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Abstract: In every course, there are learners who successfully pass assessments and complete the
course. However, there are also those who fail the course for various reasons. One of such reasons
may be related to success in assessment. Although performance in assessments has been studied
before, there is a lack of knowledge on the degree of variance between different types of learners
in terms of scores and the number of resubmissions. In the paper, we analyse the performance in
assessments demonstrated by non-completers and completers and by completers with different
engagement levels and difficulty-resolving patterns. The data have been gathered from the Moodle
statistics source based on the performance of 1065 participants, as regards their completion status,
the number of attempts made per each programming task and quiz, and the score received per
quiz. Quantitative analysis was performed with descriptive statistics and non-parametric tests.
Non-completers and completers were similar in resubmissions per quiz, but the former, expectedly,
made more resubmissions per programming task and received lower quiz scores. Completers made
more attempts per task than per quiz. They could provide a correct solution with a few resubmissions
and receive good scores already at a pragmatic engagement level. At the same time, the increased use
of help sources in case of difficulties was also associated with a higher number of attempts and lower
quiz scores received. The study may have implications in understanding the role of assessments
in dropouts and how completers with different engagement and difficulty-resolving patterns cope
with assessments.

Keywords: MOOC on programming; performance in assessments; non-completers; completers;
engagement styles; difficulty-resolving patterns; non-parametric tests

1. Introduction

Participation in a massive open online course (MOOC) usually does not require any
prerequisite or predefined levels from learners. This aspect makes MOOCs particularly at-
tractive to self-directed learners who are basically interested in improving their knowledge
in a course field [1]. Participants have the opportunity to determine the learning goals for
themselves as student-centred learning suggests, and as they progress through the course,
participants may adapt approaches to reach their goals ultimately [2]. Course instructors
provide a variety of activities to engage with [3,4] and different support mechanisms such
as forums [5] or troubleshooters [6]. Adult learners find quizzes and problem sets useful,
as they can be used to get feedback and verify learning results [1]. Completers’ perfor-
mance in assessment varies, but they all make at least an attempt to pass [7]. Repeated
attempts (resubmissions) with improving solutions allow learners to have higher grades
in MOOCs [8,9]. In the context of learning programming, Auvinen [10] theorised that a
student makes a high number of attempts because exercise is difficult to solve on the first
attempt and a student makes a low number of attempts because the solution is carefully
checked before submission. At the same time, numerous attempts, even without getting
the right solution, demonstrate a student’s resilience—a key feature for programmers [11].
Giving a learner the possibility to have several attempts at assignments and quizzes is a
helpful approach from the perspective of dropout prevention [12]. Dropout is one of the
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biggest MOOC problems for which researchers have identified different reasons. Those
who will ultimately be considered non-completers may enrol only to study a specific
part of the course they are interested in [13], or they can have difficulties with effective
time management [13,14]. Difficulties in understanding learning materials are also seen
as an insuperable obstacle for them [14,15]. There is a lack of knowledge about how
non-completers perform in assignments in comparison to completers in the same course.
This study might shed light on this gap. Although, naturally, completers are likely to
have different engagement and difficulty-resolving strategies that ultimately lead them to
successful course completion, the current study might also provide insights into how those
strategies contribute to completers’ performance.

The paper tried to shed light on those aspects in the context of a MOOC on program-
ming. In this study, descriptive statistics and non-parametric tests are employed to examine
performance in programming tasks and quizzes by non-completers and completers, as
well as by previously identified completers with different engagement styles [16] and
difficulty-resolving patterns [17].

1.1. Literature Review

Learners’ performance can be defined as temporary fluctuations in behaviour or
knowledge that can be evaluated during the acquisition process or immediately after
it [18]. To assess learners, course instructors use different types of assessments and allow
resubmissions to provide correct responses. This section considers prior findings of learners’
performance and the effect of multiple resubmissions on students’ success. In addition, an
overview of performance results in terms of engagement styles and difficulty-resolving
patterns is presented.

1.1.1. The Effect of Multiple Attempts on Success

Studies both support and refute the value of multiple submissions. It has been
stated that those who try several times are more likely to pass a task [19] and persist in a
course [20]. Learners can achieve higher grades [8,9,21], and the probability of the correct
answer increases with each new attempt to solve a task [22]. Others have claimed that
a high number of attempts lead to lower grades [10] and might facilitate the guessing
effect [23]. Some students hope in vain to improve performance by submitting solutions
multiple times, but without concentrating on error sources [24]; some students do nothing
in between attempts [25]. Instead of thinking hard and solving a problem on their own,
learners start to abuse hints and automated check tools, which can ultimately lead to poor
hands-on skills [20].

