
education
sciences

Article

Software Development Methodologies, HEIs, and the
Digital Economy

Kawther Saeedi 1,* and Anna Visvizi 2,3

����������
�������

Citation: Saeedi, K.; Visvizi, A.

Software Development

Methodologies, HEIs, and the Digital

Economy. Educ. Sci. 2021, 11, 73.

https://doi.org/10.3390/educsci

11020073

Academic Editor: Hironori Washizaki

Received: 11 January 2021

Accepted: 10 February 2021

Published: 13 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz
University, Jeddah 21551, Saudi Arabia

2 Effat College of Business, Effat University, Jeddah 21551, Saudi Arabia; avisvizi@gmail.com
3 School of Business & Economics, Deree College, The American College of Greece, 153-42 Athens, Greece
* Correspondence: ksaeedi@kau.edu.sa; Tel.: +966-12-695-2000

Abstract: Progressing digitalization of business, economy, and the society places higher education
institutions (HEIs) in the center of the debate on how to effectively respond to challenges and
opportunities that are thus triggered. Several facets of this process and corresponding challenges
exist, including the complex question of how to match students’ skills and competencies with the
demands and expectations of the industry. From a different angle, considering the changing nature of
work, HEIs are responsible for equipping future employees with skills necessary to work in virtual,
distributed, culturally diverse, and frequently global, teams. In the domain of software development,
i.e., the backbone of the digital world, the challenge HEIs need to face is paramount. For this reason,
the way software development is taught at HEIs is crucial for the industry, for the economy, for the
students, and for the HEIs. As there is a tendency in the industry to embrace the scrum method
and seek employees equipped with skills necessary for the scrum methodology use, it is necessary
to ensure that HEIs offer the students the opportunity to get exposed to scrum. By querying the
challenges of switching to agile software development methodologies in senior capstone projects,
this paper makes a case that software development and software development methodology form
the thrust of a multi-stakeholder ecosystem that defines today’s digital economy and society. In this
context, the added value of this paper rests in the elaboration of a method enabling HEIs to move
toward scrum in senior projects.

Keywords: digital economy; education; agile software development methodologies; scrum; waterfall;
higher education institutions; industry-academia collaboration

1. Introduction: The Context and the Case Study

Progressing digitalization of business, economy, and the society places higher ed-
ucation institutions (HEIs) in the center of the debate on how to effectively respond to
challenges and opportunities that are thus triggered [1,2]. Several facets of this process
and corresponding challenges exist, including the complex question of how to match stu-
dents’ skills and competencies with the demands and expectations of the industry. Indeed,
the three key dimensions of that question are (i) whether the graduating students will
find employment, (ii) whether the industry, by employing these graduates, will retain its
competitive advantage, or perhaps will be able to build it, and (iii) whether a given HEI,
the alma mater of these graduates, will thus be considered competitive enough to attract
the best future students and, therefore, funding. From a different angle, considering the
changing nature of work, a process dramatically accelerated during the Covid-19 pan-
demic [3,4], HEIs are responsible for equipping future employees with skills necessary to
work in virtual, distributed, culturally diverse, and frequently global, teams [5]. In the
domain of software development, i.e., the backbone of the digital world, the challenge
HEIs need to face is paramount. For this reason, the way software development is taught
at HEIs is crucial for the industry, for the economy, for the students, and for the HEIs. In

Educ. Sci. 2021, 11, 73. https://doi.org/10.3390/educsci11020073 https://www.mdpi.com/journal/education

https://www.mdpi.com/journal/education
https://www.mdpi.com
https://orcid.org/0000-0002-5295-4485
https://orcid.org/0000-0003-3240-3771
https://doi.org/10.3390/educsci11020073
https://doi.org/10.3390/educsci11020073
https://doi.org/10.3390/educsci11020073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/educsci11020073
https://www.mdpi.com/journal/education
https://www.mdpi.com/2227-7102/11/2/73?type=check_update&version=3

Educ. Sci. 2021, 11, 73 2 of 21

other words, approaches to software development and software development methods
form the thrust of a multi-stakeholder ecosystem that defines today’s digital economy and
society [6,7].

Even if the discussion on ways and approaches to teaching software development in
HEIs has continued for more than a decade now [8–10], it is vital that this debate is revisited.
To do so, this paper examines the opportunities and caveats of software development
training offered to senior students, especially as seen from the angle of two approaches
to software development, i.e., waterfall and scrum. It is argued that while the waterfall
approach has some advantages, agile methods, including scrum, create the opportunity,
on the one hand, to create a close-to-real world work environment for students involved
in a software development project, and on the other hand, to equip students with skills
required by the industry, and the labor market in general. Indeed, insights from academic
research [8,11–14] and the industry [10], also as reflected in most job descriptions and skills
sought, suggest that scrum has established itself as the preferred software development
methodology. Certainly, in the context of HEIs, the question of which approach to software
development to prefer is a complex issue in that it weighs heavily on the organization and
coordination of the project delivery [11–13], on the alignment with the academic calendar,
on curriculum requirements, on accreditation obligations, as well as on faculty preferences
and time-availability. For these reasons, the question is not really whether to continue
applying the waterfall method, but rather how to successfully transition to hybrid or agile
methods, including for instance scrum [14–17]. By reference to the case of senior software
development project implemented at the King Abdulaziz University (KAU), the objective
of this paper is to highlight a possible pathway that HEIs might follow to do so.

Senior software development project is a required milestone for all computer science
students. Students embark on the senior project during the final year of their bachelor-
level studies at the university. The objective of this milestone is to apply the knowledge
learned and skills acquired throughout the program to successfully engage in a software
development project. This may include the development of a prototype of a software
system, a mobile application, a web application, a drone application, or any other form of a
software system. Students are encouraged to develop an innovative idea, to solve a real
word problem or, to develop a software that will create a broadly conceived opportunity
of generating a positive social impact, i.e., through identifying a market niche or through
social innovation [18–20]. To this end, students should be able to adopt and integrate in
their project advanced concepts and latest technological developments, such as Artificial
Intelligence (AI), Internet of Things (IoT), Blockchain, cloud computing and big data.
To boost the students’ engagement with the project as well as to increase the students’
exposure to developments on the market, students are encouraged to participate in open
local, regional, and national software development competitions [21,22]

At KAU, the senior project is a two semester, 5-credit (1 + 4 credits) bearing module
that is compulsory for all students graduating in computer science. The senior project is
designed in a manner that, on the one hand, allows the students to draw from, to exploit
and to adopt all skills and knowledge they progressively acquired during the previous
semesters. On the other hand, it allows to create evidence that students acquired practical
skills matching the market’s/industry’s expectations and demands. For this reason, as a
part of the course assessment, the students are required to develop a program or a software
system, to build a corresponding software, and to supply the necessary documentation
of the work done, especially as regards the software engineering process. Students are
evaluated based on the presentation of the project outcomes to the faculty members as well
as on a detailed assessment of the project documentation.

Until recently, the senior software development projects at KAU would follow the
traditional, plan-driven sequential process, most closely associated with the waterfall
method. It consisted of five phases, including analysis, design, coding, report writing
and presentation. These phases were mirrored in the assessment and the evaluation
rubrics. Given the developments in the global economy, but also considering the objectives

Educ. Sci. 2021, 11, 73 3 of 21

outlined in the Vision 2030 [23,24] a consensus begun to consolidate that a switch to agile
methods might be of benefit to the students, the university, and the economy at large.
This nascent understanding emerging among the faculty and the administration at KAU
mirrors tendencies and trends present elsewhere in the world [25–27]. In this sense, the
findings elaborated in this paper are generalizable and might be of use to educators and
administrators around the world. The reminder of this paper is structured as follows. The
second section offers a brief insight into the traditional and agile software development
methods to highlight their added value and potential. In what follows, the agile software
development methods are mapped. Against this backdrop, the specific features of scrum
are elaborated. The next section returns to the case-study and examines the specific stages
of the senior project implementation to highlight the nodal points where challenges and
opportunities are generated. A blueprint for the transition to agile software development
methods is elaborated. Discussion and conclusions follow.

2. Delineating Traditional and Agile Software Development Methods

Software development life cycle (SDLC) is one of the key issues in software engineer-
ing. It is because the structure of activities required to develop a software system weighs on
the quality, usefulness and usability of the software developed [28,29]. Several approaches
to software development exist. A generic SDLC consists of five phases including: require-
ments analysis, software design, software implementation, and software testing. In brief,
the requirements analysis phase is the process of capturing user requirements and produc-
ing software specifications. However, variations exist [28]. During the software design
phase, abstract software models are developed through illustration of different perspectives
using modeling languages such as the Unified Modelling Language (UML) [30,31]. The
software implementation phase is the process of building the executable software based on
models built in the earlier design phase. The software testing phase is meant to ensure that
the developed software meets prior specifications and is free from errors/bugs.

Two key approaches to the workflow in SDLCs exist, i.e., the linear, plan-driven, or
traditional one, frequently referred to as waterfall, and the non-linear, an incremental one,
frequently referred to as agile. It would be a simplification to argue that one approach is
better or worse. The practice of software development projects suggests that elements of
both plan-driven and incremental methods are applied throughout the SDLC. However, ev-
idence suggests that more than 70 percent of organizations use agile software development
method [32,33] in which the delivery of functional sub-components of the entire project is
placed in the forefront.

