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Abstract: Data reasoning is an essential component of scientific reasoning, as a component of
evidence evaluation. In this paper, we outline a model of scientific data reasoning that describes
how data sensemaking underlies data reasoning. Data sensemaking, a relatively automatic process
rooted in perceptual mechanisms that summarize large quantities of information in the environment,
begins early in development, and is refined with experience, knowledge, and improved strategy
use. Summarizing data highlights set properties such as central tendency and variability, and
these properties are used to draw inferences from data. However, both data sensemaking and data
reasoning are subject to cognitive biases or heuristics that can lead to flawed conclusions. The
tools of scientific reasoning, including external representations, scientific hypothesis testing, and
drawing probabilistic conclusions, can help reduce the likelihood of such flaws and help improve
data reasoning. Although data sensemaking and data reasoning are not supplanted by scientific
data reasoning, scientific reasoning skills can be leveraged to improve learning about science and
reasoning with data.

Keywords: data reasoning; scientific reasoning; statistics education; numerical cognition; cognitive
development; number sense

1. Introduction

Data reasoning is a critical skill in scientific reasoning. Although evidence evaluation
is a step in many models of scientific reasoning (e.g., [1–3]), there has been much less
attention on the interpretation of numerical data itself within this context, which has been
investigated largely within the field of statistics [4]. We outline a model of data reasoning
that describes how data sensemaking underlies data reasoning (both defined below). We
further suggest that scientific data reasoning differs from both informal data reasoning
and data sensemaking. We use the phrase scientific data reasoning to refer to a set of skills
that help reasoners improve the quality of their data analysis and interpretation, which
improves the quality of inferences that can be drawn from data. Although these skills
are most commonly used in scientific reasoning contexts, they can be used in any context.
Scientific data reasoning includes a set of skills that help to harness data sensemaking and
strengthen everyday data reasoning by improving the systematicity of data collected via
the scientific method, the quality of analysis via statistical tools, and inferences by reducing
cognitive bias and providing tools for evaluating conclusions.

Science refers to both a body of knowledge and the processes that create and evaluate
this knowledge [5]. These processes include generating and testing hypotheses, acquiring
data, and evaluating theories with new data [6–8]. The cornerstone of the scientific process
is the reliance on empirical data that are formally analyzed [5,8]. Research that has focused
on understanding the cognitive processes that underlie scientific reasoning includes studies
of generating hypotheses [1,5,9,10], making predictions [11], deciding how to measure
variables [12–14], and interpreting data in light of theory and prior beliefs [2,3,15,16]. We
focus on one area that has gotten less attention, specifically on how people make sense
of numerical data. Grolemund and Wickham [4] propose a cognitive interpretation of
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data analysis, considering the sensemaking process of data, focused on how we reason
with quantitative measurements. We argue that data reasoning is a unique skill, built
on intuition and knowledge about math and statistics, and that a full understanding of
scientific reasoning requires understanding of data reasoning as a core competency. In turn,
this understanding has implications for teaching of these skills, and for future research
directions.

We suggest that scientific reasoning is a specific type of information seeking that
emerges from an acquired set of cultural tools and knowledge that augment general cogni-
tive mechanisms (e.g., encoding, strategy use) and dispositions (e.g., curiosity [5,7,17,18]).
Scientific reasoning is defined in multiple ways. Zimmerman and Klahr [5] describe scientific
thinking as a multi-faceted, multi-level process that includes problem solving and reasoning,
knowledge seeking, curiosity refined by science education that teaches hypothesis testing
and evidence evaluation, and the development of metacognitive skills. Englemann et al. [19]
describe scientific reasoning conceptualizations as falling into discussions of the process of
scientific discovery, scientific argumentation, and understanding the nature of science. We
position ourselves within Englemann et al.’s description of the process of scientific discovery,
specifically focused on the evidence evaluation described by Zimmerman and Klahr, while
still shaped by teaching, hypothesis testing, and general reasoning.

Data reasoning is situated within this definition in multiple places. One, informal data
reasoning occurs frequently in daily life and requires no formal instruction (e.g., [19,20]).
This is the process of drawing inferences from everyday data, requiring only general-
purpose mechanisms for their operation (e.g., strategy acquisition and selection). Two,
cultural tools relevant to data include number systems, mathematical formalisms, and
data visualization tools (e.g., [21]), as well as the scientific process that produces (e.g.,
experimentation, data recording, as noted by many researchers, including [5,22]) and
allows for analysis of data (e.g., inferential statistics, [4]). The acquisition of these formal
tools improves the accuracy of data reasoning and improves the basic reasoning processes
as well. Thus, we argue that understanding the cognitive processes underlying data
reasoning is an important part of a fuller understanding of scientific reasoning.

We define data sensemaking as detecting trends or differences in sets of data without
the use of formal analytical tools [4,23,24]. We draw evidence from perception [25] and
numerical cognition [26] to suggest that data sensemaking relies on the same perceptual
mechanisms that allow people to quickly aggregate and summarize complex information
from the environment [27]. The perceptual processes and intuitions in data sensemaking
work impressively well for detecting strong patterns in data without formal analysis
(e.g., [3,28,29]). Detecting features in data provides information from which people can
draw inferences and interpret the meaning of these features and patterns.

We define data reasoning as reasoning in which quantitative data are used as evidence
for drawing conclusions or making decisions [30]. Data reasoning is a deliberate cognitive
process that is limited by our memory [31] and our cognitive biases [4]. We argue that data
sensemaking is a precursor to data reasoning, in that first the data are summarized (often
via automatic perceptual processes), and then the summaries are used to draw inferences.
Everyday data reasoning is common, though such inferences may fall prey to cognitive
biases such as the tendency to confirm one’s previous beliefs (i.e., confirmation bias, [32]).