The most powerful disengaging factor in a programming course is a failure in hands-
on assignments. It does not matter how many times a learner can submit a given assignment
as he/she may quit the course even after the first unsuccessful submission, without at-
tempting to improve a code and resubmit it [26]. Some learners present workable solutions
on the first attempt; others make multiple attempts while improving solutions. The average
number of submissions per each assignment on programming can vary [10,27,28]. Topics
and levels of difficulty in computer science courses also matter. In a course for advanced
users, the number of attempts to pass a task can be about twice as high as in a course for
beginners [27]. In computer science courses, the submission of multiple assignments can
be considered as an indicator of high engagement and effective behaviour [20,28,29].

1.1.2. Engagement Styles and Performance

The classification of engagement styles is based on what activities are undertaken and
how often they are participated in by a learner throughout the course [30]. Studies [31–33]
have demonstrated contradictory results regarding performance by learners with different
engagement styles. On the one hand, the more learners engage with course activities,
the better they perform [7]. Shi and Cristea [34] clarified that the more students visit
learning materials, write comments and attempt to answer quiz questions, the better
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performance results they achieve. The authors found that students with the highest level
in the mentioned aspects made on average more attempts to answer a question than
those whose engagement level was a little lower and who were less active in submitting
comments. Among those who were least engaged with learning materials and were socially
active, only about a quarter attempted to answer questions. Their results and the number
of submissions were the lowest. However, Arora et al. [35] identified learners who showed
better performance with lesser effort and engagement than those who used the maximum
amount of course materials. Deng et al. [32] found no difference in academic performance
by learners from clusters with multidimensional engagement patterns.

Through working with interactive activities, learning by doing, students find out more
about the subject and get better results than their fellow students who merely watch videos
or read materials [36]. There are also studies [37,38] where learners who demonstrated a
high level of engagement with forum posts and watching videos achieved high results
in quizzes. Abbakumov et al. [22] concluded that those who actively watch video lec-
tures and are productive with formative assessments have a higher probability of solving
items correctly.

1.1.3. Difficulty-Resolving and Performance

In programming courses, resilience, along with other factors (e.g., the accuracy of
problem-solving and analysing and debugging compilation errors), can lead to better
performance. Students with this trait do not easily give up, usually have good performance
and pass a course [29]. In an interactive activity, designed for practising the obtained skills,
learners may not achieve the required result right away but could return to it after they
have watched a video or have read the text lesson [39]. It has been suggested that the
strategy of viewing and reviewing lecture materials can bring positive results [25].

If a student spends an inordinate amount of time solving a programming assignment
and makes errors, it could mean that he/she is having difficulty and needs help [40].
Learners who use computer-mediated contact with friends as a help-seeking strategy while
working on assignments have the highest completion rate. However, those who ask friends
face-to-face or do not use any help-seeking strategy at all are less successful. Learners who
use an Internet Relay Chat (IRC) room provided by the platform fall in between the two [41].
Learners often ask lecturers for help when struggling with surmountable difficulties and
are interested in synchronous help that could be provided beyond face-to-face office hours
and email. As a result of this approach, a grade is positively correlated with the amount of
received help—those who ask for help and receive more support get better results [42].

There are courses that provide automatic hints to resolve difficulties. A positive
correlation has been found between the usage of troubleshooters and the number of
attempts in programming tasks and quizzes. Those who had difficulties were more active
in using this type of hint [6]. It is important to weigh the necessity and number of clues,
as those who eventually failed the programming course were four times more likely to
use those features compared to top students and were less enthusiastic about compiling
code [43].

Auvinen [10] found it difficult to state that an inefficient learning strategy leads to poor
performance, but Thomas et al. [44] suggested that some learning styles are more suitable
for learning programming than others. Since different approaches can affect performance
in different ways, they may help understand how different learners perform in assessment.
The aim of the current paper is to analyse performance in assessments demonstrated by
non-completers and completers, as well as by completers with different engagement styles
and difficulty-resolving patterns. As such, the following research questions are considered
in this study:

1. RQ 1: To what extent do the performances in assessments between non-completers
and completers differ?

2. RQ 2: To what extent do the performances in assessments between completers
grouped into engagement clusters differ?
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3. RQ 3: To what extent do the performances in assessments between completers
grouped into clusters of difficulty-resolvers differ?

The remainder of the article paper is structured as follows. Section 2 contains a
description of the methodology. In Section 3, the data analysis and results of the study are
provided. Section 4 discusses the findings, followed by concluding remarks in Section 5.

