one SID by the ID; this means that
we only used one observation for each person, but stored whether she/he was previously
enrolled in any program at this university.

In this paper, we used a sample of 13,696 students from six different departments:
Education (Edu), Computer Science (CS), Psychology (Psy), Law and Political Sciences (LPS),
Economic and Business Sciences (EBS), and Engineering (Eng). The sample for each department
was balanced according to the dropout status. In other words, half of the students were
dropouts, and the others were not. Table 2 summarizes the distribution of the sample
according to the duration of the programs and the sample size.

Table 2. Distribution of the sample by academic department.

Department Sample Size
Education (Edu) 312
Computer Science (CS) 768
Psychology (Psy) 1146
Law and Political Sciences (LPS) 2456
Economic and Business Sciences (EBS) 4100
Engineering (Eng) 4914

5.2. Data Preprocessing

Firstly, we created a new variable labeled Change_SID, which identifies whether or not
the person changed his/herSID. Similarly, some demographic attributes were altered to
define categorical variables, such as Female, Married, Public_School, and Scholarship.
Numerical variables were defined, such as the student’s age when she/he was admitted to
the university (Age_Admission). Linking students’ locations of provenance and residence
with the value of the 2019 Human Development Index (HDI), we define socioeconomic
variables labeled HDI_Provenance and HDI_Residence, respectively. Our dataset has the
name of the admission semester, which can be regular or not. For example, 2001-01 and
2001-02 are regular semesters, and other configurations are non-regular semesters. They
are resources that satisfy the number of hours and credits as summer courses.

Related to the academic variables, all grades per course were weighted to obtain the
final grade point average (Final_GPA). We used the number of semesters enrolled, the
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number of hours of absences, the number of approved courses, and the total number of
courses to determine proportional variables between them. For example, Courses_Sem
represents the proportion of enrolled courses concerning the number of enrolled semesters,
computed by

Courses_Sem =
Total number of enrolled courses

Total number of enrolled semesters
.

Analogously, we calculated Absences_Courses, Approved_Courses, and NonReg_Courses.
We processed the student status and assumed that students drop out when their student
status is separated, retired, or transferred. Otherwise, the student did not drop out, and
consequently, we defined an event variable labeled Dropout. Finally, we employed the
number of completed semesters as the time variable, labeled Completed_Sem. The data
cleaning and filtering were performed using Pandas and Numpy. All attributes employed
in this work are summarized in Table 3.

Table 3. Description of the attributes collected.

Attribute Name Attribute Description Attribute Type
SID Masked student identifier Numerical and anonymized
Department Academic department’s name Categorical (Edu or CS or Psy

or LPS or EBS or Eng)
Changed_SID Whether the student changed SID Categorical (Yes or No)
Female Whether the student’s gender is female Categorical (Yes or No)
Married Whether the student’s marital status is married Categorical (Yes or No)
Public Whether the type of student’s high school is public Categorical (Yes or No)
Scholarship Whether the student had a scholarship Categorical (Yes or No)
Age_Admission Student’s age when admitted by the university Discrete numerical
HDI_Provenance Human development index of the student’s location of

provenance
Continuous numerical

HDI_Residence Human development index of the student’s location of
residence

Continuous numerical

Final_GPA Final grade point average Continuous numerical
Courses_Sem Proportion of enrolled courses in relation to the number

of enrolled semesters
Continuous numerical

Absences_Courses Proportion of the number of hours of absence in relation
to the total number of hours in courses

Continuous numerical

Approved_Courses Proportion of approved courses in relation to the total
number of enrolled courses

Continuous numerical

NonReg_Courses Proportion of non-regular courses in relation to the total
number of enrolled courses

Continuous numerical

Completed_Sem Number of completed semesters Discrete numerical
Dropout Dropout status Categorical (Yes or No)

5.3. Data Exploration

This section presents a detailed statistical and descriptive analysis of the attributes
selected from Table 3. First, we computed the percentage distribution of the categorical
variables and organized them in Table 4. We colored the cells green and brown to highlight
the best and worst percentages, respectively. Analyzing Table 4, we find essential insights
that help us better understand our dataset. In Edu, 91.7% of the students are women,
in contrast to CS, where 16.8% are female students. Furthermore, Edu has the highest
percentage of students from public high schools (Public) and even stands out for having
the highest rate of students according to the variable Scholarship. This is because, usually,
in Latin America, low-income people study in public schools.