Data reasoning occurs informally in many contexts. For example, when comparing
the performance of players for a fantasy sports league, people do not need to conduct an
experiment or test hypotheses. Instead, they are more likely to pay attention to features
of the data, such as means or medians, variation, and trends, to guide their inferences or
decisions (e.g., [20,30,33–36]). Researchers offer varied definitions of informal inferential
reasoning (what we are calling data reasoning), but Makar and Rubin [30] highlight five key
components that help describe the space: (1) informal reasoning makes a claim beyond the
data; (2) conclusions are expressed with uncertainty; (3) data are used as evidence (i.e., the
conclusions cannot be derived solely from prior beliefs, though the data can be considered
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in theoretical contexts); (4) the data are considered in aggregate, and the reasoning stems
from assessments of the aggregate data; and (5) context is considered.

In contrast, when engaging in scientific data reasoning, researchers use some of the
same techniques as in data reasoning, but add safeguards to limit biases, which lead to
the more deliberative scientific reasoning process. For example, scientists aim to ground
research questions in theories backed by past evidence (e.g., [1,8,37]), design studies that
measure and control variables to limit confounds (e.g., [38]), use external representations to
represent a larger quantity of data at once (e.g., [21]), and apply formal statistical analyses
to provide quantitative evidence when making inferences (e.g., [4]).

Our definitions of both scientific reasoning and scientific data reasoning are situated
at a relatively course grain size. One piece of every model of scientific reasoning involves
evidence evaluation, and that evidence evaluation typically includes evaluation and in-
terpretation of quantitative data. Our model of data reasoning is at a somewhat more
detailed level, including descriptions of component processes at a finer grain size than
general models of scientific reasoning. One example of a description on a fine grain size is
the process of summarizing data in sets. We propose that the same processes that underlie
summarization in perceptual sets (e.g., dots) operate upon sets of numbers. These processes
provide summaries that set up inferences from data. Thus, we provide descriptions at
varying grain sizes across the scope of the review.

In this paper, we suggest a model of the cognitive processes underlying how people
make sense of and draw inferences from data. We further suggest that, as people learn about
science, they acquire tools to improve both of these processes. Our review targets cognitive
processes as described from general Cognitive Science framework. We describe scientific
reasoning as a process that includes declarative (e.g., scientific facts) and procedural (e.g.,
conducting unconfounded experiments) elements. We screened the literature to find
research that was relevant to such a cognitive process model. We did not perform a
literature search by term because the same term can have quite different meanings in
different research traditions. Even within the community of scholars who study scientific
reasoning, there is little consistency in the terminology that is used to describe it. For
example, the special issue uses the term “competencies” [39] to describe what we and our
colleagues often refer to as “processes” (e.g., [40]). Another reason for our selections is that
we have attempted to bridge multiple literatures that have not regularly communicated,
such as cognitive scientists, statisticians, and science educators. As Fischer et al. [6] note,
“contemporary knowledge about what constitutes these competencies . . . is scattered over
different research disciplines” (p. 29).

In sum, we propose that numerical data reasoning is rooted in intuitions about number
sets and becomes more sophisticated as people acquire scientific and statistical reasoning
skills. Although there are many types of nonquantitative data used in both everyday and
scientific reasoning, in this paper, we focus exclusively on numerical data reasoning, and
hereafter use the term data reasoning to refer to this type of reasoning. We argue that
numerical data reasoning begins with data sensemaking, a largely intuitive process that
summarizes sets of numbers much like summaries of perceptual features (e.g., relative size).
Data sensemaking creates approximations of data rapidly. Data reasoning, or drawing
conclusions from these data, is derived from these data summaries. Although these
processes are fast and accurate given clear patterns or differences, both may be sensitive to
cognitive limitations such as confirmation bias. Scientific data reasoning augments these
informal processes by adding cultural tools for improving the accuracy of data gathering,
representation, analysis, and inferences. We summarize our proposed model in Table 1.



Educ. Sci. 2022, 12, 71 4 of 19

Table 1. Summary of data sensemaking and data reasoning processes.

Processes Examples Key References

Data Sensemaking Summarization

Product of perceptual and cognitive
mechanisms

Implicit grouping of numbers that yields
summary values (e.g., mean, variance)

[25,27,28,41–43]

Data Reasoning
Detecting Patterns Detecting covariation between variables [3,11,44,45]

Detecting Differences Noticing differences between sets [28,41–43,46]

Scientific Data Reasoning External Representation External representations [21,47,48]

Scientific hypothesis testing Conducting unconfounded experiments [38,49–52]

Probabilistic Conclusions Evaluating the likelihood of conclusions
or inferences [4,20,53]

Limits to Data sensemaking
and reasoning Heuristics and biases Confirmation bias, Anchoring effect [15,32,54,55]

Sources of Change Strategies Acquiring better strategies for
summarization, reasoning [41,44,56,57]

Instruction Using data sensemaking to support
formal reasoning and analysis [58–60]

2. Data Sensemaking

We begin with a discussion of how data sensemaking occurs. As we will detail below,
data sensemaking is the summarization of numerical information, a product of perceptual
and cognitive mechanisms that summarize large quantities of information [25]. Numbers
have unique properties such as relative magnitudes that are represented in both an ap-
proximate and exact fashion. Even young children have some elements of number sense
that allows them to detect differences between quantities [61]. When these summarization
mechanisms operate on number sets, they yield approximate representations of a set’s sta-
tistical properties [25,28]. The following sections will outline the evidence for this account
of data sensemaking, how it allows for the extraction of central tendency and variability,
and how it changes over the course of development.