2. Methodology
2.1. Context of Study

The article addresses a 4-week Estonian-language MOOC About Programming (worth
1 the European Credit Transfer and Accumulation System (ECTS) credit). The course was
developed and organized by a research group from the Institute of Computer Science at
the University of Tartu (Estonia) several times since December 2014. In the course, the
basic programming concepts and structures of Python were introduced, and overviews
about IT-related subjects and examples were given [45]. Learning materials were presented
in the form of texts and videos, demos and weblinks to additional resources were also
provided. Weekly videos and emails were sent to learners to give an overview of what
was happening in the course and encourage them to continue the course. Among used
supported mechanisms, there were a forum, a helpdesk with a quick response within 8 h
(even on weekends), and troubleshooters that contained hints of certain aspects provided
for every programming task. There were also self-assessment questions and additional
tasks, but they were not compulsory and their results were not stored. The course was
designed in such a way that everyone who had a computer with Internet access could
access materials and tasks.

The MOOC was basically intended for adults interested in programming, but children
could also participate. Previous experience with programming was not required. Course
participants and completers differed in terms of demographic and social background [46],
motivation [47], interaction with provided activities [16], and resolved difficulties in pro-
gramming tasks in different ways [17].

To receive a certificate of completion, learners had to provide workable solutions for
all mandatory practical programming tasks and pass all quizzes provided in the Moodle
environment. There were six programming tasks in total, and the learners had to write
programming codes on their own. The learners were asked to write their Python codes in
Thonny. This development environment helps beginners evaluate expressions step-by-step
and analyse the process of programming [48]. The solutions had to be uploaded to the
virtual programming lab and were assessed by an automatic assessment system as passed
or failed. A learner had to resubmit the solution if, for example, any required solution
variables or cycles were missing, there were spelling mistakes, or the output was a little
different from the one required by the task. In addition, there were four quizzes with
10 questions each. The quizzes were based on theoretical content and included mainly
multiple-choice questions. Learners were allowed to use all the materials. The answers
were automatically checked by the Moodle, and a learner needed to get at least 9 points
out of 10 to pass a quiz. The number of tries in the programming tasks and quizzes was
not limited. Such multiple resubmissions of a task or quiz are referred to hereinafter
as “attempts”.

2.2. Sample

The current paper considers the course started in September 2018. The MOOC had
1307 registrants, but 242 did not start the course. The certificate requirements were met
by 773 completers. There were 292 non-completers who did not meet all certificate re-
quirements but submitted at least one programming task solution and/or did at least one
quiz with an intention to achieve a required threshold value (no-show registrants were
excluded). The description of the study sample is provided in Table 1.
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Table 1. Descriptive statistics of the sample.

All Participants Non-Completers Completers

Sample size 1065 292 773
Female 54.3% 53.4% 54.7%

Average age 33.0 (SD = 10.81) 36.4 (SD = 10.47) 33.2 (SD = 10.94)
Age range 10–70 10–60 10–70

Previously, we revealed completers’ clusters based on their reported engagement [16]
and difficulty-resolving strategies [17]. Those clusters were formed using K-mean cluster
analysis. The data were gathered from the questionnaires. Filling them out was voluntary
(at the end of the course), and only answers from completers were analysed. Regarding
engagement styles, completers self-evaluated their interaction (from not at all to all) with
the listed course activities. Regarding difficulty-resolving patterns, the completers self-
evaluated their activity level (from not at all to always) with the listed help sources. It should
be noted that for the second and third research questions, the number of studied completers
(575) was smaller compared to the total course completers (773), since only 580 completers
filled in the questionnaires used to identify clusters and five completers who filled in the
questionnaires asked not to use their performance data. The sample description by clusters
is as follows:

• Engagement clusters [16]:

# active knowledge collectors (N = 170) engaged with most provided activities,
except reading forum posts and using troubleshooters. They were predomi-
nantly older completers with higher education;

# for minimum knowledge collectors (N = 95), the main sources used were
learning materials on programming, self-assessment questions, and provided
demos. This cluster had a higher share of males and younger persons with
lower education who had studied programming before;

# pragmatic knowledge collectors (N = 201) concentrated mainly on the activities
needed to complete the MOOC on programming. No distinctive differences by
demographic and social characteristics were found;

# support-required knowledge collectors (N = 114) engaged with all available
course activities and were more active in using provided support mechanisms.
Most of them had no previous experience in studying programming

• Difficulty-resolvers’ clusters [17]:

# bounded resolvers (N = 172) tended to re-read learning materials and were
least likely to search for additional materials on the Internet. In this cluster,
those who had studied programming before occupied a large portion;

# moderate resolvers (N = 74) usually re-read learning materials and tried to find
information on the Internet, forums, or troubleshooters. For most of them, this
course was their first experience with a web-based course;

# step-by-step resolvers (N = 124) coped with difficulties by using learning
materials and troubleshooters. The members of this cluster were mostly inex-
perienced in studying programming;

# social resolvers (N = 42) had the highest activity levels in re-reading the learning
materials, using troubleshooters, and seeking help from forums and helpdesk.
This cluster had the highest share of female learners, who had never studied
programming nor participated in a web-based course before;

# self-supporting resolvers (N = 168) used learning materials and were the most
active in searching for additional materials on the Internet. Most of them were
male and experienced in studying programming but had never participated in
a web-based course.
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2.3. Data Collection

In this study, we defined performance in assessment as the number of attempts per
programming task and per quiz and the numerical score received in a quiz.