The percentage of married students (Married) is low in all departments. We notice the
highest value in Psy with 1.8%. Furthermore, the highest values of Changed_SID occur in
Eng, and the opposite happens in Edu.
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Table 4. Percentage distribution of categorical attributes. We highlight the best (in green) and worst
(in brown) percentage with the categorical value “Yes”.

Categorical Edu CS Psy LPS EBS Eng
Attribute Yes No Yes No Yes No Yes No Yes No Yes No
Changed_SID 11.9% 88.1% 23.7% 76.3% 14.2% 85.8% 19.6% 80.4% 23.0% 77.0% 24.3% 75.7%
Female 91.7% 8.30% 16.8% 83.2% 76.2% 23.8% 61.0% 39.0% 55.4% 44.6% 44.6% 55.4%
Married 1.60% 98.4% 0.40% 99.6% 1.80% 98.2% 0.90% 99.1% 0.90% 99.1% 0.30% 99.7%
Public 30.1% 69.9% 23.1% 76.9% 18.7% 81.3% 22.6% 77.4% 19.8% 80.2% 23.2% 76.8%
Scholarship 12.2% 87.8% 4.70% 95.3% 3.90% 96.1% 4.00% 96.0% 1.80% 98.2% 5.80% 94.2%

In the context of the numerical attributes, we computed the mean and the standard
deviation (Std) and summarize them in Table 5. We noticed that the data distribution
according to HDI_Provenance, HDI_Residence and Absences_Courses is similar for each
academic department. However, in Edu, we found that the mean of Final_GPA is higher
than the mean value of the other departments. In contrast, this does not happen in STEM
areas such as CS and Eng, making us think that STEM careers tend to be more complicated.
A similar context occurs with other academic variables, such as Approved_Courses and
Courses_Sem.

Table 5. Mean and standard deviation (std) of numerical attributes. We highlight the best (in green)
and worst (in brown) mean values.

Numerical Edu CS Psy LPS EBS Eng
Attribute mean std mean std mean std mean std mean std mean std

Age_Admission 20.68 3.19 19.21 2.87 19.35 3.43 18.52 2.53 18.91 2.72 18.39 2.08
HDI_Provenance 0.71 0.10 0.71 0.09 0.71 0.09 0.71 0.10 0.71 0.10 0.70 0.10
HDI_Residence 0.66 0.12 0.66 0.11 0.67 0.11 0.66 0.11 0.67 0.11 0.66 0.11
Final_GPA 12.67 3.12 11.12 3.36 11.94 3.34 11.99 2.93 11.72 2.85 11.22 2.85
Courses_Sem 6.83 3.02 5.58 2.48 6.63 3.12 6.49 2.94 6.07 0.11 5.67 2.4
Absences_Courses 0.14 0.11 0.13 0.12 0.12 0.11 0.14 0.10 0.14 0.10 0.12 0.11
Approved_Courses 0.72 0.27 0.62 0.28 0.65 0.31 0.66 0.28 0.65 0.27 0.61 0.27
NonReg_Courses 0.04 0.06 0.06 0.08 0.06 0.06 0.06 0.06 0.06 0.06 0.08 0.06

5.4. Computational Techniques and Evaluation Metrics

The initial step in executing these techniques is randomly dividing the dataset: 70%
was used for training and the rest for testing. Cross-validation is a technique in which
models are trained using subsets of the dataset and then evaluated using the complementary
subsets. Three main steps are involved in cross-validation, which are:

• Reserving a subset of the data.
• Using the rest of the dataset to train the model.
• Testing the model using the reserved subset of data.

Cross-validation techniques have many methods; the most commonly used is k-fold cross-
validation. In k-fold cross-validation, the dataset is split into k subsets (folds). Training is
then performed on all subsets, except one (reserved subset), which is then used to test the
model. The method is iterated k times with different reserved subsets for each iteration.