2.1. Sensemaking of Set Means and Variance

When people see a set of numerical data, they can summarize the data without using cal-
culations, yielding approximate set properties such as means and variance [62]. Decades of
evidence demonstrate that the properties of number sets can be summarized quickly [26,63]
and accurately [43,64]. Without computation, people can detect and generate approximate
means [41,43,65–70], detect relative variance [28,69,71], and increase their confidence in
conclusions from larger samples as compared to smaller ones [42,43,68,69,71–74]. In one
example of this early work with adults, participants were given a series of index cards each
with a two-digit number, and asked to generate “a single value that best represented the
series presented” [69] (p. 318). Participants generated a value that deviated from the arith-
metic mean by less than 1%. When asked to estimate the mean from a set of numbers, and
explicitly instructed not to calculate, participants were surprisingly accurate in generating
an approximate mean (within ~3% of actual mean; [65]).

How might this process occur? We suggest that children and adults quickly summarize
the properties of number sets similarly to how they summarize other types of complex
information in their environments. This research tradition includes work from Gestalt
psychologists [75] and recent research on ensemble perception and cognition [25,27]. Num-
ber sets may be summarized “automatically” [76] in that this may occur before conscious
processing occurs (less than 100 MS; [77]) and even when instructions prohibit such process-
ing [78]. Finally, reaction times are faster with larger sets than smaller sets with no loss in
accuracy [76,79], further suggesting that summaries are the result of an automatic process.
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Young children can summarize complex perceptual information, even in infancy [80].
However, summarization becomes more precise over the course of development [41,81]. For
example, 6-month-olds can distinguish sets of dots with a 2:1 ratio (e.g., 10 from 20; [82]),
while 6-year-olds can distinguish sets of dots at a 6:7 ratio [83]. Children as young as
six can summarize the average happiness of a set of faces, but their summaries are less
accurate than those of adolescents [84]. Given a set of objects (e.g., oranges), 4-year-olds can
summarize the average size, though not as accurately as adults [81]. These findings suggest
that summarization abilities emerge early in development and become refined over time.

Another numerical set characteristic is variability. The critical role of variability
in empirical investigations has been noted for decades (e.g., [85]) and recently, Lehrer
et al. [12] argued that variability is one of the fundamental issues it is necessary for students
to understand when reasoning effectively about science. Functionally, it is only possible
to measure the variability of a set of data, not a single data point; there must be data
that vary to measure variability [86]. In considering what sets statistical reasoning apart
from mathematical reasoning, Cobb and Moore [87] argue that although mathematical
principles underlie many parts of statistical reasoning, it is the presence of variability due
to real-world context that makes it statistical.

By first grade, children show an understanding that different variables are likely to
differ in their variability when examining a data set [73], suggesting a conceptual under-
standing of underlying reasons to expect variation. Similarly, lay adults can demonstrate
the ability to use variability in comparing data sets when the data are contextualized within
a story, suggesting the likelihood of variability or not [71]. These findings indicate an expec-
tation of variation when taking measurements from a heterogeneous sample, suggesting
an understanding that variation is common in many contexts.

One component of understanding variability involves understanding the value of
repeated measurements; without repeated measurements, there is nothing that can vary.
Surveying 11-, 13-, and 15-year-olds indicated many areas of both clarity and confusion
about experimental error, as well as the value of repeated measurements [88]. Although
most students believed it was necessary to repeat measurements in science experiments,
approximately 40% of participants in each age group focused solely on the means, and said
the data with different variance levels were equally reliable because of the same average
value, ignoring the variance. Detecting variability is also closely related to children’s
emerging understanding of the sources of this variability. Children understand by about
age eight that measurement error is possible, and that repeated measurements, therefore,
might not yield precisely the same results [89]. Children, especially 8-year-olds, were still
not that likely to refer to measurement error in justifying their reasoning.

Other work has demonstrated that children and adults respond to variability informa-
tion differently when they expect variability based on the context. For example, children
ages 10–14 had an easier time using data to revise a belief from a noncausal one to a causal
one [90]; the key complication in reasoning about noncausal links was in understanding
measurement error and the value of repeated measurements to improve accuracy of estima-
tions about data sets. In a converging set of findings, children ages 10–11 who expected a
pattern of results indicating differences between conditions (such as in whether the length
of a string affects the speed of a pendulum) were able to differentiate the small variance of
noise from the larger differences between conditions [91]. At the same time, these children
struggled more when they expected a difference but there was no true effect, and only small
differences due to repeated measures. This point also emphasizes the close connection
between data reasoning and scientific reasoning. For example, correctly interpreting data
might hinge on recognizing the possibility of measurement error.

Sample size is also linked with reasoning about variability in data. There is a lot of
evidence that people are more confident with larger samples of data (e.g., [68,69]). Further,
many studies have found an interaction between sample size and variability when both are
manipulated within the same study (e.g., [28,68,71,73]). For example, Jacobs and Narloch
report that when samples had low variability, participants did not differentiate between
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samples of 3 and 30, whereas in high-variability samples, even 7-year-olds responded
differently based on sample size, and there were no age differences in the use of sample size.
At the same time, there is evidence of failure to use sample size consistently in some contexts
(e.g., [42,71]). More recent work has tried to reconcile apparently contradictory work about
people’s ability to use sample size in data reasoning, arguing that in fact weighted sample
size follows a curvilinear function [74]. That is, with small sample sizes, participants are
sensitive to sample size differences, but with large sample sizes, participants are no longer
as sensitive to such differences and weight the differences much less. This finding suggests
that numerical representations can affect broader data reasoning skills. Further, Obrecht
found that intuitive number sense was also linked with the use of sample size, suggesting
this factor may also play a role [74].