The waterfall method is a plan-driven software development methodology based on
advanced planning of all project phases, which are subsequently implemented. Moving
from one phase to another requires a verification and formal approval from the software
customer. This approach to software development is useful to coordinate the work of
a big project among different teams. The drawback of waterfall is that it is difficult to
accommodate necessary changes, possible and necessary corrections and/or adjustments
as the project and its phases unfold. In a way, a certain degree of path-dependence is
inherent in the waterfall method. Indeed, the customer’s feedback is received at the end
of the whole process, which adds to the challenge of customizing the software developed
along the way. In this view, the waterfall method is a method suitable in all those (rare)
cases when all functional and nonfunctional requirements are clear, well-understood, and
predictable.

The agile, or incremental method (manifesto), is based on an incremental delivery
of software functions, i.e., the software is built step-by-step, whereby—at each of the
subsequent stages of the project implementation—the outcome of the process is assessed
against the feedback received also from the customer. In other words, unlike in waterfall,
feedback is fed into the process instantly and incrementally rather than only at the very end
of the process [28]. As a result, there is a flexibility to go back and forth to address likely
errors, inaccuracies etc. in the software under development [34]. The agile method requires

Educ. Sci. 2021, 11, 73 4 of 21

advanced teamwork and related skills. The workflow is divided into so called sprints, i.e.,
time-boxed units of work during which a specific sub-component of the project is to be
delivered. Deliverables are prioritized according to their business value, i.e., essentially,
according to the customer’s specifications and needs. If all planned work for a given
sprint cannot be completed, work is reprioritized, and the information is used for future
sprint planning.

Agile manifesto was first proposed as an alternative to the existing software devel-
opment methods, such as waterfall, spiral or V-shaped model [28,34]. The descriptor
“manifesto” is to be associated with a set of values and principles upon which the agile
method is built. The four values include: (i) value the individuals and the interactions over
processes and tools, (ii) value the working software, (iii) value the customer collaboration,
and (iv) and value the process of responding to change [34]. The four principles include:
(i) work to achieve better quality software, (ii) fast delivery on the market, (iii) respon-
siveness to the requirements of change and (iv) less risk of failure [35]. These principles
promote active customer involvement from early stages of the project as well as the accom-
modation of changing requirements so long it is aligned with the customer’s competitive
advantage [26,36,37].

A project starts with addressing customer’s highest priority requirements in a working
software, it follows the customer evaluation of the developed requirements, and accommo-
dates the corresponding feedback of the customer. In this approach, the customer benefits
from the software already at the early stage of the project, which is essential in view of
preempting likely errors/bugs and misfit as regards the customer’s requirements. The
incremental approach and active participation of the team and the customer foster trust
between them. This is important for project success [38].

The agile manifesto values and principles are generic and can be adopted by many
methods or frameworks such as scrum [39], Extreme Programming (XP) [40], Crystal [41],
Feature Driven Development [41], Kanban [42], and other methods. These are reviewed in
the following section. Then, the spotlight is directed specifically at scrum. In the following
step, the experiences gained during the application of the agile framework are elaborated.

3. Mapping the Agile Software Development Methods

This section reviews the most common agile software development methods to identify
their specificity and value added, especially in view of challenges associated with the digital
economy and industry-academia collaboration. The following frameworks are reviewed:
Extreme Programming (XP), crystal methodology, Feature Driven Development (FDD),
Kanban method, and Scrum. After the brief highlight on most popular agile methods for
software development, Table 1 (beneath) offers a summary of each of these frameworks,
including: team size, roles, iteration (sprint) length, release, release status, large project
adaptation, value driven development and Iteration plaining.

Table 1. Overview of the agile software development methodologies.

Scrum FDD XP Kanban Crystal

Team Size 3–9 Members Not Specified Up to 12 Not Specified Different Team Size

Roles

Fixed roles include:

- Scrum master
- product owner
- Development

team

Various may include:

- Class owner
- Feature team
- Chief member
- Chief

programmer
- Chief Architect

Mandatory:

- Customer
- Programmer
- Coach

Optional:

- Tester
- Tracker
- Manager

- Project
manager

- Team member

Optional roles:

- Executive
- Lead Designer
- Tester
- Sponsor
- Team member
- Coordinator
- Business expert

Iteration Length Fixed and maximum
1 month

Features based
Variable 2–10 days Variable 1 to 2 weeks Continuous flow From a week to

4 months

Educ. Sci. 2021, 11, 73 5 of 21

Table 1. Cont.

Scrum FDD XP Kanban Crystal

Team Size 3–9 Members Not Specified Up to 12 Not Specified Different Team Size

Release End of each sprint Feature build Continuous
Integration Continues delivery Release plan

Release status Done statues ready
for integration Regular build Working function Done—every

iteration Integrate all at the end

Large project
adaptation

Scaling scrum to
manage different
team

Cascading the project
features into smaller
sets

not applicable Applying same
method

Crystal clear, yellow,
orange, red and
maroon

Value driven
development

Product backlog
priority setting by
product owner

Cascade features list Story card

Stories on Kanban
board
priority setting by
customer

Episode which reflects
the iteration size

Iteration plaining Per sprint Per feature Release planning
Iteration paling For each story Every iteration

Collaboration

- Scrum events
- Cross func-

tional team
- Self-organizing

team

- Relay on docu-
mentation

- Rare meeting

- Pair Program-
ming

- On-site cus-
tomer

- Coding stan-
dard

- Optional Kan-
ban meeting

- Customer
priority

- Requires docu-
mentation

- Frequent commu-
nication

Extreme Programming (XP) was first introduced in 1996 [40]. In this approach empha-
sis is placed on customer satisfaction, which is ensured through continuous feedback. This
method empowers the team engaged in the development of the software to respond to
changes in software requirements, as defined by the customer [43]. It involves collaboration
between a small development team and the customer. The development team consist of
two to ten members working on subcomponents of the software such as a problem to solve
or a new functional requirement. The team members organize themselves as efficiently as
possible around a problem, or a requirement, that is to be addressed. XP consist of simple
rules guiding the implementation stages. These consist of planning, managing, designing,
coding, and testing [40]. The designing process of XP is simplified and uses a system
metaphor, spike solution to reduce the risk of uncertainty and code refactoring [43]. The
coding is produced in pair programmed fashion, following agreed standards, unit tested,
version controlled and continuously integrated. The testing is conducted for each code unit
separate component and integrated components to ensure fixing all bugs. The XP is suitable
for high-risk projects with short duration, dynamic requirements, and implemented by a
small team [40,43].

Crystal methodology is a lightweight methodology i.e., minimum documentation,
management and reporting. This gives the method a generic and flexible form of adapta-
tion. The adaptation suggests different crystal methodologies depending on the project
environment and team-size, including such methodologies as clear crystal, yellow shining,
orange crystal and red crystal [41]. Each of these methodologies requires different practices,
processes, and policies [41]. In this method, the focus is directed at human interactions
where the process adaptation is based on what is suitable for the team. Software devel-
opment iterations are set according to the task chosen by the team as high priority. The
development process is flexible and adjusted to the development team. The crystal method-
ology consists of frequent process cycles of various length and order including project
cycle, delivery cycle, iteration cycle and integration cycle [41]. The project cycle comprises
charting project initial plan and its development. The delivery cycle comprises the release
plan and presentation to real users. The iteration cycle includes iteration planning, daily
activities, and reflection for improvement. Lastly, the integration cycle is continuously
integrated up until the release of the software.

Feature Driven Development (FDD) as the name indicates, is a software development
method in which the stress is placed of the features of the software being developed. FDD

Educ. Sci. 2021, 11, 73 6 of 21

builds around software engineering best practice. Therefore, it is suitable for complex and
large-scale project [37,41]. In this framework a given software development project is split
into several cascading features small enough for each feature to be executable within a
timeframe of two to ten days. The FDD process flow starts with building an overall model
and identifying project features set then decompose them into group of features. Each of
which is realized through the iteration of six phases starting by design, design inspection,
coding, unit testing, integration, code inspection and finally releasing the main build. This
process is repetitive for every features of the project; parallel iteration conducted through
different teams. Another important aspect of FDD is clear roles and responsibilities; there
are six main roles in FDD, which includes a project manager, chief architect, Development
Manager, Chief Programmer, class owner, domain expert and other supporting roles [41].

The Kanban method offers a visual workflow management framework of SDLC [42].
Kanban is based on three main practices, including: progress visualization, limiting work in
progress, and workflow enhancement [42]. Progress visualization, including the work to be
done, work in progress and finished work, is depicted on a physical or an electronic board.
The practice of limiting work in progress essentially means that before new stage of the
process begins, all pending tasks are accomplished. The practice of workflow enhancement
is meant to maximize the value of delivery to the customer, to ensure smooth process and
to minimize the process’ cost and time. The Kanban method does not specify the roles
other than the conventional project manager and the development team.

Scrum is the most popular agile framework used in the industry. Notably, it is the
only agile framework included in the skills category of the most popular job seeking site of
a global outreach [44]. This popularity is a function of this framework’s capacity to boost
the efficiency of the software development process, including the speed of delivery and the
quality of the software itself. Another aspect that made this framework very popular is that
it lends itself to be adopted as a way of workflow management in other business domains,
i.e., other than software development [45]. That is, its use is not limited to software project
management [33]. The scrum is a simple to understand and lightweight framework used
to develop complex products [scrumguides.org]. The scrum is an empirical process, which
is based on three pillars, such as: transparency, inspection, and adaptation [39]. As other
agile methodology, scrum delivers the project in iteration of fixed intervals called sprints.
Thus, to maximize the opportunity, during each sprint, the development team needs
to empirically visit the three pillars. The framework consists of three scrum roles, five
scrum events, three scrum artifacts and the rules that bind them together. The following
section offers a detailed insight into the scrum framework and it its value for the software
development process.