The first approach consists of defining the SDP problem as a classification task and
measuring it utilizing metrics such as precision, recall, and accuracy. Generally, these
values are obtained from a binary confusion matrix. For example, accuracy is:

Accuracy =
TP + TN

TP + FP + TN + FN
, (4)
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where TP and TN represent the number of true positive and true negative cases. We use
similar notation for FP and FN. The Receiver Operating Characteristic curve (ROC) is a
graph showing the performance of a classification model at all classification thresholds. This
curve plots two parameters, the True Positive Rate (TPR) and the False Positive Rate (FPR).
To compute the points in an ROC curve, we can evaluate classification algorithms many
times with different classification thresholds, but this would be inefficient. Fortunately,
an efficient, sorting-based algorithm can provide this information to us, called the Area
Under the ROC Curve (AUC). Furthermore, the predictive capacity is analyzed based on
regression metrics such as the mean-squared error (MSE), defined by

MSE =
1
N

N

∑
i=1

(
Yi − Ŷi

)2. (5)

In this paper, we define k = 5 in the cross-validations and employ metrics such as
accuracy, AUC, and MSE to evaluate the classification algorithms. In contrast, to evaluate
survival analysis methods, the standard evaluation metrics for regression are unsuitable
for measuring performance. Instead, the prediction performance in survival analysis needs
to be measured using more specialized evaluation metrics such as the Concordance index
(C-index). This metric is a generalization of the AUC and represents the global assessment
of the model’s discrimination power: this is the model’s ability to correctly provide a
reliable ranking of the survival times based on the individual risk scores computed by

C-index =

N

∑
i,j
1Ti>Tj · 1ri>rj · Ej

N

∑
i,j
1Ti>Tj · Ej

, (6)

where 1A is the indicator function of A, which is 1A = 1 if A occurs; otherwise, it is 0. The
model has an almost perfect discriminatory power if the C-index is close to 1. However, if it
is close to 0.5, it cannot discriminate between low- and high-risk subjects. Furthermore, ri
represents the risk score of the student i, which is

ri =
`

∑
j=1

Hi(X, tj), where 0 < t1 < . . . < t` < max(Ti), (7)

where Hi(X, tj) = − ln Si(X, tj) represents the cumulative hazard function. In our context,
the risk score measures the level of risk of a student dropping out. According to Figure 1b,
we concluded that rB < rD < rA < rC. The Brier Score (BS) is used to evaluate the accuracy
of a predicted survival function at a given time t. It represents the average squared distance
between the observed survival status and the predicted survival probability and is always
a number between 0 and 1, with 0 being the best-possible value. Also, the Integrated Brier
Score (IBS) provides an overall calculation of the model’s performance at all available times.
Thus, the lower the score (usually below 0.25), the better the predictive performance is.

BSi(t) =
1
N

N

∑
i=1

(
1Ti>t − Ŝi(t, ~Xi)

)2, (8)

IBSi =
1

max(Ti)

∫ max(Ti)

0
BSi(t) dt. (9)

S. Hu [22] proposed combining survival metrics with regression metrics. However,
the former evaluates the pairwise orderings of the duration predictions on observed and
censored subjects, while the latter considers the precise duration predictions. Once a model
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is built, it is always a good idea to compare the time series of the actual and predicted
number of units that experienced the event at each time t.

In this paper, we computed the data’s real density/survival function, which can
be obtained using the Kaplan–Meier estimator, SKM

i (t). Furthermore, we compared it
to the average of all predicted density/survival functions. Therefore, we compared the
performance metrics between the two time series using the survival curves utilizing MSE
and MAE, whose definitions are

MSE =
1
N

N

∑
i=1

(
SKM

i (t)− Ŝi(t, ~Xi)
)2, (10)

MAE =
1
N

N

∑
i=1
|SKM

i (t)− Ŝi(t, ~Xi)|. (11)

6. Results

In this section, we describe the results of the research questions given in Section 4.

6.1. RQ1: How Do We Understand the Impact of Academic, Socioeconomic, and Equity Variables
on the SDP Problem?

We used the correlational analysis of the variables involved to answer this question.
Figure 2 shows the correlation matrices for each academic department. We represent posi-
tive correlations on the green scale, and the brown scale represents negative ones. As is
evident, Completed_Sem has a strong negative correlation with Dropout in all cases. Further-
more, Dropout has a strong negative correlation with Final_GPA and Approved_Courses.
However, Dropout and Absences_Courses have a moderate positive correlation.