In addition to studies of implicit reasoning about variance, there are also several studies
that have demonstrated that when children are asked to collect or are given data and asked
to develop their own ways of summarizing the information, they can develop measures
of center and variability that make sense to them. Additional design studies have focused
on the integration of variation into describing data. For example, in figuring out how to
display plant growth over two weeks of measurements, students had to consider how to
represent both center (averaging) and variation [13]. Similarly, when children measure data
in different contexts (for example, measuring the height of a flagpole with a handmade
“height-o-meter” as compared to a standardized measuring tool), they observe a different
amount of spread [14]. Another study involved asking 11-year-old children to each measure
the perimeter of a table with a 15 cm ruler [92]. As expected, students’ measurements varied,
and then students worked in pairs to consider how to represent the full set of classroom
data. These classroom studies also demonstrated a critical role for discussion as a means of
advancing reasoning through relevant concepts to improve understanding.

2.2. Refining Data Sensemaking

What changes throughout development to refine this ability to summarize numerical
data to estimate central tendency and variability? One contributing factor is acquiring and
using more efficacious strategies (e.g., [93,94]). Children asked to summarize the spatial
center in a series of dots used more strategies than adults, suggesting a less efficient process,
and many of the strategies children used were not efficacious, resulting in fewer correct
responses when compared to adults [41]. This result suggests that children’s approaches
to attending to and encoding information influence the resulting summaries [27]. Alibali
et al. [56] recently proposed considering that the process of developing new strategies
may be similar to a diathesis-stress model, in which there is an interaction between a
“vulnerability to change . . . and a ‘trigger’ that actually provokes change (p. 164)”. In other
words, they suggest that once children have reached a point of being able to encode target
problems in a way that makes key features salient, then it is possible that external input,
such as feedback from successfully trying a new approach, will lead to the generation of new
strategies. As they note, this does not fully explain the process of strategy generation, but
it does suggest the importance of considering perceptual encoding as a factor in learning.
There may also be value in considering more domain-specific models of change that occur
within specific types of problems and across different age groups, for a more nuanced
picture of the process [93].

As discussed above, adults are also adept at summarizing numerical information
presented in sets [27]. Although people are often capable of summarizing data without
conscious awareness, and encoding and drawing conclusions based on those summaries,
one facet of learning to reason with data involves understanding what the summary values
represent [95]. Students often gather or are given a series of individual data points, and then
are asked to summarize the data. To do so effectively, they must recognize that reasoning
about sets of data most commonly involves considering the data as an aggregate set, not
as individual data points [96,97]. As students transition from informal reasoning about
data to more scientific data reasoning, they are often taught formulas, enabling them for
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example to compute means, and later standard deviations. However, the ability to apply
formulas does not necessarily lead to understanding what the resulting values indicate,
and how these summary values are related to the individual members of the set [35,98–100].
Nine-year-old children sometimes reason about a data set by referring only to a subset of
the data [68]. Even university students who sometimes use aggregate reasoning are often
inconsistent in their reasoning approaches and vary in whether they consider the full set of
data or not, based on context [101,102].

Effective instruction makes use of a student’s skills and prior knowledge to sup-
port their learning [103]. In the case of data reasoning, leveraging intuitions and prior
knowledge about data can help students attend to relevant problem features [58], focus on
possible strategies [59], and generate and attempt potential solutions that may be helpful in
learning [60]. One instructional technique, preparation for learning, introduces students to
relevant content before any formal instruction takes place [104]. In one application of this
technique, students played a video game (Stats Invaders!) in which players identify the
shape of the distributions in which invading aliens appear [58]. Students who played this
video game before receiving instruction produced significantly higher scores at posttest
than students who received instruction first, likely due to familiarizing students with
statistical distributions before instruction began. Further exploration of how to bridge the
gap between statistical intuitions and teaching statistical tools is important for clarifying
this area. Statistical tools can augment and improve data reasoning, and provide some
protection against cognitive biases. For example, statistical tools provide steps of formal
analysis that control for sources of bias in informal analysis and allow for generalization
beyond the data collected [4].

A different approach, productive failure, provides students with an opportunity to
attempt to solve problems, and often fail, before instruction [59,60]. In two experiments
comparing productive failure to direct instruction, students saw two instructional phases
in one of two orders: (1) a data set with basketball performance and asked to determine
the most consistent player and (2) direct instruction on calculating standard deviation [60].
Participants, who first explored the data and then were given direct instruction, outper-
formed students who were first given direct instruction before exploring. These findings
suggest potential for broader applications of this concept.

To summarize, the evidence demonstrates that even young children can quickly
summarize data resulting in approximate representations of statistical features such as
variability, including the role of sample size. Much like summarization of sets of objects or
other complex perceptual information, this process is rapid and occurs without any formal
instruction. At the same time, variability is a more complex concept than the average, and
children and adults often struggle to use variability information effectively. The following
section will begin to explore how this initial data sensemaking underlies reasoning with
data. Although children and adults can summarize large amounts of numerical information
rapidly, drawing inferences and conclusions based on summary values may be skewed by
mental shortcuts, known as heuristics.