4. A Detailed Insight into the Scrum Method and Its Potential

The three roles specific to the composition of a scrum team are scrum master, product
owner and the development team. The scrum team is cross-functional and is equipped
with skills required to implement the project. The team is also self-organized, in that the
ways in which the team operates is defined by the team. The product owner is responsible
for conveying to the team the customer’s requirements and managing the work timeline.
This is done by reference to priorities assigned to each stages of the project delivery. The
lists of requirements and priorities are documented in a shred backlog. The development
team consists of three to nine members. This number is said to balance the complexity of
communication among team members and the ability to deliver releasable increment at the
end of each iteration/sprint. The development team’s main responsibility is to build the
increment during the sprint. The scrum master is a “servant leader”, who is responsible
for ensuring that scrum guidelines are applied, that the impediments the team faces are
addressed, and that communication between the team and the customer is facilitated.

The five scrum events are time boxed, i.e., have maximum duration and regular at
the same time and location [39]. The sprint event is the container of the other four events,
where development team expected to deliver releasable increment at end of it. The sprint is

Educ. Sci. 2021, 11, 73 7 of 21

time boxed with one month or less to limit the risk. This period is fixed thought the project
and new sprint start straight after the previous one. The scrum team, product owner and
scrum master get together to plan the coming sprint in the sprint-planning event. They
specify what can be delivered and how it will be built in the next sprint in the Sprint
Backlog. The sprint planning is eight hours time box for one-month sprint, shorter sprints
have shorter planning hours. Daily scrum is a daily time-boxed event that lasts 15 min and
is designed to assess the progress of the development team on a daily basis. Each member
of the development team answers three questions: “What did I do yesterday?”, “What
will I do today?”, “What difficulties I am facing today?” The answers to these questions
create a good background for the team to consolidate collaboration and to assess the team’s
performance. The sprint review held by the end of the sprint is designed to inspect the
work done. The sprint review is a four-hour time box for a one-month sprint. The sprint
retrospective is an inspection meeting during which the team may reflect on the team’s
overall performance, including people, relationships, processes, and tools. A thorough
and critical evaluation of these items enables the team to draw conclusions as to how to
conceptualize and strive for improvement. The retrospective event is a three h. time box
for one-month sprint.

The scrum’s artifacts consist of product backlog, sprint backlog, and an increment [39].
The product backlog is a single repository of the work that needs to be done. This includes
new functions, improvements, big fixes, and other tasks that need to be addressed by the
development team. The product owner is the main person responsible to ensure that the
backlog items are clear, prioritized, and complete. The development team can add new
items or refine the items already available in the backlog. This single repository of the work
related to the project maximizes transparency as well as the informal progress tracking of
the project. Sprint Backlog includes items from the product backlog created in the sprint
planning so that the development team can tackle them during the next sprint. The items
in the sprint backlog form a sprint goal, which is mirrors the objective and the scope of
work for the development team. The increment is a work or product ready for release
delivered by the end of each sprint. It is possible to develop multiple increments during a
sprint. The increment must comply with the definition of “Done”, i.e., the agreed stander
for releasable product. The increment is internally inspected during the sprint review. The
increments are gradually integrated in the project framework to step-by-step achieve the
product goal. The release and the integration schedule are conducted through coordination
with the product owner.

5. The Research Model, the Examination, and the Results
5.1. The Research Model

The data included in this analysis was collected over the period 2019–2020 and con-
sisted of a structured evaluation of the senior project implementation documentation.
Specifically, for the purpose of this examination, this research process was divided into
four stages (Figure 1). (1) Examination of the specificity of the senior project coordination
process. (2) Process-focused analysis of the senior projects’ documentation; (3) Method-
focused analysis of the projects’ documentation; (4) development of a blueprint for moving
away from waterfall to agile methodology. These stages are elaborated beneath.

Stage 1: The objective of this stage of research was to examine the senior project
coordination process, i.e., how the senior projects are conduced and evaluated. Naturally,
the coordination process mirrors the software development method. In this case, the coor-
dination process was constructed in a manner mirroring the waterfall method. Accordingly,
for the purpose of the evaluation the following features of the senior projects were assessed:
(i) the coordination process, (ii) the composition of the team, (iii) the evaluation method,
and, finally, (iv) the deliverables.

Educ. Sci. 2021, 11, 73 8 of 21

Educ. Sci. 2021, 11, 73 8 of 22

to step-by-step achieve the product goal. The release and the integration schedule are con-
ducted through coordination with the product owner.

5. The Research Model, the Examination, and the Results
5.1. The Research Model

The data included in this analysis was collected over the period 2019–2020 and con-
sisted of a structured evaluation of the senior project implementation documentation. Spe-
cifically, for the purpose of this examination, this research process was divided into four
stages (Figure 1). (1) Examination of the specificity of the senior project coordination pro-
cess. (2) Process-focused analysis of the senior projects’ documentation; (3) Method-fo-
cused analysis of the projects’ documentation; (4) development of a blueprint for moving
away from waterfall to agile methodology. These stages are elaborated beneath.

Figure 1. The research model. Source: The authors.

Stage 1: The objective of this stage of research was to examine the senior project co-
ordination process, i.e., how the senior projects are conduced and evaluated. Naturally,
the coordination process mirrors the software development method. In this case, the co-
ordination process was constructed in a manner mirroring the waterfall method. Accord-
ingly, for the purpose of the evaluation the following features of the senior projects were
assessed: (i) the coordination process, (ii) the composition of the team, (iii) the evaluation
method, and, finally, (iv) the deliverables.

Stage 2: The objective of this stage of research was to conduct a process-focused anal-
ysis of the senior projects’ documentation. To this end, thirty-four (34) sets of senior pro-
jects’ documentation were evaluated. A three-pronged crosscheck examination of the pro-
jects was performed to identify how Scrum framework was adopted. This entailed iden-
tifying: (i) the way of adopting Scrum frameworks in connection to the nature of the pro-
ject, (ii) the supervision style and (iii) project stakeholders.

Stage 3: The objective of this stage of research was to conduct a method-focused anal-
ysis of the projects’ documentation, to (i) identify the methods applied; and (ii) to under-
stand and pinpoint the degree of the possible alignment between the agile methodology

Figure 1. The research model. Source: The authors.

Stage 2: The objective of this stage of research was to conduct a process-focused
analysis of the senior projects’ documentation. To this end, thirty-four (34) sets of senior
projects’ documentation were evaluated. A three-pronged crosscheck examination of the
projects was performed to identify how Scrum framework was adopted. This entailed
identifying: (i) the way of adopting Scrum frameworks in connection to the nature of the
project, (ii) the supervision style and (iii) project stakeholders.

Stage 3: The objective of this stage of research was to conduct a method-focused
analysis of the projects’ documentation, to (i) identify the methods applied; and (ii) to un-
derstand and pinpoint the degree of the possible alignment between the agile methodology
and senior project requirements. In other words, the objective was to determine whether
an alignment between the agile methodology and senior project requirements is feasible.

Stage 4: Based on the findings arrived at Stages 1–3, a blueprint for switching from
waterfall to scrum methodology was developed. This included: (i) the road map of the
process, (ii) the deliverables, (iii) the documentation structure, and (iv) the methods of
assessment and evaluation blueprint. Notably, the blueprint elaborated at this stage refers
to the components of the methodology proposed in this paper. As such this blueprint is
generic and can be adopted in diverse educational settings.

5.2. Applying the Research Model to the Case-Study

The decision to leave waterfall behind and adopt scrum as the key senior project
implementation method requires a broad horizontal consensus among the faculty members.
Therefore, changes need to be implemented incrementally, and voices of concern need
to be attended to. Even if this approach to scrum adoption in senior projects may seem
time-consuming, in the end, it is the only way to promote accepted by all, and therefore
sustainable, solutions [46,47]. As mentioned, the adoption of scrum as the key senior project
software development method weighs heavily on the organization and coordination of the
project delivery, on the alignment with the academic calendar, on curriculum requirements,
on accreditation obligations, as well as on faculty preferences and time-availability. These

Educ. Sci. 2021, 11, 73 9 of 21

points and observations form the strategic background against which the scrum adoption
blueprint is developed and elaborated in this paper. The following sections attest to that.

5.2.1. Stage 1: Examination of the Senior Project Coordination Process

Coordination

The senior project coordination process consists of several phases, including the
overall oversight by the faculty, the induction of students into the project requirements,
supervision and delivery of the project outcomes, and several evaluation stages. The senior
project is a group project. The group may consist of two to four members. The project is
implemented over the timespan of two consecutive semesters, with each semester lasting
17 weeks. Figure 2 (beneath) offers a detailed insight into the workflow related to the senior
project implementation.

Educ. Sci. 2021, 11, 73 10 of 22

scrum. This included the faculty’s/supervisors’ opinion on how to best to adapt, to evalu-
ate, and to manage senior projects when employing the agile software development meth-
odology.

Figure 2. The senior project coordination process. Source: The authors.