From the Moodle, we collected quantitative data about learners’ completion status,
the number of attempts made per each programming task and quiz, and the score received
per quiz. It should be noted that the opportunity to upload a task solution or take a quiz
once again was available after it was evaluated as passed. The numeric score was available
only for quizzes. In the collected data, only the best score per quiz was stored.

Each learner who completed the course was assigned to one of the completers’ clusters
identified in previous studies about completers’ engagement [16] and difficulty-resolving [17].
This manipulation was possible because the current study used the same dataset with the
same sample, and the data about completers’ cluster membership were stored.

2.4. Data Analysis

Quantitative data were analysed using IBM SPSS Statistics 26.0. The preliminary
analysis of main variables did not reveal any missing data. In the data, there were outliers.
Those high numbers of attempts were considered a natural part of the whole population,
since there are always learners who make a lot of attempts. In addition, according to
Frost [49], if the sample size is large enough (as it was in the current study), it is allowed
to consider those extreme values as a normal part of the data distribution, and, therefore,
should not be deleted from the study.

Descriptive statistics were used to calculate the average, standard deviation, and range
of different performance variables, such as the number of attempts. The calculated average
number of attempts per programming task for a completer was based on all six mandatory
tasks; the calculated average number of attempts per quiz and the average received score
per quiz were based on all four mandatory quizzes. The calculated average number of
attempts per programming task for a non-completer was based on all completed tasks (at
least one task, but there was a non-completers who did all six tasks); the calculated average
number of attempts per quiz and the average received score per quiz were based on all
submitted quizzes (at least one quiz, but there were several non-completers who did all four
quizzes). The collected data did not fit a normal distribution, and therefore, non-parametric
tests were applied. Those tests are also recommended [49] to cope with outliers, and the
findings cannot be overly affected by those extreme values. The Kruskal–Wallis H-test
was used to determine the existence of differences between the non-completers and the
completers. The same test was used to determine the existence of differences between
the completers from the engagement clusters and the difficulty-resolvers’ clusters. The
Mann–Whitney U-test was used to make pairwise comparisons between identified clusters.

3. Results
3.1. Performance in Assessments by Non-Completers and Completers

In the studied MOOC, 1004 participants submitted at least one programming task
solution out of six. Throughout the course, the smallest number of attempts was 1, and the
largest was 121. The course maximum was achieved by a completer (Figure 1). On average,
a learner made 2.05 (SD = 3.931) attempts per programming task.

There were 1061 participants who did at least one quiz out of four. Throughout the
course, the number of attempts ranged from 1 to 4, and only a small number of learners
needed more than two attempts (Figure 2). The average number of attempts per quiz
was 1.04 (SD = 0.218). Quiz scores ranged from 0 to 10, and the average score was 9.73
(SD = 1.063) per quiz.
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The Kruskal–Wallis H-test was employed to examine the difference between non-
completers and completers (Table 2). The result showed that the learners in the non-
completers’ group made, on average, more attempts per programming task compared
to completers (p < 0.001). No statistically significant difference was found regarding the
average number of attempts to pass a quiz (p > 0.05). Non-completers received, on average,
lower scores per quiz (p < 0.001).
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Table 2. Attempts and scores by non-completers and completers across the course.

Non-Completers Completers Kruskal–Wallis H

Attempts per
programming task

n 231 773
range 1−55 1−121

mean (SD) 2.67 (4.107) 1.97 (3.902) 46.973 ***

Attempts per quiz
n 288 773

range 1−3 1−4
mean (SD) 1.05 (0.251) 1.04 (0.211) 1.130

Scores per quiz
n 288 773

range 0−10 9−10
mean (SD) 9.06 (2.423) 9.86 (0.345) 85.037 ***

*** p < 0.001.

It must be stressed that the number of learners in the group of non-completers who
were trying to pass an assignment decreased steadily as the course progressed. Comparing
non-completers and completers for each of the six programming tasks, we found that,
only in the last task, there was no difference in the average number of attempts (H = 3.306;
p > 0.05). For the last task, there were only 19 learners among non-completers who tried
to solve it. In all other tasks, non-completers made on average more attempts (in all
cases p < 0.05). In the context of each of the four quizzes, we found that only in the
last quiz learners among non-completers made, on average, more attempts (H = 9.136;
p < 0.01; n = 42 non-completers). Regarding the scores for each quiz, the learners in the
non-completers’ group always received lower scores compared to completers (in all cases,
p < 0.001).