(a) (b) (c)

(d) (e) (f)

Figure 2. Heat map of the correlations between the attributes for each department. We illustrate the
positive correlations (in green scale) and negative correlations (in brown scale). (a) Education (Edu).
(b) Computer Science (CS). (c) Psychology (Psy). (d) Law and Political Sciences (LPS). (e) Economic
and Business Sciences (EBS). (f) Engineering (Eng).
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In general, the correlation analysis is similar in all departments. Although a more
detailed analysis, we found slight differences. In CS, we have a weak positive correlation
between NonReg_Courses and Dropout. However, this correlation is almost null in the rest
of the departments. In summary, we concluded from Figure 2 that the academic variables
(Final_GPA and Approved_Courses) present a higher correlation with Dropout. In contrast,
the socioeconomic (HDI_Provenance and HDI_Residence) and equity (Female) variables do
not show a weak correlation in all cases. We concluded that these factors do not significantly
influence predicting the dropout status.

6.2. RQ2: What Is the Most-Efficient Classification Machine Learning Method for the SDP Problem?

We utilized the Scikit-learn Python library to compute the classification probability.
Now, we detail the best parameters for each classification algorithm employed in this work
as follows:

• Logistic Regression (LR) considers C = 0.1.
• Support Vector Machine (SVM) considers C = 10 and gamma = 0.01.
• Gaussian Naive Bayes (GNB) considers a variance of smoothing equal to =0.001.
• K-Nearest Neighbor (KNN) considers seven neighbors.
• Decision Tree (DT) considers a minimum number of samples required to be at a leaf

node equal to fifty and a maximum depth of the tree equal to nine.
• Random Forest (RF) considers a minimum number of samples required to be at a leaf node

equal to fifty and a maximum depth of the tree equal to nine and does not use bootstrap.
• Multilayer Perceptron (MP) considers three layers in the sequence (13, 8, 4, 1), an

activation function defined by tanh, and α = 0.001.
• Convolutional Neural Network (CNN) considers two layers in the sequence (13, 6, 1)

and the activation functions ReLU and sigmoid.

The predictive capacity of these models was measured using Accuracy, AUC, and MSE,
and these values are summarized in Table 6. We highlight the best evaluation metrics by
coloring the cell green and the worst evaluation metrics in brown.

Table 6. Evaluation metrics using classification algorithms. We highlight the best (in green) and
worst (in brown) values by academic department.

Metrics Department LR SVM GNB KNN DT RF MLP CNN
Edu 0.855 0.860 0.817 0.791 0.860 0.862 0.830 0.913
CS 0.829 0.833 0.823 0.809 0.839 0.859 0.818 0.987

Accuracy Psy 0.883 0.882 0.847 0.872 0.865 0.895 0.873 0.946
LPS 0.879 0.875 0.788 0.856 0.866 0.884 0.880 0.922
EBS 0.858 0.864 0.822 0.845 0.856 0.868 0.852 0.908
Eng 0.889 0.894 0.854 0.876 0.885 0.902 0.892 0.920
Edu 0.913 0.914 0.908 0.898 0.890 0.931 0.890 0.936
CS 0.908 0.909 0.908 0.875 0.895 0.921 0.892 0.884

AUC Psy 0.940 0.939 0.917 0.930 0.928 0.954 0.935 0.937
LPS 0.938 0.930 0.912 0.909 0.925 0.944 0.930 0.916
EBS 0.919 0.926 0.906 0.907 0.921 0.938 0.919 0.918
Eng 0.949 0.954 0.931 0.940 0.947 0.963 0.953 0.943
Edu 0.145 0.140 0.183 0.209 0.140 0.138 0.170 0.065
CS 0.171 0.167 0.177 0.109 0.161 0.141 0.182 0.012

MSE Psy 0.117 0.118 0.153 0.128 0.135 0.105 0.127 0.043
LPS 0.121 0.125 0.212 0.144 0.134 0.116 0.120 0.057
EBS 0.142 0.136 0.178 0.155 0.144 0.132 0.148 0.069
Eng 0.111 0.106 0.146 0.124 0.115 0.098 0.108 0.059
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CNN presented the best results in most cases and obtained the highest accuracy in CS
with (Accuracy = 0.987). Even in the other cases, the accuracy values are more significant
than 0.9. However, CNN showed lower performance in some instances when we compared
the AUC. Analyzing Psy, we found the highest accuracy value of 0.944, in contrast to
what happened in CS, whose accuracy value is 0.921 and is the lowest. Evaluating the
methods based on the AUC, we found that RF presents the best results in five of the six
data subsets. From Table 6, we note that GNB showed the worst evaluation metrics in most
cases. Finally, based on the experimentation presented above, we concluded that CNN is
the best technique for the SDP problem employing classification algorithms.