The Evaluation Process (Methods of Evaluation and Assessment)
An important part of the senior project implementation is the evaluation process. To

ensure fair and constructive evaluation, each project is evaluated by four evaluators, in-
cluding the supervisor, two faculty members and the senior project coordinator. Project
evaluation is an important component of the teaching and learning process in that, ideally,
it structures the teaching and learning process by highlighting the goals and objectives the
learners and the educators are expected to attain [48–52]. Well-designed evaluation ru-
brics are an important tool that facilitates students in organizing their work and improv-
ing their efficiency. From a different angle, the said rubrics allow the instructors direct
students at the attainment of very specific learning outcomes, which are congruent with
the overall orientation and objectives of a given major. In the context of the senior project
examined in this paper, the evaluation process consists of 5 stages because students’ work
is evaluated in two times in the first semester (1st interim progress evaluation and 2nd
Final evaluation) and three times during the second semester (3rd interim progress eval-
uation, 4th code checking and 5th final evaluation activity) The goals and objectives of
each of the interim evaluation activities are outlined in Figure 3 (beneath):

Figure 2. The senior project coordination process. Source: The authors.

The senior project is coordinated by two groups of faculty members, i.e., the senior
project committee, and by the supervisors. The senior project committee is responsible
for inducting the students into the overall requirements of the senior project, including
the grading criteria and evaluation rubrics; for facilitating group formation and supervi-
sors’ selection; for guiding the students through the evaluation milestones; for selecting
the evaluators and overseeing the evaluation process; as well as for providing feedback
to students.

At this stage of the project implementation, a senior project seminar is held. Its
objective is to induct students into diverse software development methods. These may
have been discussed in previous semesters, nevertheless it is important that students’
knowledge and understanding of the process and methods is refreshed, consolidated, and
brought up to a certain benchmark. This is important if work in groups is to be feasible
and efficient.

To promote a seamless move toward the adoption of agile methods, over the period
2019–2020, a few incremental changes were introduced in the delivery of the said senior
project at KAU. In this context, during the senior project seminar, the students and the
faculty were exposed also to agile software development methods. Here the explicit aim
was to enhance students’ and faculty’s awareness of the agile software development
methodology. In addition, the implicit rationale behind the inclusion agile methodology in
the senior seminar was to acquire an insight into the faculty’s views on the possibility and
feasibility of moving away from waterfall and adopting agile methods, especially scrum.
This included the faculty’s/supervisors’ opinion on how to best to adapt, to evaluate, and
to manage senior projects when employing the agile software development methodology.

Educ. Sci. 2021, 11, 73 10 of 21

The Evaluation Process (Methods of Evaluation and Assessment)

An important part of the senior project implementation is the evaluation process.
To ensure fair and constructive evaluation, each project is evaluated by four evaluators,
including the supervisor, two faculty members and the senior project coordinator. Project
evaluation is an important component of the teaching and learning process in that, ideally,
it structures the teaching and learning process by highlighting the goals and objectives the
learners and the educators are expected to attain [48–52]. Well-designed evaluation rubrics
are an important tool that facilitates students in organizing their work and improving their
efficiency. From a different angle, the said rubrics allow the instructors direct students at
the attainment of very specific learning outcomes, which are congruent with the overall
orientation and objectives of a given major. In the context of the senior project examined in
this paper, the evaluation process consists of 5 stages because students’ work is evaluated
in two times in the first semester (1st interim progress evaluation and 2nd Final evaluation)
and three times during the second semester (3rd interim progress evaluation, 4th code
checking and 5th final evaluation activity) The goals and objectives of each of the interim
evaluation activities are outlined in Figure 3 (beneath):

Educ. Sci. 2021, 11, 73 11 of 22

Figure 3. Senior project evaluation stages. Source: The Authors.

The final output of the project implementation is assessed through an 8-item evalua-
tion rubric based on a 1 to 5 scores. The 8 items include:
• Problem definition and identification of aims, i.e., identification of the project’s ra-

tionale and relevance.
• Literature Review, i.e., a comprehensive and critical review of relevant academic and

empirical sources linked to the project.
• Methodology, i.e., identification of a relevant methodology and a thorough justifica-

tion of its selection.
• Requirements and analysis, i.e., identification and analysis of all requirements.
• Initial solution design, i.e., a realistic and appropriate system design solution.
• Originality and creativity, i.e., the extent to which the work output depicts the stu-

dents’ ability to generate new, frequently, out-of-the-box ideas, and relating to that
problem solving skills.

• Report style and format, i.e., the extent to which the report documenting the imple-
mentation of the project mirrors the established academic standards of writing and
presentation.

• Presentation, i.e., the quality of the oral presentation of the project outcomes, includ-
ing the ability to respond to questions posed by the project evaluators.
A few important points to consider: Until now, the senior project methods of assess-

ment and evaluation follow the sequence of phases specific to the waterfall methodology.
This is because waterfall: (a) it is easily adjustable to the flow of the academic year and
corresponding semesters; (b) it is predictable, i.e., by completing a semester, students com-
plete also a stage in the project implementation; (c) it is conducted in a safe setting of the
university, essentially in disregard of developments in the outside world, including the
industry; (d) the “requirements“ are limited to those “imagined“ by students and their
supervisors, rather than specified by a client/customer; (e) there is no need to go back and
forth to respond to client’s/customer’s requests/requirements; (f) the documentation pre-
pared at the end of the first semester, continues to be progressively built throughout the

Figure 3. Senior project evaluation stages. Source: The Authors.

The final output of the project implementation is assessed through an 8-item evaluation
rubric based on a 1 to 5 scores. The 8 items include:

• Problem definition and identification of aims, i.e., identification of the project’s ratio-
nale and relevance.

• Literature Review, i.e., a comprehensive and critical review of relevant academic and
empirical sources linked to the project.

• Methodology, i.e., identification of a relevant methodology and a thorough justification
of its selection.

• Requirements and analysis, i.e., identification and analysis of all requirements.
• Initial solution design, i.e., a realistic and appropriate system design solution.

Educ. Sci. 2021, 11, 73 11 of 21

• Originality and creativity, i.e., the extent to which the work output depicts the students’
ability to generate new, frequently, out-of-the-box ideas, and relating to that problem
solving skills.

• Report style and format, i.e., the extent to which the report documenting the im-
plementation of the project mirrors the established academic standards of writing
and presentation.

• Presentation, i.e., the quality of the oral presentation of the project outcomes, including
the ability to respond to questions posed by the project evaluators.

A few important points to consider: Until now, the senior project methods of assess-
ment and evaluation follow the sequence of phases specific to the waterfall methodology.
This is because waterfall: (a) it is easily adjustable to the flow of the academic year and
corresponding semesters; (b) it is predictable, i.e., by completing a semester, students
complete also a stage in the project implementation; (c) it is conducted in a safe setting of
the university, essentially in disregard of developments in the outside world, including
the industry; (d) the “requirements” are limited to those “imagined” by students and their
supervisors, rather than specified by a client/customer; (e) there is no need to go back
and forth to respond to client’s/customer’s requests/requirements; (f) the documentation
prepared at the end of the first semester, continues to be progressively built throughout
the 2nd semester. This means that students and their supervisors get a safe handle of
the deliverables, regardless of the possibility that the documentation does not mirror the
changing context, in which the software is developed.

5.2.2. Stage 2: Process-Focused Analysis of the Senior Projects’ Documentation

The objective of this stage is to identify (i) the way of adopting scrum framework in
connection to the nature of the project, (ii) the supervision style, (iii) project stakeholders.
Accordingly, the data collected over the period 2019–2020 from a dataset consisting of
thirty-four (34) senior projects’ documentations, revealed the following

(i) The way of adopting scrum in senior projects

Among the thirty-four projects, twenty-three (23) projects, i.e., 68% of all projects im-
plemented, followed the scrum methodology to develop a variety of applications including
a web system, a mobile application, and an IoT devise. Most of those projects utilized
advanced computation topics, or state of the art technology, such as blockchain, drones, IoT,
virtual reality (VR), augmented reality (AR), Artificial Intelligence (AI) and Location-based
services (LBS). Please, refer to Table 2 (below) for a summary. Please, note, that for a variety
of reasons, for instance the project type, but also convenience, the remaining project teams
adopted other methodologies, including also waterfall. At the end of the year, the students
were able to demonstrate a tested prototype, or a minimum viable product (MVP), for
innovative solutions in various domains such as healthcare, transportation, special needs,
education, and other. Table 3 depicts the details.

Important points to consider: Even if all students were given the opportunity to
attend the workshop on scrum framework development and utilization, as mentioned
above, 68% of groups decided to follow this approach in their senior software development
project over the past two years (2019–2020). The remaining 32% of the projects followed
different methodologies such as waterfall, test driven development, extreme development,
or for instance, data science project cycle. The choice of methodology was related to the
project type and the preference of the project team. For example, expectedly, a research
project based on data analysis followed a data science project cycle. However, reasons of
convenience may have also played a role in a team’s selection of the project methodology,
such as waterfall. Clearly, despite waterfall’s limitations, it offers straightforward phases
easy to follow. Still, that over the past two years, 68% of project teams decided to follow
the scrum framework suggests a high perceived convenience and effectiveness of scrum
vis-à-vis its applicability in senior projects. It also highlights the salience of supporting
methodology for senior projects.

Educ. Sci. 2021, 11, 73 12 of 21

Table 2. The kind and frequency of specific technology used in senior projects.

Technology Blockchain IoT Drone AI VR AR Gaming LBS Total

of projects 2 5 1 5 1 2 5 13 34

Table 3. Scrum framework adoption in senior projects.

Scrum Components Scrum Framework Guidelines Scrum Adaptation in Senior Project

Scrum master
Ensuring that scrum guidelines are in acted,
remove impediment facing the team and
facilitate communication outside the team.