3.2. Performance in Assessments by Completers with Different Engagement Styles

Previously, we identified four engagement clusters based on completers’ stated inter-
action with provided activities in the MOOC. The number of attempts per programming
task varied between engagement clusters. As expected, in every engagement cluster, some
completers passed the task on the first attempt. In the cluster of support required knowl-
edge collectors there were completers who made up to 121 attempts; in all other clusters,
this number was below 20 (Figure 3).
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The Kruskal–Wallis test showed a difference between engagement clusters regarding
the average number of attempts per programming task (p < 0.001; Table 3). The pairwise
comparison revealed that support-required knowledge collectors made more attempts on
average compared to all other clusters (with the Mann–Whitney U-test, p < 0.01 in all cases).
Minimum knowledge collectors made more attempts on average compared to active and
pragmatic knowledge collectors (U = 273,335.0 and 315,169.5, respectively; in both cases,
p < 0.05). No significant difference was found between active and pragmatic knowledge
collectors (U = 592,947.5; p > 0.05).

Table 3. Comparison of completers’ engagement clusters across the course.

Active
Knowledge
Collectors
(n = 169)

Minimum
Knowledge
Collectors

(n = 95)

Pragmatic
Knowledge
Collectors
(n = 197)

Support-Required
Knowledge Collectors

(n = 114)
Kruskal–Wallis H

Attempts per
programming task

range 1−19 1−18 1−15 1−121
mean (SD) 1.62 (1.638) 1.77 (1.811) 1.63 (1.656) 2.91 (7.514) 45.500 ***

Attempts per quiz range 1−3 1−3 1−2 1−4
mean (SD) 1.02 (0.138) 1.06 (0.251) 1.03 (0.175) 1.07 (0.289) 17.662 ***

Scores per quiz mean (SD) 9.92 (0.267) 9.81 (0.394) 9.90 (0.294) 9.82 (0.381) 47.774 ***

*** p < 0.001.

The number of attempts per quiz also varied between engagement clusters. Again, in
every cluster, there were completers who passed the quiz on the first attempt. Support-
required knowledge collectors made up to four attempts, while the completers from the
pragmatic cluster were able to pass a quiz in two or fewer attempts. In all other clusters,
this number was between one and three (Figure 4).
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There was a difference found between engagement clusters in terms of the average
number of attempts per quiz (p < 0.001; Table 3). The pairwise comparison revealed that
active knowledge collectors made fewer attempts on average compared to all other clusters
(with the Mann–Whitney U-test, p < 0.05 in all cases). Pragmatic knowledge collectors
made fewer attempts on average compared to support required knowledge collectors
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(U = 175,082.5; p < 0 .05). For all other pairwise comparisons, no significant differences were
found (p > 0.05).

Due to certificate requirements, the test scores ranged in all completers’ clusters from
9 to 10 points (Table 3). Again, engagement clusters differed in terms of the received
scores per quiz (p < 0.001). Active knowledge collectors achieved higher scores compared
to minimum and support-required knowledge collectors (U = 113,646.0 and 138,944.0,
respectively, in both cases p < 0 .001). Pragmatic knowledge collectors received higher scores
compared to completers from the minimum and support-required clusters (U = 135,208.0
and 165,244.0, respectively, in both cases p < 0 .001). For all other pairwise comparisons, no
significant differences were found (p > 0.05).

3.3. Performance in Assessments by Completers with Different Difficulty-Resolving Patterns

Previously, we identified five difficulty-resolvers’ clusters in the MOOC. Each cluster
had a set of preferred actions to resolve difficulties encountered in programming tasks.
As expected, there were completers in every difficulty-resolvers’ cluster, who passed the
task on the first attempt. Up to 121 attempts were made by the completers in the cluster of
step-by-step resolvers and up to 96 attempts in the cluster of social resolvers; in all other
clusters, this number was below 40 (Figure 5).
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Difficulty-resolvers’ clusters differed in the average number of attempts per program-
ming task (p < 0.001; Table 4). Bounded resolvers made, on average, fewer attempts
compared to all other clusters (with the Mann–Whitney U-test, p < 0.05 in all cases).
Self-supporting resolvers made fewer attempts on average compared to moderate, step-
by-step, and social resolvers (U = 205,785.0, 347,945.5, and 109,872.0, respectively; in all
cases, p < 0.05). For all other pairwise comparisons, no significant differences were found
(p > 0.05).
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Table 4. Comparison of difficulty-resolvers’ clusters across the course.