6.3. RQ3: What Is the Most-Efficient Survival Analysis Method for the SDP Problem?

We employed survival analysis methods such as: the Cox Proportional Hazards model
(CPH), Random Survival Forest (RSF), Conditional Survival Forest (CSF), and Multi-Task Logistic
Regression (MTLR). In addition, variants of deep learning techniques such as Neural Multi-
Task Logistic Regression model (N-MTLR), and Nonlinear Cox regression (DeepSurv) were
implemented as well, and we compared them with the parametric models using the
Gompertz and Weibull distributions.

We summarize in Table 7 the values of the C-index, IBS, MSE, and MAE. Similarly, the
best metrics are colored green and the opposite case in brown. The PySurvival Python
library calculates the survival probability, risk score, and metrics, and the visual representa-
tion of the survival curves was obtained with the Matplotlib Python library. The parameters
employed for each method were the following:

• The parametric methods (Weibull and Gompertz) consider a learning rate equal to 0.01,
an L2 regularization parameter equal to 0.001, the initialization method given by zeros,
and the number of epochs equal to 2000.

• The Cox Proportional Hazards model CPH) considers a learning rate equal to 0.5 and
an L2 regularization parameter equal to 0.01. The significance level α = 0.95, and the
initialization method is given by zeros.

• Random Survival Forest (RSF) considers two-hundred trees, a maximum depth equal
to twenty, the minimum number of samples required to be at a leaf node equal to ten,
and the percentage of original samples used in each tree building equal to 0.85.

• Conditional Survival Forest (CSF) considers two-hundred trees, a maximum depth
equal to five, the minimum number of samples required to be at a leaf node equal to
twenty, the percentage of original samples used in each tree building equal to 0.65,
and the lower quantile of the covariate distribution for splitting equal to 0.1.

• Multi-Task Logistic Regression (MTLR) considers twenty bins, a learning rate equal to
0.001, and the initialization method given by tensors with an orthogonal matrix.

• Neural Multi-Task Logistic Regression (N-MTLR) considers three layers with the
activation functions defined by ReLU, tanh, and sigmoid. Furthermore, MTLR uses 120
bins, a smoothing L2 equal to 0.001, and five-hundred epochs, and tensors comprise
the initialization method with an orthogonal matrix.

• Nonlinear Cox regression (DeepSurv) considers three layers with the activation func-
tions defined by ReLU, tanh, and sigmoid. Furthermore, DeepSurv employs a learning
rate equal to 0.001, and Xavier’s uniform initializer is the initialization method.

In almost all cases, DeepSurv presents the best results. Analyzing Psy, DeepSurv does not
perform well when evaluating the IBS and MSE metrics. In most cases, the C-index value is
higher than 0.90, which is a good indicator. However, this does not occur when analyzing
CS (C-index = 0.891). In contrast, MSE = 0.0034, which is the best value compared to the
other departments.

C-index and IBS are the metrics of survival analysis and are not usually good predictive
indicators. For this reason, in our research, we employed regression metrics such as MSE
and MAE to evaluate the survival curves for each department. Figure 3 illustrates the actual
survival curves (in blue ) by each academic department.
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Table 7. Evaluation metrics using survival machine learning methods. We highlight the best (in
green) and worst (in brown) values by academic department.

Metrics Department Weibull Gompertz CPH RSF CSF MTLR N-MTLR DeepSurv
Edu 0.867 0.869 0.871 0.899 0.902 0.863 0.901 0.916
CS 0.880 0.882 0.887 0.864 0.872 0.888 0.881 0.891

C-index Psy 0.931 0.925 0.928 0.860 0.874 0.932 0.937 0.940
LPS 0.911 0.911 0.915 0.882 0.904 0.909 0.918 0.923
EBS 0.910 0.908 0.911 0.879 0.908 0.916 0.928 0.935
Eng 0.933 0.931 0.936 0.899 0.924 0.941 0.949 0.952
Edu 0.094 0.099 0.085 0.109 0.093 0.082 0.082 0.081
CS 0.105 0.105 0.095 0.117 0.105 0.086 0.089 0.087

IBS Psy 0.070 0.077 0.060 0.085 0.073 0.053 0.045 0.048
LPS 0.081 0.087 0.074 0.092 0.080 0.068 0.066 0.063
EBS 0.081 0.087 0.075 0.086 0.075 0.067 0.059 0.054
Eng 0.070 0.076 0.062 0.080 0.065 0.049 0.043 0.041
Edu 0.083 0.054 0.042 0.074 0.065 0.088 0.096 0.040
CS 0.111 0.07 0.043 0.122 0.093 0.082 0.092 0.034