43% A student appointed as scrum master

13% The supervisor appointed as scrum master

39% Role is not specified

Product owner convey customer requirements to the team

13% Customer appointed as product owner

22% Supervisor appointed as product owner

13% Student appointed as product owner

8% A student & supervisor appointed as product owner

43% Role is not specified

Development team 3 to 9 members build the increment during
the sprint. 100% Applied

Product backlog

A single repository of the work 100% A single repository of the work

Priorities delivering value to customer.
56% Priorities by value to the customer
13% Priorities by story size
31% No priority is defined

Product owner responsibility 100% Student responsibility

Sprint backlog
Output of the plaining evet, List of stories with
common objective team going to work on
next sprint.

8% Identify task in sprint backlog
92% Implicitly define the work of next sprint in the
weekly meeting with the supervisor

Increment The work produced by the end of each sprints 100% Weekly work of the students including project
and evaluation component

Definition of “Done” Agreed delivery status of an increment 4% Explicitly defined done property
91% Implicitly through unit testing

Sprint Sprint time-box < month.
Fixed thought the project

17% Set the sprint time box to a week
82% variable sprint period to fit the story

Sprint Planning
Plan coming sprint, what to work on and how to
do it
Time-box < 8 h

Plan the work of next sprint in the weekly meeting
with the supervisor

No time box specified

Daily scrum A daily 15-min meeting held every day same
place and same time to inspect the progress.

Informal exchange of the progress among the team
trough phone, WhatsApp, email or in person
No time box, No fix time

Sprint review
Heled by the end of the sprint to inspect the
work produced.
Time-box < 4 h

Review takes place in different forms
Project Evaluation
Code check
Meeting with supervisor
No time box, not every sprint and No fix time

sprint retrospective Inspection meeting to the team themselves
Time-box < 3 h Not conducted

Source: The authors.

The specificity of scrum allows that the framework is adopted in several ways, as long
as the evaluation and assessment criteria are adhered to. Interestingly, even if all groups
received the same training not all scrum framework rules were followed, and substantial
variation was observed as regards the specific aspects of scrum that the teams adopted.

Educ. Sci. 2021, 11, 73 13 of 21

Table 3 depicts how scrum framework is adopted in senior project. This variability is in-
evitable for several reasons. For instance, the projects are developed in a lab-like conditions
of the university, which do not match the real-world requirements. Specifically, senior
projects rarely have a known customer, therefore the priority is given to MVP development.
Moreover, senior project deliverables are a prototype and a detailed documentation of
software engineering artifacts. However, again, there is no customer whose requirements
may be changing and need to be adhered to. Finally, students are working on the project
part-time since they attend other course, while most importantly acquire skills necessary
for the senior project completion simultaneously with the project development and imple-
mentation. This suggests that three key challenges exist, and the faculty and administration
should be aware of them when seeking to adopt scrum horizontally. First, wrong adop-
tion of some scrum rules may limit the benefits normally associated with the adoption of
scrum. Second, the variability resulting from teams applying specific aspects of scrum
creates a challenge as regards the evaluation and assessment process, especially the notions
of fairness and comparability. Third, to re-create an industry-like, close-to-real working
environment, the possibility of identifying a real customer may be necessary. This solu-
tion, organizationally not always feasible, would nevertheless foster industry-academia
collaboration and, thus short- and long-term synergies for all stakeholders.

5.2.3. Stage 3: Method-Focused Analysis of the Projects’ Documentation

This stage entails a detailed analysis of the projects’ documentation to identify prac-
tices used during the projects’ implementation and to determine whether an alignment
between the agile methodology and senior project requirements is feasible. Scrum frame-
work is flexible, so it is not wrong to adopt it in a variety of ways, as long as it suits the team
and the project. Still, as Table 4 demonstrates, regardless of the flexibility inherent in scrum,
several mistakes are committed repeatedly. These are common mistakes that refer to se-
lected phases of scrum adoption, such as adoption the scrum roles, identification of events,
artifacts, and rules, which conflict the very principles and norms of agile methodology [34].
They key reason explaining why these mistakes take place is that projects adopting the
agile approach are evaluated against the same rubric which is designed for the waterfall
approach. Consequently, students perform an upfront analysis and design to receive a
better grade, even if this practice is against the principles and norms specific to the agile
methodology [34].

Table 4. Mistakes in adopting scrum in senior projects.

Scrum Components Common Mistakes

Roles
Scrum roles are not specified

Appointing two members as product owner

Events

Sprint time-box is not clearly specified for a project due to fitting sprint duration to story sizes

Lack of frequent and time-boxed events. The retrospective, review and daily sprint events are
conducted as necessary

Project plaining is conducted at early stage instead of planning the work for iteration

Daily sprint is conducted as needed through different settings

Artifact

Product backlogs reflect the development stages, which means that waterfall is followed and not scrum

Product backlog is organized by story size not by the value for customer

The story estimation is linked to days of work not to the team effort

Increments are not inspected by the end of the sprint

The definition of “done” is missing

Rules Scrum rules are not enacted at every iteration

Source: The authors.

Educ. Sci. 2021, 11, 73 14 of 21

5.2.4. Stage 4: Development of a Four-Pronged Blueprint for Moving away from Waterfall
to Agile Methodology

Based on observations drawn from the process- and method-driven examination of
senior projects’ documentation (Stages 2 and 3) this section sets on to suggest a roadmap, a
blueprint of the process of moving toward the adoption of scrum in senior projects. To this
end the general guidelines that students should adhere to presented. Particular attention is
paid to the notion of the logic underpinning scrum adoption and implementation. Equally
important is to adapt the structure of the senior project documentation to the scrum
specificity. Finally, the methods of senior project assessment and evaluation, including a
generic rubric, are presented. It is argued that while the general scrum implementation
guidelines are an important feature of a successful project implementation and delivery, it is
the students’ thorough understanding of the—derived from the agile manifesto [34]—logic
underpinning scrum that determines the success. In terms of the project’s timely and
successful delivery, a careful alignment of the nonlinear scrum phases with the confines of
the academic year and successive assessment and evaluation exercises is necessary. Above
all, however, to ensure that the blueprint thus proposed is feasible, acceptable, accepted by
the faculty and administration, and therefore also sustainable, feedback received from the
faculty need to be taken into consideration. In this sense, while the specific items of the
blueprint proposed beneath already mirror selected faculty’s insights, the actual application
of the blueprint requires discussion and moderation among the faculty members and the
administration. Only in this way, their support and involvement in the process of switching
to agile software development methodologies, and thereby responding to the multi-scalar
challenge of the digital economy, can be ensured.

The General Guidelines that Students Should Adhere to Presented

The key assumption that educators need to embark on is that students may have
several misconceptions regarding the specificity of scrum in general. Provided that wa-
terfall may have been already in place, it is vital that students are familiarized with the
scrum process. To this end, clear guidelines need to be developed on how to form the team
and assign the team roles, what are the project artifacts and what are the events. Table 5
suggests how the generic guidelines could look like.

Table 5. Guidelines to adopt scrum framework in senior project.

Scrum Framework Senior Project Guidelines

Team

Scrum master Student A member of the student team acts as the servant leader of the
project in addition to the team member role.

Product owner

Customer
If available:
Provide requirements, and
Review Epics

Supervisor
- Ensures that students develop main functionality and the

required documentation.
- Ensures that scrum is properly enacted

Development team Students Group of 2 to 4 student working in different locations

Educ. Sci. 2021, 11, 73 15 of 21

Table 5. Cont.

Scrum Framework Senior Project Guidelines

Artifact

Product backlog Requirement list

List of project requirements grouped into Epics of core functions
and prioritized by important.
Backlog evolves gradually as the project progresses.
Each Epic is divided into stories and epic sub-functions can be
developed and tested at every sprint by individual students.

Sprint backlog Weekly work

It is a list of stories (the work to be conducted in throughout the
week).
Students should agree with their supervisor on the task that
needs to be conducted.

Increment
- Tested function
- Documentation chapters The work developed during each sprint

Definition of “Done” Working free from bugs and
meeting the requirements

Students should unit test their work individuality then review
each other work then perform integration testing

Event

Sprint One week Students meet the supervisor on a weekly basis. Therefore,
sprints should be weeklong throughout the semester.

Sprint review

- Weekly meeting with
supervisor 1-h time-box

- Weekly plaining among
students

Review the work conducted during the sprint

sprint retrospective Feedback given to the group

Sprint Planning

Plan the work for next sprint with supervisor.
After the weekly meeting, students should immediately meet
continue the planning meeting to decide on how the work going
to be done and distribute duties

Daily scrum Daily online meeting among
students at fixed time A daily status update on work progress agent the plan.

Source: The Authors.

In-Depth Understanding of the Scrum Logic

Apart from a clear delineation of the basic features of scrum, the students must be
familiarized with the logic underpinning the process and the workflow specific to scrum.
Figure 4 offers a useful visualization of the process. In this context, the challenge for the
faculty is to make students understand the key logic behind scrum. To this end, students
must be introduced to the basic norms and principles of the agile manifesto [34]. It is vital
that these norms and principles are discussed with students at length and in-depth because
the students’ prospective projects’ success will depend on the students’ ability to implement
and follow these norms and principles throughout the process. The process starts with two
sequential activities, i.e., project initiation and pre-project phase, which set the foundation
needed to build the rest of the project in an iterative fashion. The rest of the activities are
conducted in each sprint in a sequence, and as the proposed guidelines suggested. The
process can be adopted in different settings of senior project as it does not pre-define the
project duration, number of semesters, project type or any other functionalities.