2.3. Sensemaking and Reasoning from Associations between Variables

The section above described the initial process of data sensemaking that allows chil-
dren and adults to summarize data. This process spares limited processing resources and
provides information not available in individual numbers within a set. Summary values are
one piece of information used to draw inferences. The following sections review research
on both data sensemaking and reasoning from data. We combine these sections because
detecting patterns in data or comparing data include both summarization and making sense
of the patterns or differences that emerge from these summaries, and most of the tasks cited
ask participants to reason with the data. Covariation refers to the relation between two
or more variables and is one of the foundational principles in statistics and research [105].
Thus, one common application of data sensemaking and reasoning is within the contexts
of reasoning about covariation between variables [106]. In the section below, we review
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the experimental evidence, from research with children and adults, that illustrates data
sensemaking and reasoning with covariation data and how strategy use influences informal
data reasoning.

2.4. Making Sense of and Reasoning with Covariation Data

Data sensemaking often occurs when reasoning about covariation data, and drawing
inferences from the patterns and relations between variables. Children and adults can
detect differences in covariation data when those differences are large [44,45] or when
covariation is presented within a constrained context [11]. More nuanced detection occurs
as children acquire more sophisticated strategies for making sense of and interpreting
covariation [44,57]. Early work in this vein [3] indicated children struggle with using
covariation evidence to draw conclusions in line with the data, at least until ages 11 or 12.
In many cases, children and even some adults referred to prior beliefs as justification, rather
than the covariation evidence provided. For example, even if the data indicated more colds
with carrot cake than chocolate cake (or no relationship), some children talked about how
chocolate cake had more sugar, and was, therefore, less healthy and would lead to more
colds. These findings have been used to suggest that children struggle with understanding
covariation evidence, and have difficulty reasoning with this type of data.

However, follow-up work suggested that in fact young children could reason with
covariation evidence when the tasks were simplified. For example, when given a less
complex task, children by age six demonstrate an understanding of how covariation works.
That is, they can use patterns of evidence to draw conclusions [11], particularly when
the examples used tested equally plausible hypotheses. Similarly, young children ages
4–6 show evidence of the ability to use covariation evidence in drawing conclusions [107].
This suggests that young children can make sense of covariation data, when the differences
are large.

Shaklee and colleagues report a series of studies in which they explored how people
interpret covariation data (i.e., use strategies to reason with data) presented in contingency
tables, in which there are four cells [29,44,45,108,109]. Participants were asked to consider
whether there was a relationship between two dichotomous variables, such as the presence
or absence of plant food and plant health or sickness. These studies demonstrated that
children struggle to reason about contingency tables using sophisticated strategies, often
ignoring some of the data. For example, Shaklee and Mims (1981) found that although
strategy sophistication improved with age from fourth graders to college students, it was
still only a minority of students even at the college level who used the most sophisticated
strategy of conditional probability. Additional studies have found similar difficulties with
strategy use in both children [29,110] and adults [57,109,111].

Taken together, the covariation results described above are consistent with data sense-
making that involves rapid summarization of data. In this case, detecting associations
between variables would be possible with a mechanism that represents the event itself and
represents an aggregate of multiple events of the same type. For example, seeing multiple
instances of carrot eaters catching a cold would provide a strong pattern that should be
readily detected by tracking cases [112]. However, only tracking this one outcome will lead
to incorrect reasoning when there is a larger proportion of cases of carrot eaters who do
not catch a cold. Finally, the consistency of the data (i.e., the strength of the correlation
between variables) will make identifying the relations easier because more data points will
be predictably in line with previous data points.

In many covariation studies, such as those described above, covariation is considered
sufficient to demonstrate causation, and a mechanism linking two variables is not necessary.
For example, in asking children to draw conclusions about the link between types of
food and a cold, children are given no reason to believe one type of food would be better
than another, beyond their knowledge of which foods are healthier than others. Similarly,
figuring out which objects make a machine light up is determined by covariation evidence
and temporal precedence. However, although covariation is one required piece of evidence
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for inferring a causal relationship, it is not sufficient on its own. Further, analyzing data
independent of theory is not what real-world scientists do, and there is an argument
that it is important to consider the data in the context of one’s prior knowledge about
mechanisms that might link a cause and effect, enabling one to make an inference to the
best explanation [37]. In many of these covariation studies, children are expected to ignore
prior beliefs, even when prior beliefs suggest the data presented are implausible [2]. When
given a potential explanatory mechanism, both children and adults reason based at least
in part on these prior beliefs and mechanistic explanations, instead of exclusively on the
data [3].

2.5. Sensemaking of and Reasoning with Group Comparisons

Another common inferential goal of scientific data reasoning is to determine if two (or
more) groups are different on some outcome measure, and, again, data sensemaking and
reasoning play a role. In this case, we are specifically talking about comparing categorical
groups on a numerical or scale outcome measure. The origin of the first formal statistical
test for group comparisons, Student’s t-test, was to provide a method to compare samples of
ingredients during beermaking [113]. People with training in statistics would typically use a
t-test in making inferences about differences in an outcome between two groups. However,
a small series of studies has demonstrated that children and adults often use the same
components that are part of a formal t-test (i.e., differences between means, variance, and
sample size) in drawing conclusions, even when comparing datasets without any calculation.

When comparing datasets, people generally rely most heavily on differences between
means, with less attention to variance or sample size [35,68]. In a more recent study with
adults, with more systematic manipulation of the mean difference and variance, larger
mean differences and smaller variance in the datasets led to more accurate reasoning, more
confidence in answers, and fewer visual fixations on the data [28]. These patterns suggest
people summarize the data and compare the summaries quickly and accurately, without
explicit computation. Other work has provided converging evidence that the magnitude
of inferred (not computed) averages when comparing groups can depend in part on the
magnitude of the values sampled [114], and that the ratio of means is a critical factor in
reasoning about numerical data, such that accuracy of numerical perception varied in
accordance with Weber’s law (e.g., [83,115–117]).