MSE Psy 0.114 0.070 0.045 0.085 0.059 0.104 0.109 0.052
LPS 0.107 0.070 0.047 0.081 0.052 0.091 0.094 0.036
EBS 0.089 0.063 0.048 0.081 0.047 0.084 0.103 0.038
Eng 0.112 0.076 0.050 0.095 0.053 0.101 0.110 0.041
Edu 0.267 0.212 0.165 0.271 0.258 0.223 0.238 0.169
CS 0.313 0.252 0.194 0.339 0.305 0.236 0.285 0.188

MAE Psy 0.317 0.249 0.178 0.294 0.245 0.276 0.243 0.199
LPS 0.303 0.245 0.176 0.285 0.217 0.247 0.215 0.158
EBS 0.275 0.233 0.182 0.285 0.208 0.228 0.232 0.167
Eng 0.312 0.258 0.171 0.307 0.227 0.228 0.229 0.166

We employed the KM estimator to compute such curves and compared them with the
predicted survival curves for the other methods. In general, parametric models such as
Weibull and Gompertz do not present good results. Visually, we noticed that these methods
predict lower chances of survival. In contrast, RSF and CSF have high survival probabilities;
however, their approximation to the actual survival curve is very distant. MTLR and N-
MTLR are very close to the actual survival curve; however, the estimation in the first
two semesters is very poor. The models that present the best results when predicting the
survival curve are CPH and DeepSurv. Finally, we concluded that DeepSurv is the best
model in this context. However, predicting the survival probability during the first two
semesters is not good for all methods.

6.4. RQ4: How Influential Is Academic Performance in Estimating Dropout Risk?

In this section, we analyze the influence of academic performance based on the level
of risk of dropping out. We first calculated each predictor variable’s importance percentage
and detail it in Table 8. Some demographic attributes have very little influence, such
as Female, Married, Public, Age_Admission, HDI_Provenance, and HDI_Residence. We
found a moderate impact with the variable Changed_SID; however, its percentage of im-
portance depends on the department. For example, in Edu, the importance percentage of
Changed_SID is 4.65%; in contrast, 17.87% is the importance level of Changed_SID in EBS.

The highest rates obtained in each department are highlighted in green, thus obtaining
which variables associated with academic performance Approved_Courses and Final_GPA
are the most influential. In most cases, Approved_Courses has the highest percentage of
importance, and it is only lower than Final_GPA when we analyze Edu. These results
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corroborate the strong negative correlation of these variables with Dropout, as illustrated in
Figure 2. Although this confirms a strong and meaningful impact of the academic variables,
we do not know to what extent they influence the different departments.

Table 8. Importance percentage of the predictor variables. We highlight the best (in green) and worst
(in brown) percentage values by academic department.

Attribute Name Edu CS Psy LPS EBS Eng
Changed_SID 4.65% 9.88% 10.4% 15.66% 17.87% 15.92%
Female 0% 0% 0% 2.88% 1.28% 0.68%
Married 0% 0% 2.01% 0% 0% 0%
Public 0% 0% 0.54% 0% 2.52% 2.98%
Scholarship 3.27% 2.67% 2.36% 4.33% 0% 8.13%
Age_Admission 2.41% 3.09% 0% 1.47% 0.23% 2%
HDI_Provenance 0% 0.03% 0% 0% 0.14% 2.83%
HDI_Residence 0% 4.81% 2.17% 0% 0.66% 0.36%
Final_GPA 29.04% 19.18% 24.55% 19.85% 21.16% 17.19%
Courses_Sem 10.89% 11.77% 11.7% 11.66% 12.09% 9.78%
Absences_Courses 13.83% 12.33% 12.47% 10.04% 9.18% 9.02%
Approved_Courses 25.54% 24.15% 25.84% 22.24% 21.92% 21.55%
NonReg_Courses 10.66% 12.11% 7.96% 11.87% 12.94% 9.56%

(a) (b) (c)

(d) (e) (f)

Figure 3. Comparison of predicted survival curves. The actual curve is displayed in blue ( ), while the
predicting methods are: Weibull ( ), Gompertz ( ), CPH ( ), RSF ( ), CSF ( ), MTLR ( ), N-MTLR
( ), and DeepSurv ( ). (a) Education (Edu). (b) Computer Science (CS). (c) Psychology (Psy). (d) Law
and Political Sciences (LPS). (e) Economic and Business Sciences (EBS). (f) Engineering (Eng).