Educ. Sci. 2021, 11, 73 16 of 21

Educ. Sci. 2021, 11, 73 16 of 22

Event

Sprint One week
Students meet the supervisor on a weekly basis.
Therefore, sprints should be weeklong throughout
the semester.

Sprint review

– Weekly meeting with su-
pervisor 1-h time-box

– Weekly plaining among
students

Review the work conducted during the sprint
sprint retrospective Feedback given to the group

Sprint Planning

Plan the work for next sprint with supervisor.
After the weekly meeting, students should imme-
diately meet continue the planning meeting to de-
cide on how the work going to be done and distrib-
ute duties

Daily scrum
Daily online meeting among
students at fixed time

A daily status update on work progress agent the
plan.

Source: The Authors.

In-Depth Understanding of the Scrum Logic
Apart from a clear delineation of the basic features of scrum, the students must be

familiarized with the logic underpinning the process and the workflow specific to scrum.
Figure 4 offers a useful visualization of the process. In this context, the challenge for the
faculty is to make students understand the key logic behind scrum. To this end, students
must be introduced to the basic norms and principles of the agile manifesto [34]. It is vital
that these norms and principles are discussed with students at length and in-depth be-
cause the students’ prospective projects’ success will depend on the students’ ability to
implement and follow these norms and principles throughout the process. The process
starts with two sequential activities, i.e., project initiation and pre-project phase, which set
the foundation needed to build the rest of the project in an iterative fashion. The rest of
the activities are conducted in each sprint in a sequence, and as the proposed guidelines
suggested. The process can be adopted in different settings of senior project as it does not
pre-define the project duration, number of semesters, project type or any other function-
alities.

Figure 4. Visualization of the scrum process. Source: The Authors.

Figure 4. Visualization of the scrum process. Source: The Authors.

Methods of Evaluation and Assessment

As discussed earlier, there has been a tendency in the senior software development
project implementation to rely on the waterfall method. To this end a standard linear
5-pronged modes of assessment and evaluation were adopted. Clearly, the incremental and
instantaneous nature of scrum requires a more flexible way of assessment and evaluation
to grant the students, i.e., the teams, the opportunity to go back and forth and to reflect
on both the evolving context and the customer’s specifications/requirements at each
iteration/sprint. Table 6 offers a possible way of navigating the challenge of evaluating
senior projects based on scrum. The rubric thus presented is very generic and, at this
stage, highlights only items relevant to software development. Other items, such as
students’ learning outcomes and evaluation marks can be customized according to program
requirements. Furthermore, the evaluation rubric does not impose either a specific number
of evaluators, marks distribution or semester periods. Therefore, academic institutions
wishing to use this rubric as a template have the flexibility to adjust it according to their
academic requirements.

Structure of the Senior Project Documentation

One of the important requirements of HEI is documenting the project in an scientific
fashion. Although documentation is not given the same important in agile manifesto,
it is important to consider in academic setting as majority of the evaluation marks are
based on the documentation. Therefore, this paper recommends a documentation struc-
ture in alignment with agile principles and scrum framework. Table 7 illiterate current
documentation structure verses the recommended one. The current one reflect the leaner
approach of software development i.e. waterfall. Whereas the recommended one reflect
the iterative nature of agile manifesto. The rounded arrow implies repeating the chapter
for each functional iteration such as Epic or story in scrum.

Educ. Sci. 2021, 11, 73 17 of 21

Table 6. Generic Evaluation Rubric for scrum.

Evaluation Criteria Unsatisfactory Poor Acceptable Good Excellent

1 Project Domain and Context

2 Backlog of core functions ordered by priority

3
Illustration of overall system models e.g.,
system architecture
Context diagram and use case diagram

4

Pre-project phase

• Tools and environment
• High-fidelity prototype
• Database design

Epic development

3 Epic Name Epic identification Planning Development Unit Testing Integration Testing

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

a Epic One:

b Epic Two:

c Epic #:

Average

1: Acceptable, 2: Good, 3: Excellent.

Table 7. Recommended documentation structure.

Current Documentation Structure Recommended Documentation Structure
Chapter 1: Introduction chapter
Chapter 2: Domain context and related work

• Understanding of context
• Study of similar projects, solutions
• Project feasibility

Chapter 2: Analysis and specification
Chapter 3: Design
Chapter 4: Implementation and Testing
Chapter 7: conclusion and future work

Chapter 1: Introduction Chapter
Chapter 2: Domain context and requirements

• Understanding of context
• Study of similar projects and/or solutions
• Project feasibility
• Backlog of key functional requirements
• Context diagram
• A use case diagram
• System architecture

Chapter 3: Project Initiation

• High fidelity prototype
• User interface design
• ER diagram or class diagram

Chapter 4, 5, 6 . . . etc. The development of Epics

• Design
• Implementation
• Unit Testing
• Integration testing (if needed)

Final Chapter

• System testing
• Usability testing
• Result and discussion
• Challenges
• Future work

Educ. Sci. 2021, 11, x FOR PEER REVIEW 18 of 22

Structure of the Senior Project Documentation
One of the important requirements of HEI is documenting the project in an scientific

fashion. Although documentation is not given the same important in agile manifesto, it is
important to consider in academic setting as majority of the evaluation marks are based
on the documentation. Therefore, this paper recommends a documentation structure in
alignment with agile principles and scrum framework. Table 7 illiterate current documen-
tation structure verses the recommended one. The current one reflect the leaner approach
of software development i.e. waterfall. Whereas the recommended one reflect the iterative
nature of agile manifesto. The rounded arrow implies repeating the chapter for each func-
tional iteration such as Epic or story in scrum.

Table 7. Recommended documentation structure.

Current Documentation Structure Recommended Documentation Structure
Chapter 1: Introduction chapter
Chapter 2: Domain context and related work
• Understanding of context
• Study of similar projects, solutions
• Project feasibility
Chapter 2: Analysis and specification
Chapter 3: Design
Chapter 4: Implementation and Testing
Chapter 7: conclusion and future work

Chapter 1: Introduction Chapter
Chapter 2: Domain context and requirements
• Understanding of context
• Study of similar projects and/or solutions
• Project feasibility
• Backlog of key functional requirements
• Context diagram
• A use case diagram
• System architecture
Chapter 3: Project Initiation
• High fidelity prototype
• User interface design
• ER diagram or class diagram
Chapter 4, 5, 6 …etc. The development of Epics
• Design
• Implementation
• Unit Testing
• Integration testing (if needed)
Final Chapter
• System testing
• Usability testing
• Result and discussion
• Challenges
• Future work

6. Discussion and Concluding Remarks
The scrum software development methodology is the most popular agile software

development framework widely adopted across the industry. However, the successful
adoption of scrum for the purpose of senior software development project delivery fre-
quently is not free from challenges, and thus requires, on the one hand, a substantial in-
vestment in institutional consensus building, and on the other hand, the development of
a blueprint facilitating the switch to scrum and its correct implementation across the
board. This paper proposes a method of adopting the scrum framework in the academic
context. It is important to have a method and a methodology tailor-cut for an academic
context to align them with academic requirements such as evaluation, supervision en-
gagement, working hours of students, documentation, and learning outcomes. To develop
this novel methodology, senior project implementation documentation was queried. The
methodology consists of four generic components, including the guidelines, the process,

6. Discussion and Concluding Remarks

The scrum software development methodology is the most popular agile software
development framework widely adopted across the industry. However, the successful
adoption of scrum for the purpose of senior software development project delivery fre-
quently is not free from challenges, and thus requires, on the one hand, a substantial
investment in institutional consensus building, and on the other hand, the development

Educ. Sci. 2021, 11, 73 18 of 21

of a blueprint facilitating the switch to scrum and its correct implementation across the
board. This paper proposes a method of adopting the scrum framework in the academic
context. It is important to have a method and a methodology tailor-cut for an academic
context to align them with academic requirements such as evaluation, supervision engage-
ment, working hours of students, documentation, and learning outcomes. To develop
this novel methodology, senior project implementation documentation was queried. The
methodology consists of four generic components, including the guidelines, the process,
the evaluation rubric, and the documentation structure. The novelty of this approach
proposed in this paper derives from the fact that the needs of the academic setting and the
expectations of the market/industry were brought together. As mentioned earlier in this
paper, even if over the years several universities switched to scrum, the relating academic
debate addresses mostly such questions as team collaboration [53,54], illustration of scrum
components in group project [55–58], measuring the attainment of learning outcomes [56],
scrum process for specific game development [57] and scrum as a form of intervention [58].
The existing literature could be more explicit as regards the question of how scrum-based
projects are evaluated, what is the appropriate documentation structure or how to make
scrum, chiefly, applicable in the context of the university. This paper, by bringing together
i.e., the guidelines, the process, the documentation structure and the evaluation rubric,
suggested how to make scrum usable in the context of a HEI.

By means of conclusion, software development is the backbone of today’s digital
economy. Therefore, the way and efficiency in which students will be taught software
development at HEIs will have a direct bearing on (i) the graduating students’ ability to
find employment [10]; (ii) on the industry, employing these graduates, capacity to retain
and possibly enhance its competitive advantage; and (iii) on perceived attractiveness and
competitiveness of a given HEI, the alma mater of these graduates. The prospect of adopt-
ing agile software development methodologies in senior projects is a multi-stakeholder
challenge. However, as it was also argued in this paper, there is more to that. Students
working on the premise of agile methodologies, especially scrum, acquire not only skills
pertinent to software development, but also soft skills necessary to work in today’s in-
creasingly virtual, distributed, culturally diverse, and frequently global, teams [5]. Indeed,
research suggests that students that were exposed to scrum become familiar with team
dynamics, communicate effectively with IT professionals, and gain a better appreciation of
the challenges involved in crafting larger and realistic software applications [59–62]. The
process of applying scrum as the key methodology for senior project development at KAU
suggests that students acquired and/or expanded their skills in areas such as the ability to
work in a dynamic team, delivering on time and in line with requirements, collaboration
with the customer. The points and observations thus outlined derive directly from the
examination of the projects’ documentation, from the observations of the supervisors, and
the evaluators, acquired throughout the project implementation and presentation of the
project results. More research is needed to offer quantitative evidence to support these
points. This shall be done in our future research.