A study of similar concepts looked at college students who compared pairs of con-
sumer products in which the mean product ratings, the sample size, and the variance
were all systematically manipulated. Participants focused most heavily on product ratings
(magnitude of the outcome variable and the difference between means), and gave less
weight to sample size. They gave the least weight of all to the sample variance [42].

Additional work has examined how college students compute analyses of variance
(ANOVAs) intuitively, in which they are comparing four columns of data [46]. The data
varied in their within-group variance and between-group variance, though students only
saw raw data and this variance was not summarized. These students, similar to others
described above, focused more in between group differences than within-group variance at
the beginning of a semester-long statistics course.

The results reviewed in this section suggest that children and adults rely on data
sensemaking; they make group comparisons quickly and without evidence for formal
calculations, even in those who have received some formal instruction on data. Children
and adults focus on differences between groups, as demonstrated by performance related
to the statistical properties of the stimuli. This result pattern is consistent with a process of
rapid summaries of both sets for comparisons [25,28]. In these models, individual numbers
are represented as activation functions on a mental number line [118]. Multiple numbers
are summarized by a secondary activation that is heightened with overlap among the
individual values. The larger the distance between secondary activations, the faster the
detection of difference. However, as with the detection of covariation, while children
and adults are able to detect large differences, they become less accurate given smaller
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differences (e.g., 9:10 ratio of means [28]) may attend to less diagnostic data features, and
this informal detection may be influenced by cognitive biases.

3. Scientific Data Reasoning

Scientific reasoning processes provide tools to increase the validity and reliability of
data reasoning while helping people reduce, or even avoid, common reasoning biases
(e.g., confirmation bias) [119]. We will briefly describe three such tools that can improve
data reasoning: external representations, scientific (i.e., theory-driven) hypothesis testing,
and probabilistic conclusions. We recognize these descriptions are not comprehensive, but
highlight a few key points about each topic.

3.1. External Representations

External representations refer to representations outside the mind that can be detected
and processed by the perceptual and cognitive systems [21]. Examples of external represen-
tations related to numerical data are scatterplots, bar graphs, and columns of numbers in a
spreadsheet. External representations allow us to record and display much larger amounts
of data than can be held with fidelity in human memory [48]. Since internal representations
are bound by the constraints of the human cognitive architecture, people can only attend to
and process a finite amount of data at any given time [31].

External representations reduce this load by providing a representation of information,
thereby allowing limited resources to be focused away from low-level process such as
maintaining information in memory, to higher-order processes such as problem solving and
reasoning. For example, 2nd graders were more likely to change beliefs in response to a
diagram than an explanation [120], and 5th and 8th grade children were more successful in
testing links between switch settings to make an electric train run when they kept external
records [121]. A similar pattern holds with older participants: novice undergraduate and
graduate students were more successful in solving a medical diagnostic problem when
they created external representations of the problem (e.g., lists of symptoms or decision
trees) than students who did not [47].

In addition to providing a reliable and durable record of data, external representations
are accessible to others, and can allow for the discovery of patterns and higher-order
features that would be difficult to detect in other formats (e.g., trends in a scatterplot; [21]).
For example, scientists often compare their internal (i.e., mental) representations to external
representations when reasoning with and interpreting ambiguous data [122].

However, even with external representations, cognitive biases can still influence data
reasoning. For example, there is a tendency to underestimate means in bar graphs (though
less so in point graphs), even in the presence of outliers [123]. This is likely because, as most
models of graph comprehension suggest, people initially, and rapidly, summarize the main
features of the graph, which forms the basis for subsequent inferences [124,125]. In sum,
external representations provide powerful tools that aid with scientific data reasoning by re-
ducing working memory burdens and making patterns and relations between variables more
apparent; however, they are also subject to cognitive biases (e.g., mean underestimation).

3.2. Scientific Hypothesis Testing

Another tool for scientific data reasoning is scientific hypothesis testing. It has been
documented that even young children engage in hypothesis testing [22]. The evidence for
hypothesis testing and its development provides several seemingly contradictory findings.
Developmental research demonstrates that young children have many of the rudiments of
scientific reasoning [10,51,126,127]. When kindergartners use an inquiry-guided process,
they can develop scientific questions and hypotheses more effectively than similar children
not given such guidance [128]. There is also evidence that young children were more likely
to seek information when evidence was inconsistent with their prior beliefs than when
evidence was consistent with their beliefs [49]. Children as young as five spontaneously
performed contrastive tests (i.e., compared two different experimental setups), in which
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they tested whether a machine lit up with or without a targeted variable [51]. These findings
collectively suggest more robust scientific reasoning ability in children than assumed in
early developmental research [129].

At the same time, evidence from several studies suggest that children and adults
often fail to conduct unconfounded hypothesis tests, as would occur in scientific experi-
mentation [40,51,130]. Children often conduct confounded experiments before they have
received instruction on this topic [40] and sometimes struggle to construct unconfounded
hypotheses in unconstrained contexts such as discovery learning [50]. Adults sometimes
do not perform contrastive tests and sometimes fail to identify causal variables [131]. There
is research that demonstrates a tendency for children [132] and adults [54] to seek to con-
firm beliefs. Additionally, preschoolers sometimes do not seek disconfirming evidence
after hearing misleading testimonial evidence [133]. This pattern of results might arise
from either lacking knowledge about scientific hypothesis testing or not implementing
this knowledge correctly. Further, even when seeking evidence, children and adults some-
times misinterpret or misperceive data such that new data conform with their prior beliefs,
despite the misconceptions of those prior beliefs [15].