Bounded
Resolvers (n = 170)

Moderate
Resolvers (n = 72)

Step-by-step
Resolvers (n = 123)

Social Resolvers
(n = 42)

Self-Supporting
Resolvers (n = 168)

Kruskal–
Wallis

H

Attempts per
programming

task

Range 1−33 1−36 1−121 1−96 1−19

Mean (SD) 1.56 (1.766) 2.07 (2.904) 2.44 (6.095) 2.46 (6.330) 1.65 (1.583) 45.696 ***

Attempts per
quiz

Range 1−2 1−2 1−4 1−3 1−3

Mean (SD) 1.01 (0.114) 1.02 (0.143) 1.06 (0.279) 1.08 (0.309) 1.04 (0.211) 21.648 ***

Scores per quiz Mean (SD) 9.93 (0.259) 9.88 (0.327) 9.78 (0.416) 9.87 (0.338) 9.90 (0.296) 65.572 ***

*** p < 0.001.

The number of attempts per quiz also varied between difficulty-resolvers’ clusters. Again,
in every cluster, some completers passed the quiz on the first attempt. Step-by-step resolvers
made up to four attempts and social and self-supporting resolvers were able to pass a quiz in
three attempts, while the other resolvers made two or fewer attempts (Figure 6).
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Figure 6. Distribution of the number of attempts per quiz while comparing completers with different
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There was a difference between difficulty-resolvers’ clusters in the average number of
attempts per quiz (p < 0.001; Table 4). Bounded resolvers made on average fewer attempts
compared to step-by-step, social, and self-supporting resolvers (with the Mann–Whitney
U-test, p < 0.01 in all cases). Moderate resolvers made on average fewer attempts compared
to step-by-step and social resolvers (U = 68,571.0 and 23,106.0, respectively, in both cases
p < 0.05). For all other pairwise comparisons, no significant differences were found (p > 0.05).

Due to certificate requirements, the quiz scores ranged in all clusters from 9 to 10
points (Table 4). Difference was found between difficulty-resolvers’ clusters regarding the
received scores per quiz (p < 0.001). Bounded resolvers achieved higher results compared
to moderate, step-by-step, and social resolvers (U = 93,076.0, 142,274.0, and 53,756.0,
respectively; in all cases, p < 0 .05). Step-by-step resolvers received lower scores compared
to moderate, social, and self-supporting resolvers (U = 63,762.0, 37,584.0, and 144,678.0,
respectively; in all cases, p < 0.05). For all other pairwise comparisons, no significant
differences were found (p > 0.05).
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4. Discussion

The paper examines how different groups of learners in a MOOC on programming
vary in performance. Performance in assessment was defined as the number of attempts
per programming tasks and per quiz and the numeric score received in a quiz.

4.1. Performance in Assessments by Non-Completers and Completers

First, we compared the performances in assessments between completers and non-
completers. There was no difference in the average number of attempts per quiz between
the two groups. One reason might be that learning materials could be used during the
quizzes. However, non-completers received on average lower scores in quizzes than
completers. It is possible that some non-completers did not aim for higher grades and
stopped as soon as they reached the 90% threshold of correct answers per quiz. The findings
of the Rõõm et al. [50] suggested that when non-completers struggle with a quiz, they
tend to read materials more thoroughly and test their understanding with self-assessment
questions, which help them achieve at least the minimum score required for passing the
quiz. While Chen et al. [20] showed that completers in computer science courses make more
submissions in problem sets, our results indicated that non-completers made on average
more attempts per programming task than completers. A possible explanation would
be that non-completers resubmit programming task solutions multiple times, without
concentrating on the source of error [24], or they do nothing between the attempts [25]. In
addition, Rõõm et al. [51] have found that if learners do not understand the logic of writing
programming code, they solve it by trial and error.

4.2. Performance in Assessments by Completers with Different Engagement Styles

Next, we focused on studying completers’ performance in assessments, since their
strategies allowed them to pass the course successfully. We were interested in comparing
performance in assessments between completers from different engagement clusters previ-
ously identified by Feklistova et al. [16]. Prior studies [31–33] have provided contradictory
results about learners with different engagement styles. In our study, completers in each
cluster engaged differently and might make different efforts to pass an assignment. Thus,
the results indicated differences in performance between engagement clusters. Although
the difference in the average number of attempts per quiz was quite small, it was still
statistically significant. The findings indicated that in every cluster there were completers
who provided perfect solutions or answers right off and those who were satisfied with
achieving only the threshold value required for passing. At the same time, some completers
might not achieve the required threshold value on the first attempt, or some completers
like to make a perfect submission that could require several attempts. Previous studies
have also found variation in the number of attempts [10,26–28].