Author Contributions: Conceptualization, K.S. and A.V.; Investigation, K.S. and A.V.; Methodology,
K.S. and A.V.; Writing—original draft, K.S. and A.V.; Writing—review & editing, K.S. and A.V. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Educ. Sci. 2021, 11, 73 19 of 21

References
1. Visvizi, A.; Lytras, M.D.; Sarirete, A. Management and Administration of Higher Education Institutions in Times of Change; Visvizi, A.,

Lytras, M.D., Sarirete, A., Eds.; Emerald Publishing: Bingley, UK, 2019; ISBN 9781789736281.
2. Visvizi, A.; Daniela, L.; Chen, C.h.W. Beyond the ICT- and sustainability hypes: A case for quality education. Comput. Hum. Behav.

2020, 107. [CrossRef]
3. Visvizi, A.; Lytras, M. Editorial. Transform. Gov. People Process Policy 2020, 14, 125–131. [CrossRef]
4. Sokołowski, M.M. Regulation in the COVID-19 pandemic and post-pandemic times: Day-watchman tackling the novel coron-

avirus. Transform. Gov. People Process Policy 2020. [CrossRef]
5. Daniela, L.; Visvizi, A.; Lytras, M.D. How to Predict the Unpredictable: Technology-Enhanced Learning and Learning Innovations

in Higher Education. In The Future of Innovation and Technology in Education: Policies and Practices for Teaching and Learning Excellence;
Visvizi, A., Lytras, M.D., Daniela, L., Eds.; Emerald Publishing: Bingley, UK, 2018; pp. 11–26. ISBN 9781787565562. [CrossRef]

6. Carlsson, B. The Digital Economy: What is new and what is not? Struct. Chang. Econ. Dyn. 2004, 15, 245–264. [CrossRef]
7. Athique, A. Integrated commodities in the digital economy. Media Cult. Soc. 2020, 42, 554–570. [CrossRef]
8. Campbell, J.; Kurkovsky, S.; Liew, C.h.W.; Tafliovich, A. Scrum and Agile Methods in Software Engineering Courses. In

Proceedings of the 47th ACM Technical Symposium on Computing Science Education (SIGCSE ’16), Memphis, TN, USA,
15 March 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 319–320. [CrossRef]

9. Safder, I.; Ul Hassan, S.; Visvizi, A.; Noraset, T.; Nawaz, R.; Tuarob, S. Deep Learning-based Extraction of Algorithmic Metadata
in Full-Text Scholarly Documents. Inf. Process. Manag. 2020, 57, 102269. [CrossRef]

10. Kellog Murray, J. The 20 Most-Requested Certifications by Employers in 2020, Indeed Career Guide, 20 November 2020.
Available online: https://www.indeed.com/career-advice/career-development/most-popular-certifications-2020 (accessed on
5 February 2021).

11. Chen, C.; Hong, Y.; Chen, P. Effects of the Meetings-Flow Approach on Quality Teamwork in the Training of Software Capstone
Projects. IEEE Trans. Educ. 2014, 57, 201–208. [CrossRef]

12. Baird, A.; Riggins, F.J. Planning and Sprinting: Use of a Hybrid Project Management Methodology within a CIS Capstone Course.
J. Inf. Syst. Educ. 2012, 23, 243–258.

13. Rusu, A.; Swenson, M. An industry-academia team-teaching case study for software engineering capstone courses. In Proceedings
of the 2008 38th Annual Frontiers in Education Conference, Saratoga Springs, NY, USA, 22–25 October 2008; pp. 4–23. [CrossRef]

14. Kisling, E. Transitioning from Waterfall to Agile: Shifting Student Thinking and Doing from Milestones to Sprints (2019). SAIS
2019 Proc. 2019, 14. Available online: https://aisel.aisnet.org/sais2019/14 (accessed on 5 January 2021).

15. Alshayeb, M.; Mahmood, S.; Aljasser, K. Moving from Waterfall to Agile Process in Software Engineering Capstone Projects; Nagamalai,
D., et al., Eds.; ACSIT, ICITE, SIPM–2018; American Research Institute: Washington, DC, USA, 2018; pp. 107–114. [CrossRef]

16. Rover, D.; Ullerich, C.; Scheel, R.; Wegter, J.; Whipple, C. Advantages of agile methodologies for software and product develop-
ment in a capstone design project. In Proceedings of the 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, Madrid,
Spain, 22–25 October 2014; pp. 1–9. [CrossRef]

17. Bastarrica, M.C.; Perovich, D.; Samary, M.M. What Can Students Get from a Software Engineering Capstone Course? In
Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering Education
and Training Track (ICSE-SEET), Buenos Aires, Argentina, 20–28 May 2017; pp. 137–145. [CrossRef]

18. Visvizi, A. Social Innovation in the EU and the Black Sea Region: Trends, Challenges and Opportunities. In Empowering
Civil Society in the Black Sea Region: A Tool for Innovative Social Change; Korovesi, A., Ed.; International Centre for Black Sea
Studies (ICBSS): Athens, Greece, 2013; pp. 77–87. Available online: http://icbss.org/media/1115_original.pdf (accessed on
5 January 2021).

19. Pel, B.; Haxeltine, A.; Avelino, F.; Dumitru, A.; Kemp, R.; Bauler, T.; Kunze, I.; Dorland, J.; Wittmayer, J.; Søgaard Jørgens,
M. Towards a theory of transformative social innovation: A relational framework and 12 propositions. Res. Policy 2020, 49,
104080. [CrossRef]

20. Gasparin, M.; Green, W.; Lilley, S.; Quinn, M.; Saren, M.; Schinckus, C. Business as unusual: A business model for social
innovation. J. Bus. Res. 2020, 125, 698–709. [CrossRef]

21. Makkah Award. Available online: https://makkahaward.com (accessed on 5 January 2021).
22. Dell Technologies Graduation Project Competition for Middle East, Russia, Africa and Turkey: Envision the Future Contest.

Available online: https://emcenvisionthefuture.com (accessed on 5 January 2021).
23. Faudot, A. Saudi Arabia and the rentier regime trap: A critical assessment of the plan Vision 2030. Resour. Policy 2019, 62,

94–101. [CrossRef]
24. Ahssein Amran, Y.H.; Mugahed Amran, Y.H.; Alyousef, R.; Alabduljabbar, H. Renewable and sustainable energy production in

Saudi Arabia according to Saudi Vision 2030; Current status and future prospects. J. Clean. Prod. 2020, 247, 119602. [CrossRef]
25. de Souza, R.T.; Zorzo, S.D.; da Silva, D.A. Evaluating capstone project through flexible and collaborative use of Scrum framework.

In Proceedings of the 2015 IEEE Frontiers in Education Conference (FIE), El Paso, TX, USA, 21–24 October 2015; pp. 1–7. [CrossRef]
26. Lárusdóttir, M.; Cajander, A.; Gulliksen, J. Informal feedback rather than performance measurements–user-centred evaluation in

Scrum projects. Behav. Inf. Technol. 2014, 33, 1118–1135. [CrossRef]
27. Rodriguez, G.; Soria, Á.; Campo, M. Virtual Scrum: A teaching aid to introduce undergraduate software engineering students to

scrum. Comput. Appl. Eng. Educ. 2015, 23, 147–156. [CrossRef]

http://doi.org/10.1016/j.chb.2020.106304
http://doi.org/10.1108/TG-05-2020-128
http://doi.org/10.1108/TG-07-2020-0142
http://doi.org/10.1108/978-1-78756-555-520181015
http://doi.org/10.1016/j.strueco.2004.02.001
http://doi.org/10.1177/0163443719861815
http://doi.org/10.1145/2839509.2844664
http://doi.org/10.1016/j.ipm.2020.102269
https://www.indeed.com/career-advice/career-development/most-popular-certifications-2020
http://doi.org/10.1109/TE.2014.2305918
http://doi.org/10.1109/FIE.2008.4720543
https://aisel.aisnet.org/sais2019/14
http://doi.org/10.5121/csit.2018.80808
http://doi.org/10.1109/FIE.2014.7044380
http://doi.org/10.1109/ICSE-SEET.2017.15
http://icbss.org/media/1115_original.pdf
http://doi.org/10.1016/j.respol.2020.104080
http://doi.org/10.1016/j.jbusres.2020.01.034
https://makkahaward.com
https://emcenvisionthefuture.com
http://doi.org/10.1016/j.resourpol.2019.03.009
http://doi.org/10.1016/j.jclepro.2019.119602
http://doi.org/10.1109/FIE.2015.7344249
http://doi.org/10.1080/0144929X.2013.857430
http://doi.org/10.1002/cae.21588

Educ. Sci. 2021, 11, 73 20 of 21

28. Sommerville, I. Software Engineering; Pearson: Boston, MA, USA, 2016.
29. Kneuper, R. Sixty Years of Software Development Life Cycle Models. IEEE Ann. Hist. Comput. 2017, 39, 41–54.
30. Queralt, A.; Teniente, E. Verification and validation of UML conceptual schemas with OCL constraints. ACM Trans. Softw. Eng.