This pattern of evidence likely suggests a developmental and educational trajectory
in which children’s curiosity drives them to understand the world by seeking informa-
tion [49,51,134,135]. Children quickly acquire impressive skills for information seeking [49]
and evidence evaluation [10]. However, these skills are limited by children’s emerging
understanding of scientific experimentation [50], implementing this knowledge in novel
contexts [38,136], and cognitive biases (e.g., confirmation bias [15,119]). The acquisition
and use of scientific reasoning skills improves how people evaluate and understand the
data about which they are reasoning, which improves the quality of the conclusions drawn
from data. In short, the acquisition and application of scientific hypothesis testing can help
to protect reasoners from errors that may reduce the accuracy of their data [52].

3.3. Probabilistic Conclusions

Data reasoning leads to conclusions, but these conclusions are always probabilistic
rather than deterministic (e.g., [4,53]). Science education, including scientific data reasoning,
often presents scientific conclusions as definitive [20]. Including acknowledgement of the
uncertainty inherent in scientific data is an important, but often overlooked, area of science
education (e.g., [137–139]). When children work with real-world data, with its variability
and uncertainty, they often come to understand the nature of science more effectively [140].
Young children often appear to have a bias towards deterministic conclusions, preferring
to select a single outcome when multiple outcomes are possible [141,142]. This tendency to
look for a single conclusion is robust but is reduced with age [142] and can be reduced after
multiple training experiences [9].

At the same time, Denison and Xu [143] argue that the majority of empirical evidence
into infant (and primate) reasoning under certainty suggests that they use probabilistic
reasoning in drawing conclusions. Young children have some intuitions about probability
that help them make sense of situations such as the likelihood of selecting a specific object
from a target set. In one recent experiment, 6- and 7-year-old children were shown a
set of white and red balls with specific ratios of difference between red and white balls
(e.g., 1.10–9.90; [144]). In line with previous results reported above, children’s accuracy in
selecting the most likely ball was closely associated with the ratio of difference.

These intuitions of data sensemaking can influence reasoning from data, but the
understanding that inferences from data must be probabilistic is necessary for effective
scientific reasoning, despite its challenges (e.g., [12,53]). Even when adding inferential
statistics to the toolkit, there can still be a wide range of approaches taken by experts in the
field [145]. That variation is one of the many challenges in thinking through scientific data
reasoning, and a factor that makes teaching these concepts especially difficult. How do we
leverage intuitions about data to promote scientific data reasoning?
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4. Heuristics in Data Reasoning

A key limitation of all data reasoning is that humans are subject to cognitive biases,
and when reasoning with data, we can fall prey to them. Tversky and Kahneman’s classic
work on heuristics and biases [32] suggests several ways in which shortcuts we often take
to reason about data can lead us astray. For example, people are more likely to think things
that come to mind easily are more common than those that do not come to mind as quickly,
a phenomenon known as the availability heuristic. People also often estimate magnitude
by anchoring to an initial value. When seeing data, the anchor then affects conclusions, and
adjustment for the anchor is often insufficient. Additionally, people often test hypotheses
with a confirmation bias, looking for evidence to support their initial beliefs rather than
seeking and evaluating evidence independent of hypotheses (e.g., [15,54,55]).

Although mental shortcuts can lead to suboptimal conclusions, under some conditions,
shortcuts may lead to better conclusions and decisions than deliberative reasoning, a
phenomenon termed adaptive heuristics [146]. For example, when selecting the best mutual
fund for retirement investments, a simple, adaptive heuristic in which one allocates equally
to all options, outperformed data-driven models that far exceeded human processing
limits [147]. In this case, the use of a simple strategy was highly efficient and could easily
be implemented within limited cognitive capacity. Adaptive heuristics are useful when
thinking about reasoning with data because we often have to make sense of large amounts
of information (e.g., data) and formal data calculations require significant time, energy, and
working memory capacity [148].

However, reliance on heuristics alone might result in suboptimal conclusions, as
described above. Recent evidence demonstrates that training in the scientific process leads
to reduced susceptibility to cognitive biases [149]. It is important to note that heuristics are
not supplanted by scientific reasoning. Heuristics continue to operate even for experts and
may compete for cognitive resources [150]. Experts might use heuristics in a more controlled
and deliberate fashion than novices [151]. In addition, reliance on prior knowledge about
mechanisms, and assessing data in light of that knowledge, often makes sense in a scientific
context (e.g., [2,37,152]). For example, if an initial analysis provides evidence against a
well-established pattern of evidence, it is often reasonable to check the data and analysis or
even replicate a study before abandoning one’s hypothesis. Additionally, consideration
of the plausibility of the proposed mechanisms for an effect play a role. In the following
section, we will discuss how intuitive data reasoning strategies (e.g., heuristics) play a role
in data reasoning and how these processes can be leveraged through instruction to help
students learn scientific data reasoning.

5. Future Directions

Many basic research questions remain in this realm of data sensemaking, informal
reasoning with data, and scientific data reasoning. For example, although the evidence
presented above suggests rapid summarization of data sets (e.g., [26,29,68]), more research
is needed to determine the extent to which summarizing data is made on the basis of
the same mechanisms underlying ensemble perception and cognition. Further, as we
have discussed, data reasoning occurs in a wide ranges of contexts, including scientific
reasoning, science education, decision-making, and other fields. We have focused on
scientific reasoning and a little bit of the science education literature. Further exploration of
differences in data reasoning across disciplines, with and without the supports of external
representations, scientific hypothesis testing, and probabilistic conclusions, would also
help in understanding the process of data reasoning more thoroughly.