We observed that completers, on average, made more attempts per programming task
than per quiz. The highest number of attempts per programming task and a tendency to
make more attempts per quiz, combined with a lower score per quiz, were seen among
completers from the cluster of support required knowledge collectors who were more
active in using different support mechanisms, including forums, and were highly engaged
with the provided activities. This contradicts previous findings [33,37,38] that those who
are the most active in discussion forums and have a high engagement level with watching
videos demonstrate better overall performance and receive better scores in quizzes. It is
possible that support-required knowledge collectors find the topic of programming more
challenging to understand immediately or that the writing style of learning materials does
not help them provide a solution on the first attempt. In spite of difficulties, they look for
support and clues in all possible sources. Perhaps, the hints received from a forum or a
helpdesk were interpreted by those completers in a wrong way, as many of them were
inexperienced in programming and they may need additional attempts to fix errors. Since
support-required knowledge collectors were active in using the learning materials, they
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were able to find the correct answers to quizzes that were mainly focused on theoretical
aspects covered in the materials.

In our study, two clusters of completers (active and pragmatic knowledge collectors)
were similar: they made a low number of attempts per programming task and received
better scores in quizzes. However, those clusters differed in engagement. The cluster of
active knowledge collectors had a high engagement level with most provided activities,
except the tools mainly used for asking support. The cluster of pragmatic knowledge
collectors was focused mostly on the activities needed to complete the MOOC [16]. Some
authors [21,34] have argued that the more students are visiting learning materials, writing
comments and attempting to answer quiz questions, the better performance they demon-
strate. Our findings suggest that in addition to those active learners with a moderate
level of engagement demonstrated by pragmatic knowledge collectors, it is possible to
pass a programming task with a small number of attempts and achieve good quiz scores.
It is interesting that in terms of attempts per quiz, the pragmatic knowledge collectors
made on average a little more attempts than active knowledge collectors. It might be
because the active knowledge collectors engaged with most provided activities, including
additional materials, and were able to get a broader overview of the topic, expanding and
enriching their understanding of the subject field, and could use the additional knowledge
in solving quizzes.

Our results indicated quite interesting findings about minimum knowledge collectors
whose engagement level was quite low. Despite many of them having experience in
programming, their average number of attempts per quiz and quiz scores did not differ
from those who actively used support mechanisms and had, for the most part, never
studied programming before. In addition, our results indicated that in comparison to active
and pragmatic knowledge collectors, minimum knowledge collectors made on average
more attempts per programming task, received lower quiz scores and tended to make on
average more attempts per quiz. It is an interesting finding, as some authors have suggested
that students with prior knowledge in programming [52,53] and lesser engagement with
course materials due to previous knowledge in the subject field [35] tend to demonstrate
good performance. Perhaps in a programming task, minimum knowledge collectors rely
on prior subject knowledge and skills, but in most theoretical quizzes, they cannot achieve
good results without reading materials and watching videos properly. Completers with
a low engagement level might do just enough to pass the course, demonstrating the
best results might not be their primary aim. Completers from the cluster of minimum
knowledge collectors might approach assessments such as a challenge, since the number of
allowed resubmissions was unlimited and could pass a task or quiz in several attempts
without being afraid to fail the course.

4.3. Performance in Assessments by Completers with Different Difficulty-Resolving Patterns

In the current study, we also compared performance in assessments between completers
with various difficulty-resolving patterns previously identified by Feklistova et al. [17]. Our
results indicated that completers with various difficulty-resolving patterns differ in perfor-
mance in assessments. Although the difference in the average number of attempts per quiz
between different clusters is quite small, it is still statistically significant. It is logical, as differ-
ent approaches might lead to different outcomes in resolving difficulties and, consequently,
might influence the number of attempts per assessment and the result. Like the clusters of
completers based on engagement styles, each cluster of difficulty-resolvers included both
completers who achieved the required threshold value for passing the assessment on the first
attempt and those who made several resubmissions to provide an acceptable programming
task solution. The former approach is consistent with the open form of MOOCs where learners
are not expected to receive a perfect grade [32].

For most beginners, it is quite usual to experience difficulties while solving a pro-
gramming task. Learners may use a combination of help sources to cope with a problem.
While Carter et al. [42] argued that those who receive more support get better grades, our
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results indicate that those (moderate, step-by-step, and social resolvers) who actively used
different help sources in case of difficulties tended to make on average more attempts to
provide a workable programming task solution and received lower quiz scores. In our
study, social resolvers who re-read the learning materials and were the most active in using
troubleshooters and seeking help from forums and helpdesk tended to make on average
more attempts per programming task and quiz and receive lower quiz scores. This finding
contradicts previous results that the highest activity in a forum allows learners to receive
the highest quiz scores [37] and demonstrate overall higher performance [33].