Methodol. 2012, 21, 1–41. [CrossRef]
31. Fernandes, J.M.; Duarte, F.J. A reference framework for process-oriented software development organizations. Softw. Syst.

Modeling 2005, 4, 94–105. [CrossRef]
32. PMI. Project Management Institute Global. In 9th Global Project Management Survey, Success Rates Rise Transforming

the High Cost of Low Performance; PMI’s Pulse of the Profession: Newtown Square, PA, USA, 2017. Available online:
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-
2017.pdf?sc_lang_temp=en) (accessed on 5 January 2021).

33. Sutherland, J. Scrum: The Art of Doing Twice the Work in Half the Time, 1st ed.; Crown Business: New York, NY, USA, 2014.
34. Fowler, M.; Highsmith, J. The Agile Manifesto; Project Management Initiation (PMI): Newtown Square, PA, USA, 2001. Available

online: http://agilemanifesto.org/ (accessed on 5 January 2021).
35. Aziz Butt, S. Study of agile methodology with the cloud. Pac. Sci. Rev. B Humanit. Soc. Sci. 2016, 2, 22–28. [CrossRef]
36. Babb, J.; Hoda, R.; Nørbjerg, J. Embedding Reflection and Learning into Agile Software Development. IEEE Softw. 2014, 31,

51–57. [CrossRef]
37. Conboy, K.; Fitzgerald, B. Method and developer characteristics for effective agile method tailoring: A study of xp expert opinion.

ACM Trans. Softw. Eng. Methodol. 2010, 20. [CrossRef]
38. Gheorghe, A.M.; Gheorghe, I.D.; Iatan, I.L. Agile Software Development. Inform. Econ. 2020, 24, 90–100. [CrossRef]
39. Schwaber, K.; Sutherland, J. The Scrum Guide the Definitive Guide to Scrum: The Rules of the Game; Scrum.org: Burlington,

MA, USA, 2020.
40. Fojtik, R. Extreme programming in development of specific software. Procedia Comput. Sci. 2011, 3, 1464–1468. [CrossRef]
41. Jones, C. Software Methodologies: A Quantitative Guide; Auerbach Publications: Boca Raton, FL, USA, 2017.
42. Anderson, D.J. Kanban: Successful Evolutionary Change for Your Technology Business; Blue Hole Press: Sequim, WA, USA, 2010.
43. Wells, D. Extremeprogramming, Extremeprogramming.org, 2009. [Online]. Available online: http://www.extremeprogramming.

org/ (accessed on 20 November 2020).
44. Indeed, 10 October 2020. [Online]. Available online: www.indeed.com (accessed on 10 October 2020).
45. García Barriocanal, E.; Sicilia, M.A.; Sánchez-Alonso, S.; Cuadrado, J.J. Agile methods as problem-based learning designs:

Setting and assessment. In Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing
Multiculturality (TEEM’18), Salamanca, Spain, 24–26 October 2018; Association for Computing Machinery: New York, NY, USA,
2018; pp. 339–346. [CrossRef]

46. Kurth, J.A.; Allcock, H.; Walker, V.; Olson, A.; Taub, D. Faculty Perceptions of Expertise for Inclusive Education for Students With
Significant Disabilities. Teach. Educ. Spec. Educ. 2020. [CrossRef]

47. Scott, J.A.; Halkias, D. Consensus processes fostering relational trust among stakeholder leaders in a middle school: A multi-case
study. Int. Leadersh. J. 2016, 8, 54–82.

48. Baker-Shelley, A.; Van Zeijl-Rozema, A.; Martens, P. Pathways of organisational transformation for sustainability: A university
case-study synthesis presenting competencies for systemic change & rubrics of transformation. Int. J. Sustain. Dev. World Ecol.
2020, 27, 687–708. [CrossRef]

49. Gallardo, K. Competency-based assessment and the use of performance-based evaluation rubrics in higher education: Challenges
towards the next decade. Probl. Educ. 21st Century 2020, 78. [CrossRef]

50. Cockett, A.; Jackson, C. The use of assessment rubrics to enhance feedback in higher education: An integrative literature review.
Nurse Educ. Today 2018, 69, 8–13. [CrossRef] [PubMed]

51. Hack, C. Analytical rubrics in HE. Br. J. Educ. Technol. 2015, 46, 924–927. [CrossRef]
52. Jonsson, A. Rubrics as a way of providing transparency in assessment. Assess. Eval. High. Educ. 2014, 39, 840–852. [CrossRef]
53. Klopp, M.; Gold-Veerkamp, C.; Abke, J.; Borgeest, K.; Reuter, R.; Jahn, S.; Mottok, J.; Sedelmaier, Y.; Lehmann, A.; Landes, D.

Totally Different and yet so Alike: Three Concepts to Use Scrum in Higher Education. In Proceedings of the 4th European
Conference on Software Engineering Education (ECSEE ’20), Seeon/Bavaria, Germany, 18 June 2020; Association for Computing
Machinery: New York, NY, USA, 2020; pp. 12–21. [CrossRef]

54. Opt, S.; Sims, C.-D.L. Scrum: Enhancing Student Team Organization and Collaboration. Commun. Teach. 2014, 29, 55–62. [CrossRef]
55. Pope-Ruark, R. We Scrum Every Day: Using Scrum Project Management Framework for Group Projects. Coll. Teach. 2012, 60,

164–169. [CrossRef]
56. Chen, Z. Applying Scrum to Manage a Senior Capstone Project. ASEE Annu. Conf. Expo. 2017. [CrossRef]
57. Schild, J.; Walter, R.; Masuch, M. ABC-Sprints: Adapting Scrum to academic game development courses. In Proceedings of the

Fifth International Conference on the Foundations of Digital Games (FDG ’10), Monterey, CA, USA, 19–21 June 2010; Association
for Computing Machinery: New York, NY, USA, 2010; pp. 187–194. [CrossRef]

58. Sanders, D. Using Scrum to manage student projects. J. Comput. Small Coll. 2007, 23, 79.
59. Linos, P.K.; Rybarczyk, R.; Partenheimer, N. Involving IT professionals in Scrum student teams: An empirical study on the impact

of students’ learning. In Proceedings of the 2020 IEEE Frontiers in Education Conference (FIE), Uppsala, Sweden, 21–24 October
2020; pp. 1–9. [CrossRef]

http://doi.org/10.1145/2089116.2089123
http://doi.org/10.1007/s10270-004-0063-0
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2017.pdf?sc_lang_temp=en)
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2017.pdf?sc_lang_temp=en)
http://agilemanifesto.org/
http://doi.org/10.1016/j.psrb.2016.09.007
http://doi.org/10.1109/MS.2014.54
http://doi.org/10.1145/1767751.1767753
http://doi.org/10.24818/issn14531305/24.2.2020.08
http://doi.org/10.1016/j.procs.2011.01.032
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/
www.indeed.com
http://doi.org/10.1145/3284179.3284237
http://doi.org/10.1177/0888406420921582
http://doi.org/10.1080/13504509.2020.1762256
http://doi.org/10.33225/pec/20.78.61
http://doi.org/10.1016/j.nedt.2018.06.022
http://www.ncbi.nlm.nih.gov/pubmed/30007151
http://doi.org/10.1111/bjet.12304
http://doi.org/10.1080/02602938.2013.875117
http://doi.org/10.1145/3396802.3396817
http://doi.org/10.1080/17404622.2014.939675
http://doi.org/10.1080/87567555.2012.669425
http://doi.org/10.18260/1-2--27605
http://doi.org/10.1145/1822348.1822373
http://doi.org/10.1109/FIE44824.2020.9274190

Educ. Sci. 2021, 11, 73 21 of 21

60. Paasivaara, M.; Lassenius, C.; Damian, D.; Räty, P.; Schröter, A. Teaching students global software engineering skills using
distributed Scrum. In Proceedings of the 2013 35th International Conference on Software Engineering (ICSE), San Francisco, CA,
USA, 19 May 2013; pp. 1128–1137. [CrossRef]

61. Hidayati, A.; Budiardjo, E.K.; Purwandari, B. Hard and Soft Skills for Scrum Global Software Development Teams. In Proceedings
of the 3rd International Conference on Software Engineering and Information Management (ICSIM ’20), Sydney, Australia, 12–15
January 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 110–114. [CrossRef]

62. Garcia, I.; Pacheco, C.; Méndez, F.; Calvo-Manzano, J.A. The effects of game-based learning in the acquisition of “soft skills” on
undergraduate software engineering courses: A systematic literature review. Comput. Appl. Eng. Educ. 2020, 28, 1327–1354. [CrossRef]

http://doi.org/10.1109/ICSE.2013.6606664
http://doi.org/10.1145/3378936.3378966
http://doi.org/10.1002/cae.22304

	Introduction: The Context and the Case Study
	Delineating Traditional and Agile Software Development Methods
	Mapping the Agile Software Development Methods
	A Detailed Insight into the Scrum Method and Its Potential
	The Research Model, the Examination, and the Results
	The Research Model
	Applying the Research Model to the Case-Study
	Stage 1: Examination of the Senior Project Coordination Process
	Stage 2: Process-Focused Analysis of the Senior Projects’ Documentation
	Stage 3: Method-Focused Analysis of the Projects’ Documentation
	Stage 4: Development of a Four-Pronged Blueprint for Moving away from Waterfall to Agile Methodology

	Discussion and Concluding Remarks
	References