Since DeepSurv was the best method for predicting student dropout in the survival
format, we used it in the test sets to predict the risk score defined in (7). Therefore, we
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implement in Figure 4 various scatter plots to visualize the data distribution according to
the proportion of approved courses (Approved_Courses) and the logarithm of the risk score,
denoted by Log_Risk. For each subfigure, we define the x-axis as Approved_Courses and
the y-axis as Log_Risk and color the point data according to the dropout’s status (Dropout).
We highlight a student who has dropped out in black, while a student who has not dropped
out is in pink.

(a) (b) (c)

(d) (e) (f)

Figure 4. Scatter plot between the proportion of approved courses and the logarithm of the risk score.
We highlight a student dropout in black (l), otherwise in pink (l). (a) Education (Edu). (b) Computer
Science (CS). (c) Psychology (Psy). (d) Law and Political Sciences (LPS). (e) Economic and Business
Sciences (EBS). (f) Engineering (Eng).

As can be visually identified, a negative correlation exists between Approved_Courses
and Log_Risk. We note a particular case in Edu in which all students with a proportion of
approved courses less than 0.6 (Approved_Courses < 0.6) are all dropouts. However, this
situation did not occur in other departments. With this brief analysis, we found indications
that the impact of Approved_Courses is more influential in Education compared to the
other departments. Furthermore, each department’s predicted values of Log_Risk differ
considerably. In Edu, we found on the y-axis that the range of values assumed by Log_Risk
goes from −10 to 4. However, this does not happen in the other departments, which
generally range between −8 and 2.

On the other hand, in STEM programs such as CS and Eng, we found higher num-
bers of students who did not drop out despite having a high failure rate in the courses
(i.e., Approved_Courses < 0.6). Generally, these programs are challenging due to their
predominant curricula based on exact sciences in the first semesters. Moreover, there is
a tendency to normalize the effect of failing some courses. Complementing our analysis
with the values of NonReg_Courses from Tables 5 and 8, we deduced that many students in
STEM programs take courses in non-regular semesters to recover the failed courses. This is
usually considered a characteristic of the persistence of these students.

More traditional programs, such as LPS and EBS, have a very similar behavior for
the data dispersion and the range of predicted values of Log_Risk. In this context, we can
complement the persistence of these students with the variable Changed_SID. It does not
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have a more prominent percentage presence as described in Table 4; the importance of the
variable in the model is one of the most relevant, as revealed in Table 8.

Although we noticed that Edu behaves differently from the others, we can show that
Psy is possibly the most similar to Edu. Observing the importance percentages of Final_GPA
computed in Table 8 in both cases, we note that these values exceed 24%, which are the
highest values in our dataset. Unlike measuring the influence of economic variables from
the perspective of approved courses, in Edu and Psi, we found that the grades are decisive,
which led us to think that students in these programs generally have higher GPAs than
those in other careers. Due to the wide granting of school scholarships, as reflected in
Education, more than 12% of our sample has a scholarship. Generally, scholarship students
seek to maintain high grades to avoid losing this study funding. On the other hand, in Edu
and Psy, we show high importance to the hours of absence; that is, the impact of being
hours absent from courses (Absences_Courses) in these careers is a very relevant aspect if
we compare it with the other departments.

Finally, we concluded from our analysis that the impact of academic variables is
decisive in predicting the risk of dropping out. However, the effect that this generates is
different in each department. Understanding this analysis requires a global study of the
importance of the attributes and a complementary analysis based on statistical tools.

7. Discussion

Our research sought to determine efficient and customized solution strategies best
suited to student dropout prediction, employing machine learning and survival analysis
models and their deep variants. Before evaluating these computational techniques, a
descriptive analysis was necessary to have a preliminary idea of the significant attributes,
their distribution, and their correlation in each department’s given sample data.

From this perspective, Edu presented a data distribution quite dissimilar from the
rest, as shown in Tables 4 and 5. Furthermore, when calculating the correlation rates
illustrated in Figure 2, we determined that academic variables such as Final_GPA and
Approved_Courses stand out with a strong negative correlation with the event variable
given by Dropout, as we can see in Figure 2. Similarly, we noticed a robust negative
correlation between Dropout and Completed_Sem (see Figure 2). Therefore, based on these
values, it is evident that the academic and temporal variables have a predominant role in
predicting student dropout, as various works in the literature have concluded [5,11,23,40].