Similarly to Malekian et al. [25], our results indicate that reviewing learning materials
is a good approach to obtaining a positive result. Two groups in our study (bounded
and self-supporting resolvers) who rarely used troubleshooters or forums did not write
to helpdesk or ask a friend for help. The first group, bounded resolvers, who mainly
just re-read materials, demonstrated on average the smallest number of attempts per
programming task and a tendency to receive better quiz scores. Those completers might
use materials to refresh memory or clarify a point, and this is sufficient to achieve good
results in a few attempts. In addition, completers from the cluster of bounded resolvers
might apply a “first think then act” strategy as Karavirta et al. [24] have suggested. The
second group, self-supporting resolvers, re-read learning materials and actively searched
for materials on the Internet. Their performance in the programming task was second
only to that of bounded resolvers, but their performance in the quizzes did not differ from
moderate or social resolvers. Perhaps self-supporting resolvers relied too much on Internet
resources and did not pay attention to learning materials where course instructors might
provide practical help hints.

Step-by-step resolvers, besides learning materials actively used detailed guidelines
such as troubleshooters, made the highest number of attempts per assessment and received
the lowest quiz scores. This result contradicts the findings of Karavirta et al. [24] that those
who use the resubmission option more than others finally get good exercise scores. Perhaps,
step-by-step resolvers might refer to troubleshooters without any effort to correct an error
themselves and submit a new version with an intention to check if the improvement is
workable or not. However, as has been suggested in some studies [20,43], learners may
abuse hints and get poor hands-on skills.

Our results indicate that the approach demonstrated by moderate resolvers in using
various help resources leads to an average performance as sometimes those completers
are as good as bounded resolvers and sometimes they are similar to the social ones. This
group is also described in the work conducted by Karavirta et al. [24], where learners who
received an average students’ grade were not very active in resubmissions since their grade
was good enough and they had done pretty much what they were expected to do to pass
a course.

5. Conclusions

In the paper, we aimed to analyse the performance of non-completers and completers
in assessments in a MOOC on programming. Firstly, we found that non-completers made
on average more attempts per programming task than completers but no statistically
significant difference between those groups was found in relation to the quiz. Completers
received higher quiz scores than non-completers. Secondly, our study provided insight into
understanding how different strategies of engagement and difficulties resolving contribute
to MOOC learners’ performance. Active engagement with support mechanisms leads to
more attempts per assessment and lower quiz scores. Very good performance in a course
on programming can be achieved already at the pragmatic engagement level and with
reasonable usage of help resources. We found that the more different sources of help
are actively used in case of difficulties the more attempts tend to be made to provide a
workable programming task solution and the lower quiz scores are received. Completers
on average made more attempts per programming task than per quiz.
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Our findings can serve as the foundation to guide MOOC instructors. They can
consider these results while developing courses, for example, in supporting certain groups
of participants. For instance, those who actively use support mechanisms and appreciate
guidelines often make only minor changes in a code at a time, and by resubmitting it
they verify the correctness of the improvements made. Thus, giving more attempts or
even an unlimited number of attempts can help those participants complete MOOCs
successfully. In addition, instructors can use the findings to inform participants that it is
normal for learners with different engagement styles and difficulty-resolving patterns to
make different numbers of attempts to provide workable solutions and correct answers as
well as to achieve different results in quizzes. Course instructors can encourage newcomers
that previous course runs’ completers have engaged and resolved difficulties in different
ways and have passed the course successfully. Taking into account a variety of MOOC
participants, course instructors may also consider the need to differentiate assignments or
provide task descriptions with varying degrees of detail.

The novelty of this study was not only in investigating not solely non-completers and
completers in a MOOC as was done previously, but also in relating the performance to the
different completers’ strategies. In addition, the originality of this study lies in analysing
different learner groups’ performance in two assessment types (programming tasks and
quizzes) simultaneously used in the same course run. We found the following interventions
improved the understanding of how two different learning aspects—engagement and
difficulty-resolving—contribute to completers’ performance in assessments.

The present study has some limitations that have to be pointed out when generalising
the findings. We studied completers of one Estonian-language MOOC on programming
on Python only, and the course lasted only four weeks. It should be noted that some
completers did not consent to the use of their performance data. This caused the reduction
of the sample size used to study performance demonstrated by completers from different
engagement and difficulty-resolving clusters. In the study, we analysed how many attempts
on average learner made per programming task and per quiz and how high his/her average
quiz score was. It would be useful for future research to find out how the numbers of
attempts and quiz scores by non-completers and completers in each cluster change during
the course, in dynamics, and how different learners cope with each programming task
and quiz.
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