We have suggested that reasoning with data begins with data sensemaking, a rapid
summarization process that reduces processing burdens while providing information
about the statistical properties of number sets. This process appears to improve through
development and education, resulting in more accurate summaries. We suggested that
one important factor underlying these improvements is the acquisition and use of more
effective strategies, which are developed with experience and education. Data reasoning
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is drawing inferences from the data, along with prior knowledge and other relevant
information. Much like data summaries, data reasoning is often “accurate enough” for
everyday contexts. One limitation to accuracy for summaries and inferences is reasoning
biases, such as the confirmation bias or the tendency to seek data consistent with prior
expectations. We propose that the acquisition of scientific data reasoning provides tools
that improve the fidelity of the data itself, the conditions through which data are acquired,
representation of data (e.g., figures), and the types of conclusions drawn from data. An
important future direction is to evaluate this model experimentally.

Our proposed model needs direct testing of its components, though focus on the
concepts at a fine grain size provides researchers with opportunities to evaluate elements of
the model or the model itself. Our predictions about relatively automatic summarization of
data sets can be evaluated directly. Educators can implement parts of our model individually
or in concert. For example, lessons on data interpretation can encourage reliance on data
summarization, with instruction guiding students to describe patterns and compare data
sets in consistent ways. Below, we highlight several specific suggestions for future directions.

One complex topic in need of much further exploration is the interplay between
prior knowledge and data reasoning. Although there is a fair amount of work about
integrating theory and evidence (e.g., [2,3,90,152,153]), there is less work on how prior
beliefs interact with different types of numerical data (e.g., [13,14,91]). There is evidence
that prior knowledge increases attention to diagnostic features [154] and helps reasoners
solve problems more effectively [155]. However, this attention to diagnostic features has
not to our knowledge been tested with data reasoning.

In addition, there are many educational applications of data reasoning, and specifically
scientific data reasoning. Future research aimed at effective application of these concepts
in the classroom can be beneficial both to understanding scientific data reasoning, and to
developing best practices in education. As discussed above, classroom studies in which
students develop their own measures of description and inferences from data have been
shown to facilitate a more comprehensive understanding of concepts such as the aggrega-
tion of data and variability, building on initial intuitions (e.g., [13,14,35,156]). Considered
within the framing outlined above by Alibali et al. [93], the classroom conversations could
be considered a potential trigger for provoking changes in strategies used to approach these
problems, and in turn, increase learning. This process can work in informal data reasoning
or scientific data reasoning contexts. Follow-up studies could directly examine strategy
acquisition and be used to develop a more comprehensive understanding of how strategies
aid in learning about data reasoning.

There is a lot of work demonstrating the efficacy of classroom interventions or curricu-
lar approaches in improving people’s ability to reason statistically [96]. A meta-analysis of
scientific reasoning interventions, targeting a wider range of topics than just data reasoning,
indicated there was a small effect in classroom interventions across ages [19]. Similarly,
there are many demonstrations of efficacy of specific tools aiding in data reasoning within
lab contexts (e.g., [56,120,157,158]. However, scaling up these interventions into more
effective curricula at all levels (including teacher training) remains a challenge.

Teaching materials are also important in facilitating (or unintentionally hindering)
student learning. Textbooks play an important role in student learning, and limitations
in textbook content can affect student learning. Children can acquire misconceptions
through misaligned instructional materials. One source of misconception can be examples
in textbooks. A notable example from mathematics is children’s misconception of the equal
sign, in which children interpret the equal sign as a signal for executing an operation rather
than balancing both sides of an equation [159]. An analysis of math textbooks demonstrated
that most practice problems had the same structure (e.g., 3 + 5 = ?) that is consistent with
this misconception [160]. Another study of middle school science textbooks showed they
typically include limited guidance in appropriate use of data [161]. In fact, the majority
of data reasoning activities in science texts provided little guidance on how to analyze or
draw inferences from data formally. Thus, one step that can help improve student learning
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of data concepts involves improved integration of descriptions and applied exercises in
textbooks used in science classes. This research demonstrates the importance of using
instructional materials that do not promote biases or misconceptions [160,162].

Finally, one last suggested future direction is investigating the role of intuitions and
potential misconceptions, both about science and about data, in scientific data reasoning.
One difficulty in science education is that many scientific phenomena are challenging to
understand, and in many cases intuitions conflict with scientific consensus, such as in
understanding of physical principles of heat and motion as well as biological principles of
inheritance and evolution [163]. Thus, although intuitions about data can be useful in data
reasoning, intuitions about conceptual content sometimes lead people to incorrect beliefs
and misconceptions. Indeed, there is some evidence it can be at the observation stage where
incorrect prior beliefs interfere with accurate perception of physical phenomena and the
gathering of potentially-informative data [15].

6. Conclusions

We proposed a model of data reasoning and its relation to scientific reasoning. Specif-
ically, we suggest that data reasoning begins developmentally with data sensemaking,
a relatively automatic process rooted in perceptual mechanisms that summarize large
quantities of information in the environment. As these summarization mechanisms operate
on number sets, they yield approximate representations of statistical properties, such as
central tendency and variation. This information is then available for drawing inferences
from data. However, both data sensemaking and informal data reasoning may lead to
erroneous conclusions due to cognitive biases or heuristics. The acquisition of scientific
data reasoning helps to reduce these biases by providing tools and procedures that improve
data reasoning. These tools include external representations, scientific hypothesis testing,
and drawing probabilistic conclusions. Although data sensemaking and informal data
reasoning are not supplanted by scientific data reasoning, these skills can be leveraged to
improve learning of science and reasoning with data.
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