The correlational analysis presented in Section 6.1 supports the feature selection
process, allowing us to generate calculated attributes instead of using raw data. For instance,
we employed a proportion of approved courses concerning the total number of enrolled
courses (Approved_Courses) instead of the total number of approved courses solely. Using
this approach, we aimed to mitigate the temporal influence of an attribute. This preliminary
step is decisive for evaluating the classification and survival methods jointly.

Using classification models, presented in Section 6.2, RF and CNN stood out, as shown
in Table 6. Evaluating Accuracy and SME, we found that CNN performed better on all data
samples. However, RF presents the best AUC value in almost all of them. The opposite case
occurs with GNB and KNN, while in the survival analysis methods, detailed in Section 6.3,
DeepSurv was the one with the best predictive capacity; see Table 7. Then, we verified that
the deep variants in both contexts presented robust results.

We evidence that, despite the substantial difference in the formulation of both ap-
proaches, the main problem lies mainly in defining the objective variable (Y), — i.e.,
Y = Dropout for the classification algorithms and Y = (Dropout, Completed_Sem) for the
survival analysis methods. In both approaches, we utilized the same predictor variables.
It is not enough to predict which students will drop out, but to understand when the
dropout will occur. Then, the application of these techniques should be exploited in a
complementary fashion. For instance, when visualizing the prediction of the survival
curves given in Figure 3, we obtained a low prediction during the first two semesters.
This may be due to an incorrect choice of an academic program or a deficient academic
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background in high schools. Analyses such as ours will enable educational managers to
understand the dropout problem better, predict who will drop out and when, and thus,
make the right decisions over time. Statistical evidence reveals that academic variables
are decisive in predicting student dropout, as detailed in Section 6.4. The opposite case
occurs with socioeconomic and equity variables. Possibly, some cases of dropout are caused
by variables not considered in this work, such as the familiar/professional environment
and psychological/emotional condition. However, we generated efficient models from
available data from most universities globally.

Finally, this analysis must be carried out carefully and in collaboration with edu-
cational managers to obtain constant feedback. We also must highlight that not all the
undergraduate programs have the same behavior. Dropout conditions are different for
each program. Each dropout case must be analyzed individually, as it depends not only on
the individual, but also on the program he/she is studying. The generalization of the rule
is clearly a mistake that we must avoid.

8. Conclusions

This work focused on analyses of a case study in a Latin American university to find
an efficient computational mechanism for predicting student dropout. Furthermore, our
analysis explores two approaches to addressing the SDP problem: (i) as a classification task
to expect who will drop out and (ii) as a survival analysis that seeks to determine when the
dropout will occur. We employed the same set of attributes in both prediction strategies.

In predicting who will drop out, we found that RF and CNN presented the best results
in the evaluation metrics given by the Accuracy, AUC, and MSE. The opposite happens
with more basic classification techniques (GNB and KNN). However, implementing these
techniques differs considerably depending on the analyzed academic department. For
example, we obtained higher AUC values in Engineering (↑; see Table 6) than in Education
(↓; see Table 6). However, this analysis alone does not allow a general overview to make
decisions over time. Applying the survival analysis techniques enabled us to identify
when the dropout occurs. Our experimentation showed that DeepSurv is the technique
that has the best prediction results (↑; see Table 7). Although the evaluation metrics for
survival are reasonable, we found great difficulty predicting dropout in the first semesters,
as we visualized when predicting the survival curves for the test sets. The possible causes
of dropout in the first semesters are widely diverse. They may be related to aspects of
motivation and adaptation to university life and low academic background, making it
challenging to have an excellent academic performance. Using the temporal approach, we
found that the academic variables have a crucial determining role. It is also evident in the
correlational analysis defined in the exploratory data analysis.

Our research included a detailed analysis of the influence of academic variables in
predicting the level of risk of dropping out using the most-robust survival technique,
DeepSurv. Here, we found that the impact generated by one academic department is
not always similar for all of them. This work concisely evaluated various computational
techniques, revealing an appropriate parameter setup. The clarity of our proposal will allow
the scientific community to reproduce it in the same educational context (e.g., studying
different academic phenomena such as student retention) and adapt it to multiple other
contexts that seek to predict who, when, and why a specific event would occur.
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